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Abstract

Computer programs now play many board games as well
or better than the most expert humans. Human players,
however, learn, plan, allocate resources, and integrate mul-
tiple streams of knowledge. This paper highlights recent
achievements in game playing, describes some cogni-
tively-oriented work, and poses three related challenge
problems for the AI community.

Game Playing as a Domain

Work on games has had several traditional justifications.
Given unambiguous rules, playing a game to win is a
well-defined problem. A game’s rules create artificial
world states whose granularity is explicit. There is an
initial state, a state space with clear transitions, and a set
of readily describable goal states. Without intervening
instrumentation, games are also noise-free. For these rea-
sons, as well as for their ability to amuse, games have
often been referred to as “toy domains.” To play the most
difficult games well, however, a program must contend
with fundamental issues in Al: knowledge representation,
search, learning, and planning.

There are two principal reasons to continue to do re-
search on games, despite Deep Blue’s triumph (Hamilton
and Hedberg 1997). First, human fascination with game
playing is long-standing and pervasive. Anthropologists
have catalogued popular games in almost every culture.
Indeed, the same game, under various names, often ap-
pears on many continents (Bell 1969; Zaslavsky 1982).
Games intrigue us because they address important cogni-
tive functions. In particular, the games humans like to
play are probably the ones we are good at, the ones that
capitalize on our intellectual strengths and forgive our
weaknesses. A program that plays many games well must
simulate important cognitive skills. The second reason to
continue game-playing research is that some difficult
games remain to be won, games that people play very
well but computers do not. These games clarify what our
current approach lacks. They set challenges for us to
meet, and they promise ample rewards.

This paper summarizes the role of search and knowl-
edge in game playing, the state of the art, and recent
relevant data on expert human game players. It then

shows how cognitive skills can enhance a game-playing
program, and poses three new challenge problems for the
Al community. Although rooted in game playing, these
challenges could enhance performance in many domains.

Search and Knowledge

In this paper, a game is a multi-agent, noise-free, discrete
space with a finite set of objects (the playing pieces) and a
finite, static set of rules for play (agents’ serial behavior).
The rules delineate where playing pieces can reside in the
space, and when and how contestants (the agents) can
move (transform one state into another). A position is a
world state in a game; it specifies the location of the play-
ing pieces and the agent permitted to act (the mover). The
rules specify time limits for computation, a set of initial
states, and a set of ferminal states in which no agent is the
mover. The rules assign to each terminal state a game-
theoretic value, which can be thought of as a numerical
score for each agent. The goal of each agent is to reach a
terminal state that optimizes the game-theoretic value
from its perspective. This definition includes finite-board
games (e.g., tic-tac-toe and chess), games with imperfect
information (e.g., poker and backgammon), and games
with sequential team play (e.g., bridge), but excludes par-
allel activities (e.g., tennis and soccer).

A game may be represented by a game tree, in which
each node represents a position and each link represents
one action by one agent (called a ply). A contest at a game
is a finite path through a game tree from an initial state. A
contest ends at the first terminal state it reaches; it may
also be terminated by the rules because a resource limit
has been exceeded or because a position has repeatedly
occurred. The outcome of a contest is the value of its ter-
minal state, or the value (typically a draw) that the rules
assign to a terminated contest.

An optimal move from position p is an action that cre-
ates a position with maximal value for the mover in p. In
a terminal state, that value is determined by the rules; in a
non-terminal state, it is the best result the mover can
achieve if subsequent play to the end of the contest is al-
ways optimal. An evaluation function maps positions to
scores for each agent. A perfect evaluation function pre-



serves order among all positions’ game-theoretic values; a
heuristic one attempts to approximate them.

Given a subtree whose leaves are labeled by an evalua-
tion function, a minimax algorithm backs those values up,
one ply at a time, selecting the optimal move at each node
(Shannon 1950). With a small game tree, prior to any play
one can minimax the values of all terminal nodes to com-
pute the game-theoretic value of every node (full
retrograde analysis) and cache those values with the op-
timal moves. The resultant table is a perfect evaluation
function that can eliminate search during competition.

In a challenging game, a perfect evaluation function is
unknown to human experts, and full retrograde analysis is
intractable, as the search space sizes in Table 1 indicate.
During play, exhaustive search (from the current position
to only terminal states) followed by minimax could theo-
retically identify the correct move. The number of nodes
visited during such search is dependent both on the
game’s branch factor (average number of legal moves
from each position) and the depth of the subtree. Unless a
contest is near completion or few pieces remain on the
board, such a search is likely to be intractable.

Table 1: Estimated average branch factor and search
space size for some challenging board games.

Game Board Pieces  Branch factor Space
Checkers 8 x 8 24 8-20 5-10%
Chess 8x8 32 35 10
Shogi 9%x9 40 80 - 150 10%¢
Go 19x19 381 250 10°°

Resource conservation during game tree search has
been attempted in both hardware and software. Hardware
designed for a particular evaluation function can speed
computation. Deep Blue’s custom chess-searching chips,
for example, enabled it to evaluate 50 to 100 billion
moves in three minutes, sometimes to depths over 30 ply.
Search algorithms can also improve efficiency. Some
variations preserve exhaustive search’s correctness: sav-
ing previously evaluated positions in a transposition table,
the o-f algorithm (Slate and Atkin 1977), extensions
along promising lines of play, and extensions that include
forced moves (Anantharaman, Campbell, and Hsu 1990).
Other search algorithms take conservative risks, pruning
unpromising lines early (Berliner 1987) or seeking a sta-
ble heuristic evaluation (Beal 1990). Still others grow a
best-first tree, guided by values estimated for the current
leaves (Baum and Smith 1997; McAllester 1988; Palay
1985; Rivest 1987). Whatever its search mechanisms,
however, a powerful game playing program typically
plays only a single game, because it also relies on knowl-
edge.

Knowledge can be incorporated into a game-playing
program in three standard ways. First, formulaic behavior
early in play (openings) is prerecorded in an opening
book. Early in a contest, the program identifies the current

opening and continues it. Second, knowledge about im-
portant principles in a game (e.g., control of the center) is
embedded in a heuristic evaluation function. During play,
the typical program searches to generate a subtree rooted
at the current node, applies its heuristic evaluation func-
tion to the leaves of that subtree, and minimaxes those
values to estimate the correct move. Finally, partial retro-
grade analysis may be performed offline, to calculate and
store some true game-theoretic values and optimal moves.
For nodes several ply from a terminal node, this is called
a closing book. Because a heuristic evaluation function
always returns any available closing book values, the
larger the closing book, the more accurate the evaluation
and the better a search engine is likely to perform. The
best programs use both search and knowledge to win at
difficult games.

The State of the Art

Checkers and chess

In 1994, Chinook became the world’s champion checker
player (Schaeffer 1997). Its opening book had 80,000
positions, and its 10-gigabyte closing book had some 443
billion positions, every position in which no more than
eight checkers remain on the board. In the course of its
development, it became clear that Chinook’s ultimate
prowess would be its knowledge base. As its closing book
grew, Chinook improved. Eventually, with only the last 8
ply solved completely, Chinook defeated Marion Tinsley,
long the human world champion.

In 1996, Garry Kasparov defeated Deep Blue, but in
1997 he lost to a program that used the same special-
purpose hardware. In the intervening year, the program
had received a substantial infusion of grandmaster-level
knowledge. Its evaluation function had been strengthened,
and its opening book had “a few thousand [items] chosen
to match [its] style” plus statistics on grandmasters’ open-
ing play in 600,000 contests. Its closing book included all
chess positions with five or fewer pieces, as well as num-
ber of moves to completion.

Chinook and Deep Blue are examples of brute force,
the exploitation of search and knowledge on a heretofore-
unprecedented scale. Each of them had a search engine
that explored enormous subtrees, and supported that
search with extensive opening and closing books. Each
also had a carefully tuned, human-constructed, heuristic
evaluation function, with features whose relative impor-
tance was well understood in the human expert
community. There are, however, games whose large
branch factors preclude deep search, games where human
experts cannot provide all the knowledge computers need
to win. Programs that play such games well have learned
offline.



Backgammon, Othello, and Scrabble®

In 1997 Logistello defeated Takeshi Murakami, the hu-
man world Othello champion (Buro 1998), winning all 6
contests in the match. Logistello’s heuristic evaluation
function is primarily a weighted combination of simple
patterns that appear on the board, such as horizontal or
diagonal lines. (Parity and stage, how far a contest has
progressed, are also included.) To produce this evaluation
function, 1.5 million weights for conjunctions of these
features were calculated with gradient descent during off-
line training, from analysis of 11 million positions.
Although it uses a sophisticated search algorithm and a
large opening book, Logistello’s evaluation function is the
key to its prowess. No more than 22 moves before the end
of a contest, Logistello correctly computes the outcome.

TD-gammon, the best backgammon program by far,
also relies on an evaluation function that was learned off-
line. TD-gammon narrowly lost at the AAAI-98 Hall of
Champions to world champion Malcolm Davis by eight
points over 100 contests. In backgammon, the dice intro-
duce a branch factor of 400, rendering extensive, Deep-
Blue-style search impossible. Instead, TD-gammon mod-
els decision making with a neural network pretrained by
temporal difference learning on millions of offline con-
tests between two copies of the program. During
competition, TD-gammon uses its model to select a move
after a 2-to-3-ply search. Since a reworking of its dou-
bling algorithm, Tesauro estimates that TD-gammon has a
slight advantage over the best human experts.

In the 1998 AAAI Hall of Champions, Maven defeated
grandmaster Adam Logan 9 contests to 5 at Scrabble®, a
game in which contestants place one-letter tiles into a
crossword format. Maven is the best Scrabble® program,
and among the top players of the game (Sheppard 1999).
Scrabble® is subject to chance (tiles are chosen at random)
and includes imperfect information (unplayed tiles are
concealed). Maven uses a standard, game-specific move
generator (Appel and Jacobson 1988) and the B* search
algorithm (Berliner 1979); what distinguishes it from
other programs is its learned evaluation function. Indeed,
since their 1992 announcement, Maven’s weights have
become the standard for human and machine players. The
current version also includes a probabilistic simulation of
tile selection with 3-ply lookahead.

Although these three programs search and employ ex-
tensive knowledge, the changes that made them
champions were ultimately changes to their learned
evaluation functions. The creators of these programs gave
learning a headstart: the right raw material from which to
construct a powerful evaluation function. If the branch
factor is too large, however, even a good evaluation func-
tion may be not be enough.

Current targets

Research on bridge and poker, card games of imperfect
information, is ongoing. One program found five errors in
the Official Encyclopedia of Bridge with a new heuristic
technique (Frank, Basin, and Matsubara 1998). Loki now
plays poker “better than the average club player”
(Schaeffer 1999). At the same time, work on two perfect
information games indicates that neither brute force nor
offline learning will suffice.

Shogi is a chess-like game, with generals and lances in-
stead of queens. In addition, most shogi pieces can be
promoted to other pieces with more varied legal moves.
Further complexity is introduced by the ability to drop
(add to one’s own forces any piece previously captured
from the opposition) anywhere on the board. Shogi has a
much larger branch factor than chess and, because of
dropping, rarely ends in a draw. Positions are rarely quiet
(having a relatively stable heuristic evaluation in a small
subtree). Shogi has its own annual computer tournament,
but no entry has yet played as well as a strong amateur.

Go presents an even greater challenge. Professional Go
players develop slowly, typically after 10 years of full
time study. Amateur Go players are ranked from 30 kyu
to 1 kyu, and then from 1 dan to 6 dan. Professional play-
ers are ranked above that, from 1 to 9 dan. The Ing Cup,
established in 1986, promises approximately $1.8 million
for the first program to defeat Taiwan’s three best 14-to-
16 year-old players before 2000. Such a program would
be ranked about 3 dan professional, a level hundreds of
people attain. The best Go-playing program, however,
now ranks only about 4 kyu. The Go-programming com-
munity generally acknowledges that the Ing Cup will
expire without being won.

Heuristics are essential for games of incomplete infor-
mation, which are NP-hard (Blair, Mutchler, and Liu
1993). They are also necessary to play shogi and Go well,
but the requisite knowledge is inaccessible. Because their
endgames are likely to have a larger branch factor and at
least as many playing pieces, the generation of a useful
closing book is intractable. Knowledge for a heuristic
evaluation function is also problematic. In shogi, unlike
chess, there is not even human consensus on the relative
strength of the individual pieces (Beal and Smith 1998).
In Go, the rules distinguish no stone (playing piece) from
any other of the same color; a stone’s significance is de-
termined by the position. There are, moreover, thousands
of possible Go features whose interactions are not well
understood. To excel at their current targets, game playing
programs will need something more.

Cognitive Science and Game Playing

Cognitive scientists seeking the source of human prowess
have studied expert game players for more than a century.



They take protocols, transcripts of peoples’ verbal com-
mentary during and after play. Cognitive scientists also
use highly accurate devices to track experts’ eye move-
ments. Together, protocols and eye movement data
suggest how experts play.

Perception and cognition

Neuroscientists have identified distinct regions in the hu-
man brain for visual perception and for high-level
reasoning. In people, there is evidence that perceptual
salience cues functional significance, thereby directing
human attention (Tversky 1989). This is corroborated by
timed images of a chess player’s brain during decision
making (Nichelli, Grafman, Pietrini, Alway, Carton, and
Miletich 1994). Perception appears to begin first, fol-
lowed somewhat later (and then in parallel with)
reasoning and their integration. Indeed, protocols on game
players regularly highlight spatial cognition, a process
whereby people attend to visual features, determine their
significance, and then value them accordingly. This is
why people play better without blindfolds — vision not
only focuses their attention, but is also an integral part of
decision making.

Given the link between them, attention to perceptually
salient features could cue learning about function
(Tversky 1990). When a person needs to learn an evalua-
tion function for playing the games considered here, she
receives strong visual cues for the important features: the
location of playing pieces and the shapes they form on the
board. How might these cues be integrated with high-
level reasoning?

A position can be described in terms of patterns, rela-
tions between playing pieces. When early results found no
measurable difference in experts’ and amateurs’ search
(de Groot 1965), Chase and Simon proposed that chess
expertise lay in the acquisition and application of unor-
dered spatial patterns they called chunks. Expert game
players, they theorized, knew many important patterns,
recognized them quickly, and associated a move selection
mechanism with them. Better players would simply know
more chunks, and propose moves appropriate to them.

Discrete chunks were not detected in Go (Reitman
1976), however, nor was pattern recognition alone able to
account for differences detected more recently in the way
better chess players search (Gobet 1998). Moreover, ex-
tensive studies indicate that expert Go players use not
only static patterns but also dynamic ones (Yoshikawa
and Saito 1997). With only one kind of piece for each
contestant, Go appears to require a different kind of look-
ing, one that dynamically invests stones with multiple
roles, interleaving perception with cognition (Burmeister,
Saito, Yoshikawa, and Wiles 1997). Professional Go
players focused on lookahead and “good shape,” an ab-
stract image of certain parts of the current position, an
image that lookahead manipulates and reformulates

(Yoshikawa and Saito 1997). Go experts in those experi-
ments looked at only a small part of the board, between
stones, as if narrowing their options, and on recall often
attributed a plausible meaning to a move. In response,
several theories that annotate patterns have been pro-
posed, including larger, frame-like structures called
templates (Gobet and Simon 1996) and more flexible,
more elaborate structures called hybrid patterns
(Yoshikawa and Saito 1997). Whichever theory proves
correct, vision is certain to play an integral role.

Less search and knowledge

Expert human game players have fast access to large
stores of carefully organized, game-specific knowledge
which they use both to focus their attention and to guide
search. Compared to champion programs, however, hu-
man experts have far smaller opening and closing books.
Their pattern-oriented representation for this data appears
to be adapted to a specific game (Eisenstadt and Kareev
1975) and tailored only to positions that can arise during
play (Chase and Simon 1973).

Compared to champion programs, human experts also
consider fewer alternatives and search less deeply. Chess
experts consider only a few moves, and rarely search
more than 8 or 9 ply (Gobet 1998). Go experts perform
relatively small searches, with average depth 4 and
maximum branch factor 3 (Yoshikawa and Saito 1997).
Human experts focus their attention on candidate moves
(those worthy of search to evaluate them further) more
quickly than novices. Eye movement studies confirm this
in both chess and Go: experts look at very few points
when they solve a test problem (de Groot 1965; Gobet
1998; Yoshikawa and Saito 1997). The Go players’ speed
is particularly remarkable: in 0.2—0.3 seconds the ex-
pert’s eye fixates on the correct move. Accompanying
protocols suggest that the selection of candidate moves
involves both inference and pattern recognition.

Alternative cognitive mechanisms

There is increasing evidence, from a variety of domains,
that people satisfice, that is, make a decision that is good
enough. Satisficing often integrates a variety of strategies
to accomplish problem solving (Biswas, Goldman, Fisher,
Bhuva, and Glewwe 1995; Crowley and Siegler 1993;
Ratterman and Epstein 1995). Satisficing may also in-
clude the ability to reason from incomplete or inconsistent
information.

People develop expertise over time, through study and
competition; they do not begin a new game as experts
(Ericsson, Krampe, and Tesch-Romer 1993; Holding
1985). During development, people learn, particularly
from their mistakes, whereas a deterministic program
makes the same error repeatedly. Although TD-gammon,
Logistello, and Maven have learned evaluation functions,
they do not learn from their mistakes during competition,



the way people would. Nor do people require millions of
contests to achieve expert status. The initial learning
curve in Go, for example, can be very rapid — a 5 kyu
rank can be reached in several months (Saito and Yoshi-
kawa 1997). In addition, as people have more experience
with a task, their speed at it generally improves. In con-
trast, programs whose evaluation function functions rely
upon more knowledge typically require more time at each
search node, resulting in shallower search that can de-
grade performance (Anantharaman, Campbell, and Hsu
1990; Buro 1998).

Protocols also provide extensive evidence of high-level
language concepts used to formulate subgoals, and of
planning to reach those subgoals. Game playing experts
summarize some of their knowledge this way. They use
tactics (short-term plans) and strategies (long-term plans)
to make decisions and to explain their behavior to each
other. This is particularly accessible from protocols on
masters playing Soudan Go, where each side is played in
a separate room by a freely communicating team of two
players (Yoshikawa, Kojima, and Saito 1998). The proto-
cols demonstrate that “both sides clearly understand their
opponent’s intention and their understandings agree com-
pletely” (Saito and Yoshikawa 1997). Such evidence
motivated the annotation of templates and hybrid patterns
with variabilized plans and strategies.

Learning to Satisfice

Hoyle is a program whose cognitive orientation enables it
to play a broad variety of games surprisingly well. Like
people, but unlike the programs described thus far, Hoyle
can play any two-person, perfect information, finite-board
game, given the rules (Epstein, Gelfand, and Lock 1998).
To date it has learned online, during competition, to play
18 games expertly in real time. The games, on two- and
three-dimensional boards of various shapes, are drawn
from anthropology texts, and are intended to capture
problems that intrigue people. Although their game trees
are relatively small (the largest has only several billion
states), the speed with which Hoyle masters them, and its
transparency, make the approach of interest here.

Hoyle begins any new game as a novice, but it knows
what to learn. As it plays, it gradually acquires useful
knowledge, probably correct and possibly applicable in-
formation from the contests it has experienced. Each kind
of useful knowledge is prespecified, with its own repre-
sentation and a procedure to learn it. An opening, for
example, might be learned as a tree by rote.

Hoyle also begins with a set of move-selection ration-
ales called Advisors. Given the acquired useful knowledge
for a game and a position from it, an Advisor can recom-
mend or caution against any number of moves by
generating comments. Advisors are subject to resource
limits, but not to any uniform decision process or repre-
sentation.

Advisors are categorized into three tiers. Those in tier 1
rely on shallow search and learned game-theoretic values
to provide perfect guidance on a single move, mandating
its selection or avoidance. Tier-1 Advisors make easy
decisions quickly, and prevent obvious blunders. Victory,
for example, makes an immediately winning move. All
other Advisors are heuristic, either because they depend
upon induced useful knowledge or because their reason-
ing method is approximately correct. Material, for
example, encourages piece capture in tier 3. Tier-2 Advi-
sors advocate a sequence of moves (a plan), while tier-3
Advisors advocate a single move.

Comments are combined to select a move, as shown in
Figure 1. Advisors are consulted serially in tiers 1 and 2,
where the first Advisor able to determine the next move
does so. In tier 3 Advisors are consulted in parallel, and a
weighted combination of their comment strengths selects
the best move. Weights are both game-dependent and
stage-dependent, and are learned.

On a few simple games, Hoyle has been cognitively

validated, that is, its learning and decision making have
been shown similar to that of people (Ratterman and Ep-
stein 1995). Indeed, the program intentionally has many
of the hallmarks of human expert play:
* Hoyle satisfices. While it decides in real time, it toler-
ates incomplete and incorrect information, entertains a
variety of conflicting rationales simultaneously, and de-
grades gracefully in unfamiliar situations.

acquired useful knowledge legal

position \ / moves
Victory

Tier 1: Reaction from
perfect knowledge

execute
decision
A A

Tier 2: Planning

triggered by situation

recognition v

Am
no
Tier 3: Heuristic
reactions
|Material | | Cyber | |Freedom|

Figure 1: A schematic for Hoyle's move selection.



* Hoyle learns quickly. It usually achieves its expertise in
less than 100 contests.

* Hoyle is transparent. It can explain its moves through a
natural language interpretation of its Advisors’ comments.
* Hoyle integrates visual perception with high-level rea-
soning. Its allowance for multiple representations, in
useful knowledge and in Advisors, supports this. The cur-
rent position, for example, can be simultaneously
represented as a list, an array, a bipartite graph, a set of
fixed-shape patterns, and a set of piece-delineated territo-
ries.

* Hoyle links perception with function. It learns visually-
based, high-level, game-dependent concepts as game-
specific Advisors for tier 3. For example, it can learn that
the consolidation of territory is advisable in a game, de-
termine how that territory should be demarcated, and
create and use an Advisor to encourage that behavior.

* Hoyle plans. It acquires both specific and tactical move
sequences as tier-2 Advisors.

* Hoyle uses high-level concepts. Some, such as blocking
a winning move, are game-independent, and prespecified
in tier 1. Other, game-dependent ones are learned from
perceptual cues, as described above.

New Game Playing Challenges

Results with Hoyle suggest ways in which a program
might be more like a human champion. Hoyle’s penchant
for useful knowledge and multiple heuristic opinions is
likely to prove helpful in addressing the following chal-
lenge problems. Each increases with difficulty, of course,
according to the target game.

Problem 1: Model a contestant

Strategic and tactical decisions are often affected by the
nature of one’s problem solving environment. An impor-
tant factor in game playing decisions, for example, should
be the nature of one’s opponent. The first challenge prob-
lem is to construct a model of a particular contestant in a
two-person game. Given a suite of contests played by a
single person or program against various competitors, the
program should produce natural language that character-
izes the opponent’s current play in a contest (e.g., “Black
isn't interested in cashing in his initiative with 19...Bxd4?
20 cxd4 Qxd4 when White has excellent play for the
pawn”). It should also identify general strengths, weak-
nesses, and predilections, such as “In the opening,
Kasparov plays black like white,” “Karpov strives to im-
prove his position little by little, maneuvering subtly,
making his threats,” “He is always attacking, often from
directions his opponents hadn’t considered, playing
moves that have subtle multiple threats,” and “You can
tell from [his opponents’] moves they are scared. Their
attacks are wild and hopeless or else very timid.”
(Waitzkin 1990).

Some groundbreaking work on this has been done in
poker (Billings, Papp, Schaeffer, and Szafron 1998) and
Go (Isozaki and Katsuno 1996). The generation and
analysis of summary statistics would be a reasonable way
to continue. Plan detection is required, as well as some
representation for volition, aggression, and risk. Knowl-
edge about emotions and the ability to generate metaphors
should prove helpful.

Problem 2: Annotate a contest

People annotate a chess contest both move by move (e.g.,
“Far from losing a tempo, Black has really gained time
since the knight stood better on d4 than b3”) and with
tactics and strategy (e.g., “try to play d2-d4, bring the
knight on b1 to €2, and follow up with Nf3-e5, playing on
the dark squares.”) Annotations contain commentary and
often diagrams. Since 1993, the International Computer
Chess Association has awarded an annual prize to the
program that best annotates an input chess contest in real
time, but entries are few and quite machine-like
(Bjornsson and Marsland 1998). Programs are encouraged
to propose variations, include written comments, and pro-
vide explanatory diagrams.

The second challenge problem is to annotate a contest
so well that people cannot distinguish it from a human-
generated, popularly published annotation, say from The
New York Times. A solution must generate both natural
language and appropriate diagrams. It will also require
high-level concepts appropriate to the game, context-
sensitive perspectives, and the induction of a model for
each contestant as an agent with intentions and the ability
to deceive.

Problem 3: Teach a game

One measure of human expertise is the ability to convey
knowledge. The third challenge problem is to have an
expert game playing program (the instructor) teach its
skill to a person or another program (the student). To do
this well, the instructor must first analyze and represent its
own knowledge. Next, the instructor would model the
student’s knowledge, diagnose its weaknesses, and formu-
late a curriculum. Instruction could be presented as
positions, lines of play, or entire contests, all couched in
appropriate natural language. An analysis of the student’s
learning style is likely to prove helpful. Once the student
consistently plays as well as the teacher, the problem will
be solved.

Conclusion

Champion programs thus far lack cognitive features often
cited as hallmarks of human intelligence: online learning,
planning, and the ability to communicate knowledge.
There is a growing interest, however, in reactive, hierar-
chical satisficers like Hoyle, and in the kind of agent



interaction and modeling targeted by the challenge prob-
lems posed here (Dobson and Forbus 1999). We can look
forward, therefore, to programs that narrow their options,
learn from their mistakes, model other agents, explain
their rationales, and teach us to play better.

Acknowledgments

This work was supported in part by NSF grant

#9423085. Thanks to Michael Buro, Murray Campbell,
Takuya Kojima, Jonathan Schaeffer, Brian Sheppard,
Gerry Tesauro, and Atsushi Yoshikawa for generously
sharing their substantial expertise. Discussions with Hans
Berliner, Ian Frank, Jack Gelfand, Esther Lock, and Don-
ald Michie have inspired and informed much of this work.

References

Anantharaman, T., Campbell, M. S. and Hsu, F.-h. 1990.
Singular Extensions: Adding Selectivity to Brute-Force
Searching. Artificial Intelligence, 43(1): 99-110.

Appel, A. W. and Jacobson, G. J. 1988. The World's Fast-
est Scrabble Program. Communications of the ACM,
31(5): 572-578.

Baum, E. B. and Smith, W. D. 1997. A Bayesian Ap-
proach to Relevance in Game Playing. Artificial
Intelligence, 97: 195-242.

Beal, D. and Smith, M. 1998. First results from Using
Temporal Difference learning in Shogi. In Proceedings
of the First International Conference on Computers and
Games. Tsukuba, Japan.

Beal, D. F. 1990. A Generalised Quiescence Search Algo-
rithm. Artificial Intelligence, 43(1): 85-98.

Bell, R. C. 1969. Board and Table Games from Many
Civilizations. London: Oxford University Press.

Berliner, H. J. 1979. The B*Tree Search Algorithm: A
Best-First Proof Procedure. Artificial Intelligence, 12(1):
23-40.

Berliner, H. J. 1987. Some Innovations Introduced by
HITECH. ICAA Journal, 18(2): 71-76.

Billings, D., Papp, D., Schaeffer, J. and Szafron, D. 1998.
Opponent Modeling in Poker. In Proceedings of the Fif-
teenth National Conference on Artificial Intelligence,
493-499. Madison: AAAI Press.

Biswas, G., Goldman, S., Fisher, D., Bhuva, B. and
Glewwe, G. 1995. Assessing Design Activity in Com-
plex CMOS Circuit Design. In P. Nichols, S. Chipman,
& R. Brennan (Ed.), Cognitively Diagnostic Assessment,
Hillsdale, NJ: Lawrence Erlbaum.

Bjornsson, Y. and Marsland, T. 1998. Fritz 5.0 Wins the
1997 Herschberg Best-Annotation Award. ICCA Jour-
nal, 20(1): 65-66.

Blair, J., Mutchler, D. and Liu, C. 1993. Games with Im-
perfect Information. In Proceedings of the Fall
Symposium on Games: Planning and Learning, 59-67.

Burmeister, J., Saito, Y., Yoshikawa, A. and Wiles, J.
1997. Memory Performance of Master Go Players. In
Proceedings of the IJCAI Workshop on Using Games as

an Experimental Testbed for Al Research.

Buro, M. 1998. From Simple Features to Sophisticated
Evaluation Functions. In Proceedings of the 1st Interna-
tional Conference on Computers and Games. Tsukuba.

Chase, W. G. and Simon, H. A. 1973. The Mind's Eye in
Chess. In W. G. Chase (Ed.), Visual Information Proc-
essing, 215-281. New York: Academic Press.

Crowley, K. and Siegler, R. S. 1993. Flexible Strategy
Use in Young Children's Tic-Tac-Toe. Cognitive Sci-
ence, 17(4): 531-561.

de Groot, A. 1965. Thought and Choice in Chess. The
Hague: Mouton.

Dobson, D. and Forbus, K. (1999). Proceedings of the
AAAI 1999 Spring Symposium on Artificial Intelligence
and Computer Games.

Eisenstadt, M. and Kareev, Y. 1975. Aspects of Human
Problem Solving: The Use of Internal Representations.
In D. A. Norman, & D. E. Rumelhart (Ed.), Explorations
in Cognition, 308-346. San Francisco: Freeman.

Epstein, S. L., Gelfand, J. and Lock, E. T. 1998. Learning
Game-Specific Spatially-Oriented Heuristics. Con-
straints, 3(2-3): 239-253.

Ericsson, K. A., Krampe, R. T. and Tesch-Rémer, C.
1993. The Role of Deliberate Practice in the Acquisition
of Expert Performance. Psychological Review, 100(3):
363-406.

Frank, I., Basin, D. and Matsubara, H. 1998. Finding Op-
timal Strategies for Incomplete Information Games. In
Proceedings of the Fifteenth National Conference on Ar-
tificial Intelligence, 500-507. Madison: AAAI Press.

Gobet, F. 1998. Chess Players' Thinking Revisited. Swiss
Journal of Psychology, 57(1): 18-32.

Gobet, F. and Simon, H. 1996. Templates in Chess mem-
ory: A Mechanism for Recalling Several Boards.
Cognitive Psychology, 31: 1-40.

Hamilton, C. M. and Hedberg, S. 1997. Modern Masters
of an Ancient Game. Al Magazine, 18(4): 11-12.

Holding, D. 1985. The Psychology of Chess Skill.
Hillsdale, NJ: Lawrence Erlbaum.

Isozaki, H. and Katsuno, J. 1996. A Semantic Characteri-
zation of an Algorithm for Estimating Others' Beliefs
from Observation. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, 543-549.
MIT Press.

McAllester, D. A. 1988. Conspiracy Numbers for Min-
Max Search. Artificial Intelligence, 35(3): 287-310.

Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton,
J. and Miletich, R. 1994. Brain Activity in Chess Play-
ing. Nature, 369: 191.

Palay, A. J. 1985. Searching with Probabilities. Pitman.

Ratterman, M. J. and Epstein, S. L. 1995. Skilled like a
Person: A Comparison of Human and Computer Game
Playing. In Proceedings of the Seventeenth Annual Con-
ference of the Cognitive Science Society, 709-714.
Pittsburgh: Lawrence Erlbaum Associates.

Reitman, J. S. 1976. Skilled Perception in Go: Deducing
Memory Structures from Inter-Response Times. Cogni-
tive Psychology, 8: 36-356.



Rivest, R. L. 1987. Game Tree Searching by Min/Max
Approximation. Artificial Intelligence, 34(1): 77-96.

Saito, Y. and Yoshikawa, A. 1997. Go as a Testbed for
Cognitive Science Studies. In Proceedings of the IJCAI-
97 Workshop on Using Games as an Experimental Test-
bed for Al Research.

Schaeffer, J. 1997. One Jump Ahead: Challenging Human
Supremacy in Checkers. New York: Springer-Verlag.

Schaeffer, J. (1999). Personal communication.

Shannon, C. E. 1950. Programming a Computer for Play-
ing Chess. 41(256): 275.

Sheppard, B. (1999). Personal communication.

Slate, D. J. and Atkin, L. R. 1977. CHESS 4.5 - The
Northwestern University Chess Program. In P. Frey
(Ed.), Chess Skill in Man and Machine, Berlin: Springer.

Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon. CACM, 38(3): 58-68.

Tversky, B. 1989. Parts, Partonomies, and Taxonomies.
Developmental Psychology, 25(6): 983-995.

Tversky, B. 1990. Where Partonomies and Taxonomies
Meet. In S. L. Tsohatzidis (Ed.), Meanings and Proto-
types - Studies in Linguistic Categorization, 334-344.
London: Routledge.

Waitzkin, F. (1990). Kasparov. The New York Times
Magazine: 28-30, 60-64, 86-87.

Yoshikawa, A., Kojima, T. and Saito, Y. 1998. Relation
between the Way of Using Terms and the Skill - from
Analysis of Protocols of the Game of Go. In Proceedings
of the First International Conference on Computers and
Games, 211-227. Tsukuba.

Yoshikawa, A. and Saito, Y. 1997. Hybrid Pattern
Knowledge: Go Players' Knowledge Representation for
Solving Tsume-Go Problems. In Proceedings of the
South Korean International Conference on Cognitive
Science.

Zaslavsky, C. 1982. Tic Tac Toe and Other Three-in-a-
Row Games, from Ancient Egypt to the Modern Com-
puter. New York: Crowell.



FOR SLIDES

For slides: “The real art in chess is to evaluate the fac-
tors because they are so different. What is more
important, one pawn or the open line? What’s more im-
portant, the weak position of your king or some initiative
on the queenside?” “At the highest level, chess is a talent
to control unrelated things.” “Some positions are so com-
plex that you cannot calculate even two moves ahead.”

Karpov continued: He avoids weaknesses and waits for
his opponent to make mistakes. He works to neutralize
threats and gain control of certain squares and files, so
that with his superior technique he will be able to win in
the end game.



