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Abstract 

A significant source of power in a cognitive system is the 
ability to represent task-based experience appropriately. As 
people acquire skill in a cognitive task, they rely in part on 
spatially-oriented reasoning. This paper describes a multi-
agent decision-making  architecture that addresses a domain 
of related problem classes. The architecture has a general 
capacity to perform tasks in the domain, so that it can gain 
experience within a specific problem class. It also has the 
ability to generate new, problem-class-specific,  spatially-
oriented reasoning agents from experience. Much of the 
knowledge encapsulated by the correct new agents was 
previously inexpressible in the program’s representation and, 
in some cases, not readily deducible from the structure of the 
problem class. 

Introduction 
There are many examples in human cognitive and motor 
processing in which representation and sensory processing 
are optimized through experience with the task (Gelfand, 
Flax, Endres, Lane and Handelman 1992b; Gelfand, Flax, 
Endres, Lane and Handelman 1992a; Gelfand, Handelman, 
Lane and Epstein 1994). Often people are not  aware of the 
optimum representation from the initial statement of the 
problem, or from early experience.  Rather, humans 
acquire these representations gradually, from repeated 
exposure to them. One interesting domain where the 
acquisition of spatially-oriented reasoning has substantial 
impact is game playing.  

Our work on pattern learning and its application were 
inspired by repeated laboratory experiences with people, in 
the context of many different games. College students 
spoke about, reacted to, and relied upon familiar, 
sometimes symmetrically transposed,  patterns while 
learning (Ratterman and Epstein  1995). Later they relied 
heavily upon these patterns as a kind of compiled expertise. 
Even six-year-olds describe their observation of expert 
play and their own decisions in terms of the same kinds of 
patterns (Ratterman and Epstein 1996).  

Initial directions and rules given to novices are usually 
statements of relations among a small number of pieces. 
These rules may be spatial in nature, but are usually of the 

lowest order. As game players become more expert, they 
rely on higher-order, spatially  derived strategies to direct 
play. Advice from experts on how to analyze and play 
games is repeatedly conveyed through spatially-oriented 
concepts. Chess and checkers are discussed in terms of 
controlling the center of the board, while control of the 
edges is crucial in Othello (Samuel 1963; Lee and Mahajan 
1988; Fine 1989; Gelfer 1991). Concepts such as shape and 
thickness are fundamental to the game of Go (Iwamoto 
1976; Yoshio 1991; Hideo 1992).  

An important feature of any architecture that acquires 
problem-class-specific skill is the ability to perform tasks 
while learning. For a system to learn through experience, it 
must be able to perform at some low level of competence 
that supports the kind of experience required to achieve a 
higher level of performance through practice. Many 
cognitive models have such ability, and can perform tasks 
in a serviceable fashion while mechanisms such as 
chunking operate to provide a higher level of performance 
with experience (Newell 1990). These systems, however, 
typically have a complete set of knowledge for a particular 
problem, and a knowledge representation initially 
optimized for the problem class. This paper describes a 
modular, multi-agent architecture with the capacity for 
general performance, as well as the ability to generate 
agents with problem-class-specific knowledge. The 
experimental domain is game playing, and the problem-
class-specific agents it learns are for individual games. 

Program Architecture 

The architecture we discuss here is based on FORR, a 
general architecture for learning and problem solving in a 
broad domain of related problem classes (Epstein 1994a). 
The instantiation of FORR for game playing is called 
Hoyle (Epstein 1992). The use of a multi-agent architecture 
is supported by evidence that humans integrate a variety of 
strategies in order to accomplish problem solving (Crowley 
and Siegler 1993; Biswas, Goldman, Fisher, Bhuva and 
Glewwe 1995; Ratterman and Epstein  1995). The brain 
appears to use a modular architecture to accomplish 
integration of information (Ungerleider and Mishkin 1982; 
DeYoe and Van Essen 1988).  Additionally there is 



evidence that different parts of the brain are activated when 
decisions are being made about different strategic aspects 
of chess (Nichelli, Grafman, Pietrini, Alway, Carton and 
Miletich 1994).   

A schematic diagram of this system is shown in Figure 
1. A hierarchy of resource-limited procedures called 
Advisors is provided with the current game state and legal 
moves. Hoyle's Advisor hierarchy has two tiers. The first 
tier sequentially attempts to compute a decision based upon 
current knowledge, shallow (no more than 2-ply) search, 
and simple inference.  An example of this is Victory which 
recommends a move that wins the contest immediately. If 
the perfectly-correct, game-independent tier-1 Advisors 
can select a move, they do so  and the second tier is never 
consulted. If no single decision is forthcoming, then the 
second tier of heuristic but generally correct Advisors 
collectively makes less reliable decisions based on a set of 
individual, narrow heuristic viewpoints, such as Material's 
“maximize the number of your playing pieces and 
minimize your opponent's.”  Based upon the strengths of 
the Advisors’ responses, a simple arithmetic vote selects 
the move. 

A complete list of Advisors and their characteristics 
appears in Table 1. As can be seen from Table 1, Advisors 
can be categorized with respect to their generality and 
learning capabilities. This organization allows the system 
to function at an acceptable level of performance as it 
learns to play a particular game. The first category is game-
playing agents that do not learn problem-class-specific 
knowledge but have decision-making abilities in the 
general game-playing domain. These Advisors are located 
in the both the first and second tier, that is, some base their 
decision on perfect knowledge, and some are general game 
playing heuristics that participate in the voting process. In 
the second category,  Advisors can learn problem-class-
specific knowledge, represented as direct comparisons of 
board states or moves.   

In the third category, Advisors base their 
recommendations on spatial configurations of pieces.  
There are two levels of representation in the spatially-
oriented Advisors. On the first level is Patsy, an Advisor 
that remembers and directly associates specific patterns 
with wins, losses, or draws. On the second level is a set of 
spatially-oriented agents, Advisors proceduralized from 
spatial concepts. Each spatial concept is a generalization 
over individual patterns, and each produces an individual 
agent. The generation of these spatial Advisors is described 
in the next section. 

Learning to Use and Apply Patterns 

In our work,  a pattern is a visually-perceived regularity, 
represented as a small geometric arrangement of marker 
types (e.g., black, X) and unoccupied positions (blanks) in 
a particular geographical location. An associative pattern 
store provides a heuristically-organized database that links 

patterns with contest outcome (win, loss, or draw). The 
associative pattern store includes a set of templates, a 
waiting list, a pattern cache and generated spatial concepts.  

 
Figure 1: A schematic diagram of decision making in 

Hoyle. 
   
Figure 2 provides an overview of the system and the 

development of pattern-based Advisors from the game-
specific associative pattern store. There are four stages 
detailed here: associate, generalize, proceduralize, and 
validate. Once patterns are identified, they are associated  
with winning, losing, or drawing and stored in a pattern 
queue. Patterns that persist over time and are identified 
with a single consistent outcome move from the pattern 
queue to the pattern cache. Patterns in the cache are 
proceduralized via an associative pattern classifier, a new, 
game-independent Advisor called Patsy. Periodic sweeps 
through the pattern cache also attempt to generalize sets of 
patterns into concepts. Each concept is proceduralized as 
an individual, game-specific Advisor that is then validated 
during subsequent learning.   

Formulating Concepts 
  

Generalization summarizes a set of detailed experiences 
into a more useful and efficient representation. Currently, 
the pattern cache is swept once every 10 contests during 
learning, and Hoyle has two generalization rules to form 
concepts. Patterns in a cache are said to agree when they 
originate from the same template and pertain to the same 
stage of the game. There are two generalization processes.  
Given distinct agreeing patterns that have the same mover 
and single, non-zero response, and are identical except in a 



single position, Hoyle constructs a new pattern from the remaining positions.  Given distinct agreeing patterns such  

 

Table 1: Hoyle’s Advisors for Game Playing. 

 
Name                Tier      Description                Useful     Learning 
                              Knowledge   Strategy 
 
General Game Playing Advisors - No Learning 
 
Victory  1 Makes the winning move from the current state if there is one.    None            - 
Enough Rope   1 Avoids blocking a losing move the non-mover would have if it   None            - 
    were its turn now. 
Candide  2 Formulates and advances naive offensive plans.         None            - 
Challenge  2 Moves to maximize its number of winning lines or minimize    None            - 
    the non-mover's. 
Coverage   2 Maximizes the mover's markers' influence on predrawn game     None            - 
    board lines or minimizes the non-mover's. 
Material  2 Moves to increase the number of its pieces or decrease those    None            - 
    of the non-mover. 
Freedom   2 Moves to maximize the number of its subsequent immediate    None            - 
    moves or minimize those of the non-mover. 
Shortcut  2 Bisects the shortest paths between pairs of markers of the same   None            - 
    contestant on game board lines. 
Vulnerable  2 Reduces the non-mover's capture moves on two-ply lookahead.   None            - 
Worries  2 Observes and destroys naive offensive plans of the non-mover.   None              - 
Greedy  2 Moves to advance more than one winning line.          None            - 
 
Advisors that learn domain specific knowledge 
 
Wiser  1 Makes the correct move if the current state is remembered as a  Significant states   Deduction 
    certain win. 
Sadder  1 Resigns if the current state is remembered as a certain loss.    Significant states   Deduction 
Don't Lose  1 Eliminates any move that results in an immediate loss.      Significant states   Deduction 
Panic  1 Blocks a winning move the non-mover would have if it were   Significant states   Deduction 
    its turn now. 
Shortsight  1 Advises for or against moves based on a two-ply lookahead.   Significant states   Deduction 
Anthropomorph 2 Moves as a winning or drawing non-Hoyle expert did.      Expert moves    Abduction 
Cyber  2 Moves as a winning or drawing Hoyle did.          Important contests   Abduction 
Leery  2 Avoids moves to a state from which a loss occurred, but where  Play failure and   Abduction 
    limited search proved no certain failure.             proof failure 
Not Again   2 Avoids moving as a losing Hoyle did.            Important contests   Abduction 
Open  2 Recommends previously-observed expert openings.       Opening database  Induction 
Pitchfork   2 Advances offensive forks or destroys defensive ones.      Forks       EBL 
 
Advisors that learn domain specific patterns and spatial heuristics 
 
Patsy  2 Moves to recreate visual patterns credited for positive       Visual patterns   Associative 
    outcomes in play, and to avoid those blamed for negative ones.           pattern    

                                       classifier 
 
Spatial  2 Generalizes spatial heuristics from sets of patterns in Patsy’s   Spatial       Generalization 
Heuristic   pattern cache.                      concepts 
Advisors 



 
 

that interchanging the contestants' markers and changing 
the mover transforms one to the other, Hoyle constructs a 
new pattern  with variable place holders.  
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Figure 2: A schematic diagram of associative pattern 

learning and spatial concept formation in our model. 
  

 

Proceduralization 
  

Proceduralization is the transformation of expert 
knowledge into expert behavior. This is a non-trivial task 
in AI (Mostow 1983). When there is much data or it 
conflicts in its potential application, as with pattern 
knowledge, interesting challenges arise.  Each segment of 
the associative pattern store therefore relates differently to 
decision making. Patterns on the waiting list have no 
impact on decision making at all. Patterns in the cache 
serve as input to the associative pattern classifier, Patsy. 
Pattern-based concepts become game-specific Advisors.  

 The game-independent, tier-2 Advisor Patsy ranks legal 
next moves based on the way the states they engender 
match patterns in the cache. Patsy considers the set of 
possible next states resulting from the current legal moves. 
Each next state is compared with the patterns in the 
appropriate, game-specific cache. No new patterns are 
cached during this process. Each pattern is assigned a value 
computed from the total number of won, lost and drawn 
contests since the pattern was first seen. The strength of 
Patsy's comment on each legal next move is a function of 
the values of the patterns in the state to which it leads. 

Thus Patsy encourages moves that lead to states 
introducing patterns associated with a win or a draw for the 
mover’s  marker type,  while it discourages moves that lead 
to states introducing patterns associated with a loss. 

  

Validation of New Advisors 
  

Each concept is proceduralized as a new, tier-2, game-
specific Advisor. As these new, pattern-based Advisors are 
introduced and Hoyle's skill develops further, some of 
them may prove irrelevant, self-contradictory, or 
untrustworthy, despite prior empirical evidence of their 
validity. Credit/blame assignment in a domain such as this 
is complex. At the end of a contest, it is difficult, even for 
human experts, to pinpoint the move that won or lost. The 
significant decision may have been early in play, or may 
have been a set of moves rather than an individual one. 
Rather than credit or blame a particular move, we have 
chosen to credit or blame the Advisors that support expert-
like behavior.   This approach holds the rationale behind 
actions accountable, rather than the actions themselves. 
Irrelevant and self-contradictory Advisors in a particular 
game should have weight 0, and more trustworthy 
Advisors should have higher weights than less trustworthy 
ones. Empirical experience with Hoyle indicates that these 
weights are problem-class specific and should therefore be 
learned.  

 With an external model of expertise as its performance 
criterion, we use AWL, a modified version of the 
perceptron-like Winnow (Littlestone 1988), to learn 
problem-class-specific weights for tier-2 Advisors (Epstein 
1994b). AWL runs at the end of every contest Hoyle plays 
against an external (human or computer) expert. The 
algorithm considers, one at a time, only those states in 
which it was the expert's turn to move and Hoyle's first tier 
would not have made a decision. For each such state, AWL 
distinguishes among support and opposition for the expert's 
recorded move and for other moves. Essentially, Hoyle 
learns to what extent each of its Advisors simulates 
expertise, as exemplified by the expert's moves. AWL 
cumulatively adjusts the weights of tier-2 Advisors at the 
end of each contest, and uses those weights to make 
decisions throughout the subsequent contest.  

Results 

We have successfully implemented the integration of 
spatially-oriented Advisors into Hoyle's second tier while 
learning to play tic-tac-toe and lose tic-tac-toe.  Lose tic-
tac-toe is played exactly like tic-tac-toe except the first 
person to get three markers along any row, column or 
diagonal loses.  Tic-tac-toe is easy for Hoyle to learn, but 
lose tic-tac-toe is considerably more difficult, both for 



people (Ratterman and Epstein  1995) and for Hoyle. We 
report primarily on the results for lose-tic-tac-toe in this 
paper.     

 In all the experiments described here, Hoyle alternately 
moved first in one contest and second in the next. Such a 
trial continued until Hoyle was said to have learned to play 
a game because it could draw n consecutive contests in this 
environment (met a behavioral standard of n). Since Hoyle 
had already learned to play lose tic-tac-toe without visual 
features, these experiments were intended to demonstrate 
that game-dependent visual patterns exist and persist, 
despite the non-determinism of the learning experience. 
They also show that such patterns can be gathered without 
a combinatoric explosion, and that the transition from 
waiting list to pattern cache to concept and Advisor is 
warranted. Furthermore, we show that new, game-specific 
Advisors can be learned and managed appropriately, all 
without reducing the program's ability to play well.   

 The process of learning is sometimes influenced by 
erroneous early experience and creates Advisors that do not 
provide correct information.  To support the smooth 
integration of new Advisors into tier 2, the comment 
strengths of the new Advisors spawned by the system are 
discounted by an additional multiplier.  This factor begins 
at 0.1 and reaches 1.0 after the Advisor comments 
appropriately 10 times.  Meanwhile, the comments from 
new Advisors are compared with the behavior of an expert 
opponent, and their weights are adjusted by AWL. 

Figure 3 shows three of the spatial concepts learned in 
one run of lose tic-tac-toe which was continued until a 
behavioral standard of 20 draws in a row was reached.  If 

an Advisor is described with α and β, the symbols are 
interpreted as either α = X and β = O or α = O and β = X.  

 

 
 
Figure 3: Some pattern-based Advisors learned for lose 

tic-tac-toe. The mover for each Advisor is in the current 
state; the pattern is matched for in the subsequent state. 

  
 Advisor 1 advocates playing in an outside row (one that 
does not include the center) where each contestant already 
has one marker.  Advisor 2 recommends that X play a 
corner in a row where O already holds a corner.  Advisor 3 
is the horizontal and (through symmetry) vertical  portion 
of the heuristic "reflect through center" which has been 
proven to be optimal play for X in lose tic-tac-toe  (Cohen, 
1972).  Figure 4 shows how AWL adjusts the weights of 
each of the three new spatial Advisors in Figure 3 on the 
basis of their performance.  The weight of Advisor 3 
increases rapidly after its creation.  Advisor 1 recommends 
a correct but not frequently applicable action, and its 
weight increases moderately.  The weight of Advisor 2 on 
the other hand begins to increase but then falls off 
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Figure 4: The weights attributed to three learned, spatially-oriented Advisors during 250 consecutive learning contests 

 

 rapidly as Hoyle finds it misleading and discounts it on the 
basis of further experience.  

Discussion 

As a consequence of the overall process described in this 
paper, Hoyle plays in a more spatially-oriented fashion 
with experience.  For the initial test of the operation of the 
system as a whole we used simple games and made a 
number of simplifications in the individual components of 
the system.  Future work includes more difficult games and 
spatial concept formation based upon higher-order features 
such as center, edge, perimeter, bounded regions, length, 
and area.  In addition, other spatial representations such as 
threat and defense relationships (Levinson 1989). should be 
explored in the context of this system. 
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