
Learning from Sequential Examples: InitialResults with Instance-Based LearningSusan L. Epstein1 and Jenngang Shih21Department of Computer Science,Hunter College and The Graduate Schoolof The City University of New York, New York, NYepstein@roz.hunter.cuny.edu2Department of Computer Science,The Graduate Schoolof The City University of New York, New York, NYjshih@broadway.gc.cuny.eduAbstract. This paper postulates an approach to planning from a se-quence of instances. Sequential instance-based learning (SIBL) generatesa sequential hierarchy of planning knowledge from which to formulateplans and make decisions. We report here on the application of SIBLto the game of bridge. Initial results indicate that examples applied ina sequentially dependent manner more often select correct actions thanif the examples were used independently. SIBL suggests how empiricallearners for classi�cation problems may be extended to learn to plan. Thecontributions of this paper are the formulation of planning as a sequenceof related instances, and a demonstration of the e�cacy of majority votewith SIBL in the domain of bridge.1 IntroductionThe thesis of this work is that an empirical learning algorithm for classi�cationcan be systematically extended to learn knowledge for planning, where a plan-ning problem is viewed as a sequence of related classi�cation problems. We callthe application of this idea to IBL sequential instance-based learning (SIBL),and show here how it can learn to plan from instances, also known as cases orexemplars.In a typical implementation, case-based reasoning (CBR) retrieves a set ofrelevant cases of the current problem, reuses the most relevant case, revisesthe retrieved case according the result required by the application, and retainsthe problem as a new case (Aamodt and Plaza, 1994). Although CBR has beenapplied to planning before, most CBR planners rely heavily on domain knowledgeto manage the inherent complexity (Alterman, 1988; Hammond, 1989; Marks etal., 1988; Turner, 1988).Manual construction and maintenance of such a knowledge-intensive systemis both costly and di�cult. An alternative is empirical learning, where the sys-tem accepts examples as input and produces concept descriptions (Michalski,1983; Quinlan, 1986). Most empirical learners, however, are intended for classi-�cation problems. In the context of CBR, for example, instance-based learning33



(IBL) represents both the input examples and the output concept descriptionsas feature-value pairs, and most IBL algorithms retain the prototypical examplesfor reuse (Aha, 1992; Aha et al., 1991).The focus of our work is to extend an empirical learning paradigm for classi�-cation, such as IBL, to learn concept descriptions for planning. The next sectionsintroduce sequential dependency, the domain of bridge, and SIBL. Subsequentsections describe the experiments, their results, and related and future work.2 Sequential DependencyIn classical AI planning, a planning problem is speci�ed by an initial state, oneor more goal states, and a set of operators that transform one state to another.A plan is a sequence of operator instantiations (actions) that transforms theworld from the initial state to a goal state (Hendler et al., 1990). Most planningalgorithms rely mainly on the current state description to select an action; thedependency among the sequential events is implicit.SIBL views sequential events as dependent, rather than independent. In asequence of n instances (s1, : : :, si, : : :, sj , : : :, sn), we say that sj sequentiallydepends on si for all 1 � i � j � n. Here si is called the predecessor and sjthe successor. Because it has in part formulated the current state and the actionavailable in it, a predecessor in
uences its successor. Similarly, a successor isin
uenced by its predecessors to take an action. Thus, while the dimension ofa classical AI planner's state description is �xed, the dimension of SIBL's statedescription is variable, depending on how far back one looks at the predecessors.Given this information, one way to plan is to select a correct action based ona sequence of past events of a certain length. If the selected action is based ontoo short a sequence, there may not be enough information. If the selected actionis based on too long a sequence, the decision may over�t a unique sequence. Oneresolution of this issue is to use the majority vote, which selects the action thatis the majority among a set of similar sequences of various lengths. Let si : : : sj! ak denote that the sequence of events from si to sj recommends the actionak. Then, for example, under majority vote the set of recommendations fsasbsc! a1, sxsy ! a1, sz ! a2g would select a1.Majority vote has been one of the primary parameters for the IBL family ofalgorithms (Aha, 1992; Aha et al., 1991; Cost and Salzberg, 1993; Dasarathy,1991). It is an intuitive approach; if the majority of sequences under considera-tion point to the same action, the likelihood that the action is correct should begood. This paper applies majority vote in SIBL to the game of bridge.3 BridgeBridge is a four-player planning domain. To begin, the 52 distinct cards aredealt out, that is, distributed equally among the players. The game then hastwo phases: bidding and play. During bidding, a speci�c number of tricks for34



winning (the contract) is determined. During play, one of the contestants (iden-ti�ed during bidding) is the declarer and another is the dummy. The declarertries to achieve the contract, controlling both his or her cards and the dummy's,while the other two contestants try to defeat it. (After the �rst card is played,the dummy's cards are exposed on the table for all to see.) Play consists of 13sequential tricks; a trick is constructed when each contestant in turn plays asingle card. The problem addressed here is to design a sequence of actions (cardplays) that guides a bridge player to reach a speci�c goal. Play is viewed here asa planning task.The search space for bridge is large. There are 13 cards in each of foursuits, and during a trick each player must play a card matching the suit of the�rst card (the lead) in the trick whenever possible. Thus the branching factoris approximately n(n=4)3 for each trick, where n is the number of cards eachplayer holds at the beginning of the trick, and n/4 is the average number ofchoices the other players have in the suit. For example, on the �rst trick, whenall players still have 13 cards, the branching factor is roughly 13(13=4)3 = 446.For a complete deal, the number of possible plays will be Q13n=1 n=(n=4)3 =5 � 1015. Since there are� 5213�� 3913�� 2613�� 1313� = 5 � 1028possible ways to deal the cards, there are roughly 3�1044 possible decision statesin bridge.As humans see it, however, the correct decisions in all those states are notindependent of each other. How one decides which card to play in a given statedepends in part on what cards have been played previously. In so large a space,domain knowledge is required to play well. The knowledge that we propose tolearn is how to link decision sequentially.4 RepresentationWe represent each input example as a set of feature-value pairs. The featuresrepresent the state of the world (the situation in which one is expected to playa card); the associated action is the card selected. State features describe whichplayers hold which cards, as well as bookkeeping information, such as the tricknumber and how many tricks have been won by each side. Action features rep-resent the associated action. In the work on three no trump deals describedhere, the highest card in the suit led takes the trick. (Card precedence is 2, 3,4, ., Queen, King, Ace.) Since the most likely cards to win tricks are the highcards, such as Ace, King, Queen, Jack and 10, those below 10 are consideredindistinguishable and represented by a common symbol.The output concept descriptions can be structured in an AND/OR tree-likesequential hierarchy as in Figure 1. Figure 1 shows a contract of \three no trump"planned in three components: four tricks in which spades are led, three clubtricks, and two heart tricks. (The other tricks are disregarded in this plan.) In35



turn, each trick has components that describe behavior. A sequential hierarchyis a set of sequentially ordered partial sequences organized in a hierarchicalstructure. A partial sequence, such as \four spades" in Figure 1, is a partialsolution that may contain other partial sequences or single actions at the lowestlevel. Partial sequences, such as \four spades," that are higher in the hierarchyare said to be strategic because they concern the general direction of a problemsolver; those lower in the hierarchy are said to be tactical because they involvemaneuvering on a smaller scale.
Win

Finesse

Cash

Cross

Cash

Cash

Cash Cross Cash Cross

Three No Trump

Four Spades Three Clubs Two Hearts

Playing a single cardFig. 1. A Sequential Hierarchy in Bridge5 SIBLFormally, an instance, denoted �, is a pair that includes the description of a states and an action a, such that action a is taken in state s. A sequence (�1 . . .�n)is a set of ordered instances of length n. The empty sequence e is a sequencewith no instances. A sequence v is a partial sequence of z if and only if there aresequences x and y such that z = xvy where x, y or both can be e. An instancespawns a set of all the partial sequences involving its predecessors in reversesequential order. For example, the instance �3 in the sequence (�1�2�3) spawnsf(�3), (�2�3), (�1�2�3)g. These partial sequences are used as additional inputexamples for SIBL.Like most IBL algorithms, SIBL learns a set of prototypical instances fromthe examples. SIBL is currently based on IB4, which is used to compute similar-ity between instances. IB4's variable attribute weight produces better instanceselection than IB3 does. Similarly, IB4's instance reference count retains morerelevant instances than either IB2 or IB1 does (Aha, 1992). Although SIBL isbased on IB4, we see no reason why other empirical learning algorithms cannotbe adapted to learn from sequences.If an instance � has f features and p predecessors, the number of featuresfor the instance after spawning is f(p + 1). This linear increase in the numberof features increases exponentially in the instance space. In other words, if Sis the instance space for � and � has p predecessors, the instance space afterspawning will be Sp+1. To control this, SIBL has a window, a constant numberof predecessors it learns from, instead of the fully spawned set. For example, forthe sequence (�1�2�3�4), the instance �4 with window w = 3 produces the setf(�4), (�3�4), (�2�3�4)g. In bridge, a short sequence of steps has been routinelyused by experts to explain playing techniques (Goren, 1963).36



Set window constant wStore the first exampleWhile there are more examples in the training set, doFor each instance, i, in the example, doLet current action, a, be the action of iCompute from i the set P of all partial sequencesIf a = FindMajorityAction(P), thenUpdate the reference count of the partial sequences referencedOtherwise,Store PFig. 2. Main Routine that Processes Input Examples, each of which Contains a Se-quence of InstancesFindMajorityAction(P) :Initialize the list of majority actions, M, to the empty listFor each partial sequence, p, in P, doFor each stored partial sequence, q, of the same length as p, doCalculate similarity of q to pLet majority action, m, be the most frequently recommendedaction by the most similar q'sAppend m to MReturn the majority action in MFig. 3. The Function that Returns the Majority ActionPseudocode for SIBL appears in Figures 2 and 3. Figure 2 outlines the pro-cessing of input examples. For each partial sequence, SIBL maintains a referencecount, the number of times the sequence was retrieved and recommended thecorrect action. Figure 3 shows the computation of the majority action. If no ma-jority exists, the tie is broken by the reference count or, failing that, by randomselection. This is similar to the strategy used by IB4.6 Experimental Design and ResultsThe goal of the three experiments described here was to test the hypothesisthat sequential instances can produce better action selection knowledge thannon-sequential ones for planning bridge play. To demonstrate this, the numberof correct action selections in a sequence of events is measured, both beforeand after learning. After learning, more action selections in a sequence of eventsshould be correct. For q correct action selections in a sequential problem with nsequences, the fraction correct is calculated as r = q=n. Before learning, r willbe small when q is small; after learning, r should increase.37



Twenty-four three no trump bridge deals were used in these experiments.All twenty-four deals were fully played by experts who successfully made thecontract. Each deal consisted of 26 instances, times when the declarer had toplay a card from the dummy or from his or her own hand. Two thirds (16) ofthe deals were used for training and one third (8) for testing. Every experimentused three-fold cross validation, each with 10 trials (Kibler and Langley, 1988).The �rst experiment established a baseline for performance. A random se-lector chose an action to perform in a sequential problem based on the action'sprobability distribution. That is, for each possible action a, an empirical massfunction f(a) is de�ned to be the proportion of all actions in the training setthat are equal to a, where P1i=1 f(ai) = 1.The second experiment tested the e�ectiveness of selection based on �xed se-quences. A �xed-sequence selector was trained with instances of a �xed sequencelength using IB4 (Aha, 1992). The minimum �xed-sequence selector used in-stances of length one, i.e., non-sequential instances. Themaximum �xed-sequenceselector used instances of length de�ned by the window constant w = 5.The third experiment tested SIBL as described above. The variable-sequenceselector chose among instances of varying lengths from one to the window con-stant w. It selected an instance using majority vote and the reference count. Allthree selectors broke ties with random selection.Figures 4 and 5 depict the portion of the time that the correct action wasselected during learning and testing, respectively. In Figure 4, during trainingthe maximum �xed-sequence selector chose the correct action with a higherfrequency than the minimum �xed-sequence selector did. In Figure 5, however,the performance of the maximum �xed-sequence selector is actually worse duringtesting. This anomaly occurred because, although both had the same number ofinput examples, the maximum �xed-sequence selector has a much larger instancespace (Sp+1).
0 10 20 30 40 50 60 70 80 90 100

Percent training set presented

Learning Curves

0.
00

0.
10

0.
20

0.
30

0.
40

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 s

el
ec

tio
n,

 r

Minimum
Maximum

Variable

Random

0 10 20 30 40 50 60 70 80 90 100

Percent training set presented

Performance Curves

0.
00

0.
10

0.
20

0.
30

0.
40

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 s

el
ec

tio
n,

 r

Fig. 4. Learning and Performance CurvesAs Figures 4 and 5 indicate, the variable-sequence selector was consistentlybetter than both the minimum �xed-sequence selector and the maximum �xed-sequence selector during learning (r = 0:36) and during testing (r = 0:25). Italso substantially outperformed the baseline random selector (r = 0:09). The38



performance gain, however, comes at the price of additional computation spaceand time. On average, the resulting instance base is about w (size of window)times larger than that of the �xed-sequence selectors; each run took about wtimes longer on a Cray 6400.7 Related and Future WorkPRODIGY/ANALOGY retains plans from prior planning problems, and usesderivational analogy (Carbonell, 1986) to guide the search of similar planningproblems (Veloso, 1994). When PRODIGY's general planning method (Car-bonell et al., 1992) was enhanced by derivational analogy, it could solve moreproblems and solve them with less e�ort. PRODIGY/ANALOGY, however, re-lied heavily on domain-speci�c planning heuristics and annotated planning ex-amples. As indicated earlier, our work is based on a weak method (e.g., IBL)that facilitates initial adaptation to a problem domain.OBSERVER (Wang, 1996) learned the description of an operator (action) asa set of literals with a variation of the Version Space algorithm (Mitchell, 1977).OBSERVER could both create and repair plans with a STRIPS-like representa-tion. It relied on explicit speci�cation of the states in the search space, includingthe goal states. It is not clear, even to professional bridge players, however, justwhat features would exhaustively catalogue the 1044 states in bridge play.Moore's system (Moore, 1990) uses a form of reinforcement learning on asequence of situation-action pairs to learn the e�ects of an action for robot armcontrol. It divides the search space into hierarchical segments to limit the search.It matches only the current state description to select an action, whereas SIBLmatches a sequence of state descriptions to select an action. In a domain, such asbridge, which is sensitive to sequential relationships, we demonstrate here thata sequence of states is more advantageous.GINA (Dejong and Schultz, 1988) was a program that learned to play Oth-ello from experience, with a sequential list of situations encountered, actionstaken, and �nal outcome. The representation of its experience base, however, isa subtree of the min-max game tree. Because the representation for the averagebranching factor in bridge is so much higher than Othello's, this approach seemsimpractical here.This is work in progress. These initial experiments demonstrate that sequen-tial instances produce action selection knowledge, and that variable-length se-quence selection outperforms minimum or maximum �xed- sequence selection.Our current research includes examining the impact of more than 24 exampleson performance, and replacing majority voting with a relevance selection schemethat is based on decision theory (Russell and Norvig, 1995).AcknowledgementsThanks to David Aha and Cullen Scha�er for their comments on earlier draftsof this paper. This research was partly supported by the Bank of America Cor-poration. 39



ReferencesAamodt, A., and Plaza, E. (1994). Case-based reasoning: Foundation issues, method-ological variations, and system approaches. AI Communications, 7(1).Aha, D. W. (1992). Tolerating noisy, irrelevant and novel attributes in instance-basedlearning algorithm. International Journal of Man-Machine Studies, 36, 267-287.Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms.Machine Learning, 6, 37-66.Alterman, R. (1988). Adaptive planning. Cognitive Science, 12, 393-421.Carbonell, J. G., Blythe, J., Etzioni, O., Gil, Y., Joseph, R., Kahn, D., Knoblock, C.,Minton, S., P'erez, A., Reilly, S., Veloso, M., and Wang, X. (1992). PRODIGY4.0:The manual and tutorial (TR CMU- CS-92-150), CarnegieMellon University.Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problemsolving and expertise acquisition. in Michalski, R. S., Carbonell, J. G., and Mitchell,T. M., eds.,Machine Learning, An AI Approach, V. II, 371-392. Morgan Kaufmann.Cost, S., and Salzberg, S. (1993). A weighted nearest neighbor algorithm for learningwith symbolic features. Machine Learning, 10, 57-78.Dasarathy, B. V. (1991). Nearest Neighbor (NN) Norms: NN Pattern Classi�cationTechnique. IEEE Computer Society Press.DeJong, K. A., and Schultz, A. C. (1988). Using experience-based learning in gameplaying. Fifth International Conference on ML, Ann Arbor, Michigan, 284-290.Goren, C. H. (1963). Goren's Bridge complete: a major revision of the standard workfor all bridge players. London: Barrie and Rockli�.Hammond, K. J. (1989). Case-based planning: viewing planning as a memory task,Academic Press, Inc., San Diego, CA.Hendler, J., Tate, A., and Drummond, M. (1990). AI planning: Systems and tech-niques. AI Magazine, 11(2), 61-77.Kibler, D., and Langley, P. (1988). Machine learning as an experimental science.Machine Learning, 3(1), 5-8.Marks, M., Hammond, K. J., and Converse, T. (1988) Planning in an open world: Apluralistic approach. Workshop on CBR, Pensacola Beach, FL, 271-285.Michalski, R. S. (1983). A theory and methodology of inductive learning. Arti�cialIntelligence, 20(2), 111-162.Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rulelearning. Fifth International Joint Conference on AI, Cambridge, MA, 305-310.Moore, A. W. (1990). Acquisition of dynamic control knowledge for a robotic manip-ulator. Seventh International Conference on ML, Austin, TX, 244-252.Quinlan, R. J. (1986). Induction of decision trees. Readings in Machine Learning, J.W. Shavlik and T. G. Dietterich, eds., Morgan Kaufmann, San Mateo, CA.Russell, S. and Norvig, P. (1995). Arti�cial Intelligence - A Morden Approach. Engle-wood Cli�s, NJ: Prentice-Hall.Turner, R. M. (1988). Opportunistic use of schemata for medical diagnosis. TenthAnnual Conference of the Cognitive Science Society.Veloso, M. M. (1994). Flexible strategy learning: Analogical replay of problem solvingepisodes. Proceedings of the Twelfth National Conference on Arti�cial Intelligence,AAAI Press/MIT Press, Cambridge, MA, 595-600.Wang, X. (1996). Planning while learning operators. Third International Conferenceon Arti�cial Intelligence Planning Systems, Edinburgh, Scotland.40


