Learning from Sequential Examples: Initial
Results with Instance-Based Learning

Susan L. Epstein! and Jenngang Shih?

!Department of Computer Science,
Hunter College and The Graduate School
of The City University of New York, New York, NY
epstein@roz.hunter.cuny.edu
2Department of Computer Science,
The Graduate School
of The City University of New York, New York, NY
jshih@broadway.gc.cuny.edu

Abstract. This paper postulates an approach to planning from a se-
quence of instances. Sequential instance-based learning (SIBL) generates
a sequential hierarchy of planning knowledge from which to formulate
plans and make decisions. We report here on the application of SIBL
to the game of bridge. Initial results indicate that examples applied in
a sequentially dependent manner more often select correct actions than
if the examples were used independently. SIBL suggests how empirical
learners for classification problems may be extended to learn to plan. The
contributions of this paper are the formulation of planning as a sequence
of related instances, and a demonstration of the efficacy of majority vote
with SIBL in the domain of bridge.

1 Introduction

The thesis of this work is that an empirical learning algorithm for classification
can be systematically extended to learn knowledge for planning, where a plan-
ning problem is viewed as a sequence of related classification problems. We call
the application of this idea to IBL sequential instance-based learning (SIBL),
and show here how it can learn to plan from instances, also known as cases or
exemplars.

In a typical implementation, case-based reasoning (CBR) retrieves a set of
relevant cases of the current problem, reuses the most relevant case, revises
the retrieved case according the result required by the application, and retains
the problem as a new case (Aamodt and Plaza, 1994). Although CBR has been
applied to planning before, most CBR planners rely heavily on domain knowledge
to manage the inherent complexity (Alterman, 1988; Hammond, 1989; Marks et
al., 1988; Turner, 1988).

Manual construction and maintenance of such a knowledge-intensive system
is both costly and difficult. An alternative is empirical learning, where the sys-
tem accepts examples as input and produces concept descriptions (Michalski,
1983; Quinlan, 1986). Most empirical learners, however, are intended for classi-
fication problems. In the context of CBR, for example, instance-based learning

33

(IBL) represents both the input examples and the output concept descriptions
as feature-value pairs, and most IBL algorithms retain the prototypical examples
for reuse (Aha, 1992; Aha et al., 1991).

The focus of our work is to extend an empirical learning paradigm for classifi-
cation, such as IBL, to learn concept descriptions for planning. The next sections
introduce sequential dependency, the domain of bridge, and SIBL. Subsequent
sections describe the experiments, their results, and related and future work.

2 Sequential Dependency

In classical Al planning, a planning problem is specified by an initial state, one
or more goal states, and a set of operators that transform one state to another.
A plan is a sequence of operator instantiations (actions) that transforms the
world from the initial state to a goal state (Hendler et al., 1990). Most planning
algorithms rely mainly on the current state description to select an action; the
dependency among the sequential events is implicit.

SIBL views sequential events as dependent, rather than independent. In a
sequence of n instances (s1, ..., Si, ..., Sj, ..., Sp), wWe say that s; sequentially
depends on s; for all 1 < i < j < n. Here s; is called the predecessor and s;
the successor. Because it has in part formulated the current state and the action
available in it, a predecessor influences its successor. Similarly, a successor is
influenced by its predecessors to take an action. Thus, while the dimension of
a classical AT planner’s state description is fixed, the dimension of SIBL’s state
description is variable, depending on how far back one looks at the predecessors.

Given this information, one way to plan is to select a correct action based on
a sequence of past events of a certain length. If the selected action is based on
too short a sequence, there may not be enough information. If the selected action
is based on too long a sequence, the decision may overfit a unique sequence. One
resolution of this issue is to use the majority vote, which selects the action that
is the majority among a set of similar sequences of various lengths. Let s; ... s;
— ay, denote that the sequence of events from s; to s; recommends the action
ay. Then, for example, under majority vote the set of recommendations {s,sps.
— a1, SpSy — a1, S; — as} would select a;.

Majority vote has been one of the primary parameters for the IBL family of
algorithms (Aha, 1992; Aha et al., 1991; Cost and Salzberg, 1993; Dasarathy,
1991). It is an intuitive approach; if the majority of sequences under considera-
tion point to the same action, the likelihood that the action is correct should be
good. This paper applies majority vote in SIBL to the game of bridge.

3 Bridge

Bridge is a four-player planning domain. To begin, the 52 distinct cards are
dealt out, that is, distributed equally among the players. The game then has
two phases: bidding and play. During bidding, a specific number of tricks for

34

winning (the contract) is determined. During play, one of the contestants (iden-
tified during bidding) is the declarer and another is the dummy. The declarer
tries to achieve the contract, controlling both his or her cards and the dummy’s,
while the other two contestants try to defeat it. (After the first card is played,
the dummy’s cards are exposed on the table for all to see.) Play consists of 13
sequential tricks; a trick is constructed when each contestant in turn plays a
single card. The problem addressed here is to design a sequence of actions (card
plays) that guides a bridge player to reach a specific goal. Play is viewed here as
a planning task.

The search space for bridge is large. There are 13 cards in each of four
suits, and during a trick each player must play a card matching the suit of the
first card (the lead) in the trick whenever possible. Thus the branching factor
is approximately n(n/4)% for each trick, where n is the number of cards each
player holds at the beginning of the trick, and n/4 is the average number of
choices the other players have in the suit. For example, on the first trick, when
all players still have 13 cards, the branching factor is roughly 13(13/4)% = 446.
For a complete deal, the number of possible plays will be Hf’zl n/(n/4)® =
5 % 10'%. Since there are

52 39 26 13 28
(13) (13) (13) (13) =510
0%* possible decision states

possible ways to deal the cards, there are roughly 31
in bridge.

As humans see it, however, the correct decisions in all those states are not
independent of each other. How one decides which card to play in a given state
depends in part on what cards have been played previously. In so large a space,
domain knowledge is required to play well. The knowledge that we propose to

learn is how to link decision sequentially.

4 Representation

We represent each input example as a set of feature-value pairs. The features
represent the state of the world (the situation in which one is expected to play
a card); the associated action is the card selected. State features describe which
players hold which cards, as well as bookkeeping information, such as the trick
number and how many tricks have been won by each side. Action features rep-
resent the associated action. In the work on three no trump deals described
here, the highest card in the suit led takes the trick. (Card precedence is 2, 3,
4, ., Queen, King, Ace.) Since the most likely cards to win tricks are the high
cards, such as Ace, King, Queen, Jack and 10, those below 10 are considered
indistinguishable and represented by a common symbol.

The output concept descriptions can be structured in an AND/OR tree-like
sequential hierarchy as in Figure 1. Figure 1 shows a contract of “three no trump”
planned in three components: four tricks in which spades are led, three club
tricks, and two heart tricks. (The other tricks are disregarded in this plan.) In

35

turn, each trick has components that describe behavior. A sequential hierarchy
is a set of sequentially ordered partial sequences organized in a hierarchical
structure. A partial sequence, such as “four spades” in Figure 1, is a partial
solution that may contain other partial sequences or single actions at the lowest
level. Partial sequences, such as “four spades,” that are higher in the hierarchy
are said to be strategic because they concern the general direction of a problem
solver; those lower in the hierarchy are said to be tactical because they involve

maneuvering on a smaller scale.
Three No Trump

Playing asingle card

Fig. 1. A Sequential Hierarchy in Bridge
5 SIBL

Formally, an instance, denoted o, is a pair that includes the description of a state
s and an action a, such that action « is taken in state s. A sequence (o1 ...0p)
is a set of ordered instances of length n. The empty sequence e is a sequence
with no instances. A sequence v is a partial sequence of z if and only if there are
sequences = and y such that z = zvy where x, y or both can be e. An instance
spawns a set of all the partial sequences involving its predecessors in reverse
sequential order. For example, the instance o3 in the sequence (o10203) spawns
{(03), (0203), (610203)}. These partial sequences are used as additional input
examples for SIBL.

Like most IBL algorithms, SIBL learns a set of prototypical instances from
the examples. SIBL is currently based on IB4, which is used to compute similar-
ity between instances. IB4’s variable attribute weight produces better instance
selection than IB3 does. Similarly, IB4’s instance reference count retains more
relevant instances than either IB2 or IB1 does (Aha, 1992). Although SIBL is
based on IB4, we see no reason why other empirical learning algorithms cannot
be adapted to learn from sequences.

If an instance ¢ has f features and p predecessors, the number of features
for the instance after spawning is f(p + 1). This linear increase in the number
of features increases exponentially in the instance space. In other words, if S
is the instance space for o and o has p predecessors, the instance space after
spawning will be SP*!. To control this, SIBL has a window, a constant number
of predecessors it learns from, instead of the fully spawned set. For example, for
the sequence (01020304), the instance g4 with window w = 3 produces the set
{(04), (0304), (620304)}. In bridge, a short sequence of steps has been routinely
used by experts to explain playing techniques (Goren, 1963).

36

Set window constant w
Store the first example
While there are more examples in the training set, do
For each instance, 4, in the example, do
Let current action, a, be the action of
Compute from 7 the set P of all partial sequences
If a = FindMajorityAction(P), then
Update the reference count of the partial sequences referenced
Otherwise,
Store P

Fig. 2. Main Routine that Processes Input Examples, each of which Contains a Se-
quence of Instances

FindMajorityAction(P)
Initialize the list of majority actions, M, to the empty list
For each partial sequence, p, in P, do
For each stored partial sequence, ¢, of the same length as p, do
Calculate similarity of ¢ to p
Let majority action, m, be the most frequently recommended
action by the most similar g’s
Append m to M
Return the majority action in M

Fig. 3. The Function that Returns the Majority Action

Pseudocode for SIBL appears in Figures 2 and 3. Figure 2 outlines the pro-
cessing of input examples. For each partial sequence, SIBL maintains a reference
count, the number of times the sequence was retrieved and recommended the
correct action. Figure 3 shows the computation of the majority action. If no ma-
jority exists, the tie is broken by the reference count or, failing that, by random
selection. This is similar to the strategy used by IB4.

6 Experimental Design and Results

The goal of the three experiments described here was to test the hypothesis
that sequential instances can produce better action selection knowledge than
non-sequential ones for planning bridge play. To demonstrate this, the number
of correct action selections in a sequence of events is measured, both before
and after learning. After learning, more action selections in a sequence of events
should be correct. For ¢ correct action selections in a sequential problem with n
sequences, the fraction correct is calculated as r = ¢/n. Before learning, r will
be small when ¢ is small; after learning, r should increase.

37

Twenty-four three no trump bridge deals were used in these experiments.
All twenty-four deals were fully played by experts who successfully made the
contract. Each deal consisted of 26 instances, times when the declarer had to
play a card from the dummy or from his or her own hand. Two thirds (16) of
the deals were used for training and one third (8) for testing. Every experiment
used three-fold cross validation, each with 10 trials (Kibler and Langley, 1988).

The first experiment established a baseline for performance. A random se-
lector chose an action to perform in a sequential problem based on the action’s
probability distribution. That is, for each possible action a, an empirical mass
function f(a) is defined to be the proportion of all actions in the training set
that are equal to a, where >.° | f(a;) = 1.

The second experiment tested the effectiveness of selection based on fixed se-
quences. A fized-sequence selector was trained with instances of a fixed sequence
length using IB4 (Aha, 1992). The minimum fized-sequence selector used in-
stances of length one, i.e., non-sequential instances. The mazimum fized-sequence
selector used instances of length defined by the window constant w = 5.

The third experiment tested SIBL as described above. The variable-sequence
selector chose among instances of varying lengths from one to the window con-
stant w. It selected an instance using majority vote and the reference count. All
three selectors broke ties with random selection.

Figures 4 and 5 depict the portion of the time that the correct action was
selected during learning and testing, respectively. In Figure 4, during training
the maximum fixed-sequence selector chose the correct action with a higher
frequency than the minimum fixed-sequence selector did. In Figure 5, however,
the performance of the maximum fixed-sequence selector is actually worse during
testing. This anomaly occurred because, although both had the same number of

input examples, the maximum fixed-sequence selector has a much larger instance
space (SPH1).

‘S o Learning Curves ‘S o Performance Curves

3 o 3 o

o o o o

n ™ n M

§ g § 2 Variable
= N = N L.

8 o 8 o Minimum
5 o 5 o Maximum
23 23 Random
5 o J 5 ol

8 gw T T T T T T T 8 gw T T T T T T T

g 0 1020 30405060 70 80 90 100 g 0 1020 30405060 70 80 90 100

Percent training set presented Percent training set presented

Fig. 4. Learning and Performance Curves

As Figures 4 and 5 indicate, the variable-sequence selector was consistently
better than both the minimum fixed-sequence selector and the maximum fixed-
sequence selector during learning (r = 0.36) and during testing (r = 0.25). It
also substantially outperformed the baseline random selector (r = 0.09). The

38

performance gain, however, comes at the price of additional computation space
and time. On average, the resulting instance base is about w (size of window)
times larger than that of the fixed-sequence selectors; each run took about w
times longer on a Cray 6400.

7 Related and Future Work

PRODIGY/ANALOGY retains plans from prior planning problems, and uses
derivational analogy (Carbonell, 1986) to guide the search of similar planning
problems (Veloso, 1994). When PRODIGY’s general planning method (Car-
bonell et al., 1992) was enhanced by derivational analogy, it could solve more
problems and solve them with less effort. PRODIGY/ANALOGY, however, re-
lied heavily on domain-specific planning heuristics and annotated planning ex-
amples. As indicated earlier, our work is based on a weak method (e.g., IBL)
that facilitates initial adaptation to a problem domain.

OBSERVER (Wang, 1996) learned the description of an operator (action) as
a set of literals with a variation of the Version Space algorithm (Mitchell, 1977).
OBSERVER could both create and repair plans with a STRIPS-like representa-
tion. It relied on explicit specification of the states in the search space, including
the goal states. It is not clear, even to professional bridge players, however, just
what features would exhaustively catalogue the 10** states in bridge play.

Moore’s system (Moore, 1990) uses a form of reinforcement learning on a
sequence of situation-action pairs to learn the effects of an action for robot arm
control. It divides the search space into hierarchical segments to limit the search.
It matches only the current state description to select an action, whereas SIBL
matches a sequence of state descriptions to select an action. In a domain, such as
bridge, which is sensitive to sequential relationships, we demonstrate here that
a sequence of states is more advantageous.

GINA (Dejong and Schultz, 1988) was a program that learned to play Oth-
ello from experience, with a sequential list of situations encountered, actions
taken, and final outcome. The representation of its experience base, however, is
a subtree of the min-max game tree. Because the representation for the average
branching factor in bridge is so much higher than Othello’s, this approach seems
impractical here.

This is work in progress. These initial experiments demonstrate that sequen-
tial instances produce action selection knowledge, and that variable-length se-
quence selection outperforms minimum or maximum fixed- sequence selection.
Our current research includes examining the impact of more than 24 examples
on performance, and replacing majority voting with a relevance selection scheme
that is based on decision theory (Russell and Norvig, 1995).

Acknowledgements

Thanks to David Aha and Cullen Schaffer for their comments on earlier drafts
of this paper. This research was partly supported by the Bank of America Cor-
poration.

39

References

Aamodt, A., and Plaza, E. (1994). Case-based reasoning: Foundation issues, method-
ological variations, and system approaches. AI Communications, 7(1).

Aha, D. W. (1992). Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithm. International Journal of Man-Machine Studies, 36, 267-287.
Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms.

Machine Learning, 6, 37-66.

Alterman, R. (1988). Adaptive planning. Cognitive Science, 12, 393-421.

Carbonell, J. G., Blythe, J., Etzioni, O., Gil, Y., Joseph, R., Kahn, D., Knoblock, C.,
Minton, S., P’erez, A., Reilly, S., Veloso, M., and Wang, X. (1992). PRODIGY/.0:
The manual and tutorial (TR CMU- CS-92-150), CarnegieMellon University.

Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem
solving and expertise acquisition. in Michalski, R. S.; Carbonell, J. G.; and Mitchell,
T. M., eds., Machine Learning, An AI Approach, V.11, 371-392. Morgan Kaufmann.

Cost, S., and Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning
with symbolic features. Machine Learning, 10, 57-78.

Dasarathy, B. V. (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification
Technique. IEEE Computer Society Press.

DeJong, K. A., and Schultz, A. C. (1988). Using experience-based learning in game
playing. Fifth International Conference on ML, Aun Arbor, Michigan, 284-290.
Goren, C. H. (1963). Goren’s Bridge complete: a major revision of the standard work

for all bridge players. London: Barrie and Rockliff.

Hammond, K. J. (1989). Case-based planning: viewing planning as a memory task,
Academic Press, Inc., San Diego, CA.

Hendler, J., Tate, A., and Drummond, M. (1990). AI planning: Systems and tech-
niques. AI Magazine, 11(2), 61-77.

Kibler, D., and Langley, P. (1988). Machine learning as an experimental science.
Machine Learning, 3(1), 5-8.

Marks, M., Hammond, K. J., and Converse, T. (1988) Planning in an open world: A
pluralistic approach. Workshop on CBR, Pensacola Beach, FL, 271-285.

Michalski, R. S. (1983). A theory and methodology of inductive learning. Artificial
Intelligence, 20(2), 111-162.

Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule
learning. Fifth International Joint Conference on AI Cambridge, MA, 305-310.
Moore, A. W. (1990). Acquisition of dynamic control knowledge for a robotic manip-

ulator. Seventh International Conference on ML, Austin, TX, 244-252.

Quinlan, R. J. (1986). Induction of decision trees. Readings in Machine Learning, J.
W. Shavlik and T. G. Dietterich, eds., Morgan Kaufmann, San Mateo, CA.

Russell, S. and Norvig, P. (1995). Artificial Intelligence - A Morden Approach. Engle-
wood Cliffs, NJ: Prentice-Hall.

Turner, R. M. (1988). Opportunistic use of schemata for medical diagnosis. Tenth
Annual Conference of the Cognitive Science Society.

Veloso, M. M. (1994). Flexible strategy learning: Analogical replay of problem solving
episodes. Proceedings of the Twelfth National Conference on Artificial Intelligence,
AAAT Press/MIT Press, Cambridge, MA, 595-600.

Wang, X. (1996). Planning while learning operators. Third International Conference
on Artificial Intelligence Planning Systems, Edinburgh, Scotland.

40

