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The extent to which concepts, memory, and planning are necessary to the simulation of 
intelligent behavior is a fundamental philosophical issue in AI [Kirsh, research community has 
taken the position that reactive systems, consisting of properly-organized, multiple low-level 
debate with fully operational systems has thus far been primarily on mobile robots that do simple 
Hsu and Simmons, 1991; Maes and Brooks, 1990; Mahadevan and Connell,  

Hoyle is a reactive system in a cerebral, rather than a physical, domain. The program learns to 
perform well and quickly, often outpacing its human creators at two-person, perfect information 
a surprising amount of intelligent behavior can be treated as if it were situation-determined, that 
often planning is unnecessary, and that the memory required to support this learning is minimal. 
A series of ablation experiments, however, have demonstrated that concepts and memory are 
crucial to this reactive program’s ability to learn and perform. 

The thesis underlying this work is that reactive, hierarchical systems can minimize 
deliberation, but that both memory and explicitly represented concepts are necessary if a 
program is to learn to perform intelligently. Concept is defined here as some recognized set of 
regularities detected in some observed world. Regularity means repeated occurrence and/or 
consistency of use. A concept therefore includes not only the necessary and sufficient 
descriptions called definitions, but also defaults, associations, and expectations. Thus a concept 
concept is generalized domain knowledge, a description of what has been encountered. Although 
specific examples may be remembered, a concept is not a set of instances but a summary of 
experience.  

Four other reactive game playing programs, Dooze, N-N/Tree, Morph, and Henri, employ 
Their pattern generalizations, however, are tailored to a single set of board-specific algorithms, 
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and their memory requirements grow dramatically with the number of positions on the board. 
Hoyle outperforms these programs because it explicitly represents and exploits its concepts.  

Hoyle’s concepts organize the way it remembers experience, focus its attention on what is 
important to learn, force it to apply its experience, and permit it to discard experience that is 
judged unlikely to be useful. As a result, it is able to learn with far smaller memory requirements 
than the other four reactive game-playing programs, and to apply its compact useful knowledge 
much more flexibly. Although Hoyle is reactive, the full version of the program incorporates and 
remembers concepts: knowledge about the regularities that people learn, prefer, and exploit when 
playing games, and how people use those regularities. When the program is partially disabled 
and the results observed, it is clear that memory and the application of those concepts provide the 
program with its power. 

Hoyle’s ability to learn with only 15 relatively simple low-level agents suggests that more 
high-level behavior is available through low-level reactive processes than one might initially 
suspect. As the games Hoyle learns become more difficult, new concepts, like material and 
mobility, have been necessary to support performance. For Hoyle, learning high-level behavior 
efficiently with a limited memory requires concepts. A recent improvement enabled the program 
to learn which of the eight symmetries of the two-dimensional plane are applicable to a game, 
and to apply those to minimize both memory requirements and search time. Hoyle with 
symmetry learns faster and requires less memory. Low-level sensory data can offer an immediate 
improvement in high-level processing.  

For the time being, several tasks have been relegated to the human system designer: the frame-
based description of the game definition and useful knowledge, the correct identification of the 
culturally-determined meta-principles (commonsense regularities like efficiency, safety, and 
propriety, that are applicable to many different kinds of experience), the instantiation of the 
meta-principles to construct low-level agents, the hierarchical assignment of agents to tiers based 
upon knowledge about relations among meta-principles, the specification of which agents access 
which concepts, and the description of how the agents apply that knowledge. Current work is 
directed to training Hoyle on an increasingly difficult sequence of 14 games as well or better 
than its expert human competition, despite the program’s restriction to two-ply search and its 
inability to plan.  

In a domain that is not situation-determined, Hoyle is a successful, reactive, hierarchical 
system that retains only a small fraction of what it experiences. The program pays an interesting 
price for its reactivity, however. It must rely on concepts to learn to perform intelligently. Hoyle 
offers evidence that learning cerebral tasks demands more explicit concepts than Brooks would 
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like, and far fewer than Kirsh would assume. Hoyle may not resolve the controversy over 
whether representation is necessary for intelligence, but it should certainly influence our attitude 
on the significance of low-level agents in high-level tasks. 

Hoyle’s results demonstrate for at least one broad cerebral task, game playing, that a reactive 
system without memory is impractical, and that reliance only on extensive, detailed memory is 
brittle and often impossible. Concepts can structure resource-efficient memory, provide 
flexibility, and regularize knowledge to support performance. Hoyle is a hybrid; it combines 
reactive strategy with memory for learning and concepts for power. Will a reactive program ever, 
then, have to search and plan and believe? Hoyle’s answer is not yet, perhaps not explicitly, and 
far less than we ever expected. 
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