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Abstract 

As they gain expertise in problem solving, people 
increasingly rely on patterns and spatially-oriented reasoning. 
This paper describes the integration of an associative visual 
pattern classifier and the automated acquisition of new, spa-
tially-oriented reasoning agents that simulate such behavior. 
They are incorporated into a game-learning program whose 
architecture robustly combines agents with conflicting per-
spectives. When tested on three games, the visual pattern 
classifier learns meaningful patterns, and the pattern-based, 
spatially-oriented agents generalized from these patterns are 
generally correct. The trustworthiness and relevance of these 
agents are confirmed with an algorithm that measures the ac-
curacy of the contribution of each agent to the decision-mak-
ing 
process

. 
Much of the knowledge encapsulated by the correct new 
agents was previously inexpressible in the program’s 
representation and in some cases is not readily deducible from 
the rules.  

Pattern Learning in Game Playing 
In this paper we describe the use of an associative visual 
memory and spatially-oriented reasoning agents in two-per-
son, perfect information, finite-board games. This approach 
uses two kinds of pattern-oriented learning for game play-
ing: the association of particular patterns with successful or 
unsuccessful play, and the construction of spatially-oriented 
heuristics from those patterns. Figure 1(a), where the empty 
locations are blanks and # denotes “don’t care,” is an exam-
ple of the first kind of pattern learning; it links a particular 
pattern from tic-tac-toe with success for X. In any symmet-
ric orientation and whatever the # squares contain, a human 
expert associates such a configuration with a win for X.  

Along with particular patterns, game-playing experts use 
more general but equally salient heuristics as spatially-ori-
ented “rules of thumb.” Figure 1(b) is an example of the 
second kind of pattern learning. It is the spatially-oriented 
heuristic “reflect O’s move through the center,” proved to 
be optimal play for X in the game of lose tic-tac-toe (Cohen, 
1972) . 
Advice from experts on how to analyze and play games is 
repeatedly couched in the language of such spatially-
oriented patterns. Chess and checkers are discussed in terms 
of controlling the center of the board, while control of the 
edges is crucial in Othello (Fine, 1989; Gelfer, 1991; Lee & 
Mahajan, 1990; Samuel, 1963). Concepts such as shape and 

thickness are fundamental to the game of Go (Hideo, 1992; 
Iwamoto, 1976; Yoshio, 1991). As people improve their 
expertise in game playing, they increasingly employ 
spatially-oriented heuristics, and treat them as compiled 
knowledge, integrated but no longer reasoned about.  

To learn pattern associations, programs use a feature lan-
guage and inductive learning algorithms that operate on 
game states described in that language. De Groot proposed a 
recognition-association model to explain human chess skill 
in terms of spatial patterns (de Groot, 1965). Chase and 
Simon refined this model to include recall from long term 
memory in terms of spatial chunks (Chase & Simon, 1973; 
Simon & Gilmartin, 1973). There are several chess playing 
programs that capitalize upon patterns (George & Schaeffer, 
1991; Levinson & Snyder, 1991). Applying learned patterns 
to game playing, however, has proved somewhat problem-
atic. There are usually a great many of them and matching is 
non-trivial. T2 and Zenith, for example, learned predicate 
calculus expressions for tic-tac-toe and Othello, respectively 
(Fawcett & Utgoff, 1991; Yee, Saxena, Utgoff, & Barto, 
1990). On one run T2 learned 45 tic-tac-toe concepts with 
52 exception clauses after 800 contests, a great many for so 
simple a game.  

In the work described here, learned pattern knowledge is 
used to construct higher-order, spatially-based reasoning 
agents. Programs that learn concepts from game-playing ex-
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Figure 1: (a) A tic-tac-toe pattern that X associates with 
winning. # denotes “don’t care.” (b) “Reflect through the 
center,” a spatially-oriented heuristic for lose tic-tac-toe. 



 

perience have in the past been hampered by a predicate cal-
culus representation that lacks incisiveness, and by exhaus-
tive explanation of inconsistencies for positions that may 
have no consequence in the strategic play of the game 
(Fawcett, et al., 1991; Yee, et al., 1990). The process we de-
scribe, in contrast, is able to deal with inconsistencies ro-
bustly while it focuses attention on those situations contain-
ing important visual patterns. Most importantly, a dynamic 
filtering process continually refines the contents of the pat-
tern memory to assure that, as the game-learning program 
becomes more expert, concept formation becomes increas-
ingly accurate. 

The long-range objective of this work is to create a 
heuristically-based decision maker that learns rapidly 
enough to participate in intelligent behavior while it is still 
acquiring knowledge. With a hierarchical multi-agent 
system, the presence of other more general problem solving 
advisors prevents incorrect actions, especially during early 
experience while learning. This paper reports that pattern-
oriented learning functions as anticipated within this 
environment. We found that the validation process for 
newly created agents performed properly, and that the 
system worked smoothly as knowledge was being refined 
during the learning process. We believe that this process of 
creating new agents and testing their correctness in a 
multiple-agent program is unique.  

A Game-Learning Program 
There is evidence that humans integrate a variety of strate-
gies to accomplish problem solving (Biswas, Goldman, 
Fisher, Bhuva, & Glewwe, 1995). There is also evidence 
that multiple, concurrent processing streams exist in the 
brain, each performing a component of a complex task. 
Automatic behaviors produce a locus of activity in the brain 
different from that of similar tasks requiring more cognitive 
processing (Grafton, Hazeltine, & Ivry, In press; Raichle, et 
al., 1994; Wallace, Silberstein, Bluff, & Pipingas, In press). 
In addition, during skill acquisition the locus of activity in 
the brain shifts from cognitive to associative areas with 
practice (Grafton, et al., In press; Raichle, et al., 1994; 
Wallace, et al., In press). The primate visual system has 
pathways for form, place, motion, and color (DeYoe & Van 
Essen, 1988; Ungerleider & Mishkin, 1982). Information 
from these streams is combined to form a perception of the 
visible world (Kandel, 1991). In addition, it has been found 
that different parts of the brain are activated when decisions 
are being made about different strategic aspects of chess 
(Nichelli, et al., 1994). 

The mechanisms we describe below simulate these fea-
tures. Hoyle is a program that learns to play two-person, 
perfect information, finite-board games. It is based on a 
learning and problem-solving architecture for skills called 
FORR, predicated upon multiple rationales for decision 
making (Epstein, 1994a). FORR employs multiple concur-
rent processing streams. Hoyle, as modified here, includes a 
separate stream for pattern learning. The transitions in the 
way Hoyle treats patterns model the automaticity shifts de-
tected in humans during skill learning. 

Hoyle learns to play in competition against a hand-

crafted, external expert program for each specific new 
game. Whenever it is Hoyle’s turn to move, a hierarchy of 
resource-limited procedures called Advisors is provided 
with the current game state, the legal moves, and any useful 
knowledge (described below) already acquired about the 
game.  

Hoyle has 23 heuristic Advisors in two tiers. The first tier 
sequentially attempts to compute a decision based upon 
correct knowledge, shallow search, and simple inference, 
such as Victory’s “make a move that wins the contest im-
mediately.” If no single decision is forthcoming, then the 
second tier collectively makes many less reliable recom-
mendations based upon narrow viewpoints, such as Materi-
al’s “maximize the number of your markers and minimize 
the number of your opponent’s.” An Advisor outputs its 
recommendations in the form of comments. A comment is 
of the form  

<Advisor, action, strength> 
where strength is an integer from 0 to 10 that measures the 
intensity and direction of opinion. Given the Advisors’ rec-
ommendations, a simple arithmetic vote selects a move that 
is forwarded to the game-playing algorithm for execution.  

Although 23 may appear to be quite a few Advisors, they 
do a large job with remarkable efficiency. Hoyle learns to 
play five men's morris with about 9 million states expertly, 
for example, during exposure to about .012% of the search 
space, and explicitly retains data on only about .006% of the 
states in the game graph. Hoyle plays without ever 
searching more than two ply (one move for each contestant) 
ahead in the game tree. 

Hoyle learns from its experience to make better decisions 
based on acquired useful knowledge. Useful knowledge is 
expected to be relevant to future play and is probably 
correct in the full context of the game tree. Examples of 
useful knowledge include recommended openings and states 
from which a win is always achievable with perfect play on 
both sides. Each item of useful knowledge is associated with 
at least one learning algorithm. The learning methods for 
useful knowledge vary. The learning algorithms are highly 
selective about what they retain; they may generalize and 
they may choose to discard previously acquired knowledge. 
Further details on Hoyle are available in (Epstein, 
1992) . 

Learning to Use and Apply Patterns 
The crux of this paper is the addition to Hoyle of pattern 
learning and its application in new, game-dependent third-
tier Advisors. The implementation of pattern learning and 
its application were inspired by repeated laboratory 
experiences with people, in the context of many different 
games. College students spoke about, reacted to, and relied 
upon familiar, sometimes symmetrically transposed, 
patterns while learning (Ratterman & Epstein, 1995). Later, 
they relied heavily upon these patterns as a kind of compiled 
expertise.  

In this work, visually-perceived regularities are repre-
sented as patterns, small geometric arrangements of marker 
types (e.g., black, X) and unoccupied positions (blanks) in a 
particular geographical location. An associative pattern 



 

store provides a heuristically-organized database that links 
patterns with contest outcome (win, loss, or draw). The as-
sociative pattern store includes a set of templates, a waiting 
list, a pattern cache and generated spatial concepts.  

Figure 2 provides an overview of the pattern matcher and 
the development of pattern-based Advisors from the game-
specific associative pattern store. There are four stages de-
tailed here: associate, generalize, proceduralize, and vali-
date. Once patterns are identified, they are associated on the 
waiting list with winning, losing, or drawing. Patterns that 
persist over time and are identified with a single consistent 
outcome move from the waiting list to the pattern cache. 
Patterns in the cache are proceduralized via an associative 
pattern classifier, a new, game-independent Advisor called 
Patsy. Periodic sweeps through the pattern cache also at-
tempt to generalize sets of patterns into concepts. Concepts 
are proceduralized as individual, game-specific Advisors 
that are then validated during subsequent learning. Finally, 
the pattern matcher improves as Hoyle learns to constrain 
pattern generation by excluding uninformative patterns. 

Formulating Concepts from the Pattern Cache 
Cached patterns are a rich source of information about the 
marker clusters to be seen during a particular game. Some of 
them ought to be forgotten; others are worthy of elevation to 
concepts that drive game-dependent Advisors. The identifi-
cation of both kinds of patterns is done during a periodic 
sweep of the pattern cache. Currently, the first sweep of the 
pattern cache to form concepts is after 15 contests, and then 

the frequency is recomputed as a function of a confidence 
parameter after each sweep.  

Generalization summarizes a set of detailed experiences 
into a more useful and efficient representation. Hoyle has 
two generalization rules to form concepts. Patterns in a 
cache are said to agree when they originate from the same 
template and pertain to the same stage of the game.  
• Given distinct agreeing patterns P1, P2, and P3 with q ?’s 
that have the same mover and single, non-zero response, and 
are identical, except that in the ith position P1 has a black, 
P2 a white, and P3 a nil value, construct a new pattern P on 
the q-1 ?’s other than the ith. An example appears in Figure 
3(a).  
• Given distinct agreeing patterns P1 and P2 such that inter-
changing the contestants’ markers and changing the mover 
in P1 results in P2 with the opposite single non-zero re-
sponse, construct a new pattern P with variable place hold-
ers α for black and β for white. An example appears in 
Figure 3(b).  
The cache is organized to support fast detection of agreeing 
patterns.  

Proceduralization 
Proceduralization is the transformation of expert knowledge 
into expert behavior. This is a non-trivial task in AI 
(Mostow, 1983). When there is much data or it conflicts in 
its potential application, as with pattern knowledge, interest-
ing challenges arise. Each segment of the associative pattern 
store therefore relates differently to decision making. 
Patterns on the waiting list have no impact on decision mak-
ing at all. Patterns in the cache serve as input to the associa-
tive pattern classifier, Patsy. Pattern-based concepts become 
game-specific Advisors.  

The new, game-independent, second-tier Advisor Patsy 
ranks legal next moves based on the way the states they en-
gender match patterns in the cache. Patsy considers the set 
of possible next states resulting from the current legal 
moves. Each next state is compared with the patterns in the 
appropriate, game-specific cache. No new patterns are 
cached during this process. Each pattern is assigned a value 
computed from the total number of won, lost and draw con-
tests since the pattern was first seen. The strength of Patsy's 
comment on each legal next move is a function of the values 
of the patterns in the state to which it leads. Thus Patsy en-
courages moves that lead to states introducing patterns asso-
ciated with a win or a draw, while it discourages moves that 
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Figure 2: A schematic diagram of the associative pattern 
learning and spatial concept formation system. 
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lead to states introducing patterns associated with a loss. 
Each concept is proceduralized as a new, third-tier, game-

specific Advisor. If the perfectly-correct, game-independent 
first-tier Advisors can select a move with their game-spe-
cific useful knowledge, they do so and the second tier is 
never consulted. If the heuristic but generally correct, game-
independent second-tier Advisors can agree upon a move 
with their game-specific useful knowledge, they do so. 
Otherwise the moves judged equally good by the second tier 
are forwarded to the newly-created third tier of game-de-
pendent, pattern-based Advisors. 

Validation of New Advisors 
As new, pattern-based Advisors are introduced and Hoyle’s 
skill develops further, some of them may prove irrelevant, 
self-contradictory, or untrustworthy, despite prior empirical 
evidence of their validity. Credit/blame assignment in a do-
main such as this is extremely difficult. At the end of a con-
test, it is difficult, even for human experts, to pinpoint the 
move that won or lost. The significant decision may have 
been early in play, or may have been a set of moves rather 
than an individual one. Rather than credit or blame a partic-
ular move, we have chosen to credit or blame the Advisors 
that support expert-like behavior.  

Consider, for example, a hypothetical game state in which 
Hoyle has only second-tier comments 

<Advisor-1, move-1, strength-1>  
and  

<Advisor-2, move-2, strength-2>.  
Until now, if strength-1 and strength-2 were equal, the vote 
would be a tie, and one of the moves would have been cho-
sen at random. But if Advisor-2 were more trustworthy in 
this particular game, its comment should have more influ-
ence. This approach holds the rationale behind actions ac-
countable, rather than the actions themselves. Irrelevant and 
self-contradictory Advisors in a particular game should have 
weight 0, and more trustworthy Advisors should have 
higher weights than less trustworthy ones. Empirical 
experience with Hoyle indicates that these weights are 
problem-class specific, i.e., a new item of useful knowledge 
to be learned.  

With an external model of expertise as its performance 
criterion, we use AWL, a perceptron-like model, to learn 
problem-class-specific weights for the procedure (Epstein, 
1994b). AWL runs at the end of every contest Hoyle plays 
against an external (human or computer) expert. The 
algorithm considers, one at a time, only those states in 
which it was the expert’s turn to move and Hoyle’s first tier 
would not have made a decision. For each such state, AWL 
distinguishes among support and opposition for the expert’s 
recorded move and for other moves. Essentially, Hoyle 
learns to what extent each of its Advisors simulates 
expertise, as exemplified by the expert’s moves. AWL 
cumulatively adjusts the weights of second-tier and third-
tier Advisors at the end of each contest (whether or not the 
third tier would actually have voted during play), and uses 
those weights to make decisions throughout the subsequent 
contest. These weights are determined by a modification of 
Littlestone’s learning algorithm (Littlestone, 1988). 

Results 
In all the experiments described here, Hoyle alternately 
moved first in one contest and second in the next. Such a 
trial continued until Hoyle was said to have learned to play a 
game because it could draw n consecutive contests in this 
environment. Once it met this behavioral standard, learning 
was turned off and the program was tested against four chal-
lengers that simulated perfect, expert (10% random move 
selection, 90% perfect), novice (70% random move selec-
tion, 30% perfect), and random contestants. During testing, 
reliability measures the consistency with which the program 
can continue to win or draw against contestants of varying 
strengths, and power measures the ability of the program to 
defeat contestants of various strengths (Epstein, 1994c). 

We have used pattern-based learning with Hoyle in tic-
tac-toe, lose tic-tac-toe (played exactly like tic-tac-toe ex-
cept that the first contestant to achieve three of the same 
playing piece along a row, column, or diagonal loses), and 
five men’s morris. This game has two contestants, black and 
white, each with five markers. A contest at this game is 
played on a board like that in Figure 5 and has two stages: a 
placing stage, where initially the board is empty, and the 
contestants alternate placing one of their markers on any 
empty position, and a sliding stage, where a turn consists of 
sliding one’s marker along any line drawn on the game 
board to an immediately adjacent empty position. A marker 
may not jump over another marker or be lifted from the 
board during a slide. Three markers of the same color on 
immediately adjacent positions on a line form a mill. Each 
time a contestant constructs a mill, she captures (removes) 
one of the other contestant’s markers that is not in a mill. 
Only if the other contestant’s markers are all in mills, does 
she capture one from a mill. The first contestant reduced to 
two markers, or unable to move, loses.  

Since Hoyle had already learned to play all the games 
studied here expertly after relatively few contests, these ex-
periments were intended to demonstrate that game-depen-
dent visual patterns exist and persist, despite the non-deter-
minism of the learning experience. They also showed that 
such patterns can be gathered without a combinatoric ex-
plosion, and that the transition from waiting list to pattern 
cache to concept and Advisor is warranted. Furthermore it 
was shown that new, game-specific Advisors can be learned 
and managed appropriately, all without reducing the pro-
gram’s ability to play.  

The potential computational overhead for concept forma-
tion is avoided. Very few of the possible patterns ever ap-
pear on the waiting list or in the cache. Even fewer are em-
phasized as the conceptual grounds for a heuristic Advisor, 
and some are learned to be uninformative. In tic-tac-toe, de-
spite the potentially large number of patterns, after learning 
there were 58 patterns in the waiting list, 22.2 patterns in the 
cache, 4.2 uninformative patterns, and 6.4 concepts, all for 
draws. In lose tic-tac-toe, with just as many potential pat-
terns, after learning there were 58.8 patterns in the waiting 
list, 57.2 patterns in the cache, 1.4 uninformative patterns, 
and 19 concepts, some for draws and others for losses.  

Furthermore, the Advisor Patsy is highly weighted by the 



 

AWL validation algorithm. After learning tic-tac-toe, 
Patsy’s average rank by weight among the Advisors in the 
second tier was 3 out of 17; after learning lose tic-tac-toe 
Patsy’s average rank was 6.5 out of 17. AWL assesses Patsy 
to be a valuable Advisor. The growth in the weight of Patsy 
and in the weights of the pattern-based Advisors simulates 
the transition from high-level reasoning to skill learning. 

With sufficient experience, Hoyle learns only correct as-
sociations, ones considered relevant and significant by hu-
man experts. The first concept in Figure 4, for example, de-
scribes control of the center. Although it appears to be a 
simple pattern, it is actually a generalization over a set of 
persistent patterns. The second concept in Figure 4 blocks a 
potential row of three in its center. 

In addition, concepts are learned which were previously 
inexpressible in Hoyle’s representation. An example of this 
appears in lose tic-tac-toe where, to play the role of X per-
fectly, one must move in the location that is the reflection, 
through the center, of O’s last move. Such reflection was 
not previously expressible in Hoyle’s useful knowledge, but 
is now learned as the last pair of draw concepts in Figure 4. 
(Note that, with symmetry, vertical reflection through the 
center encompasses horizontal reflection and one diagonal 
reflection encompasses the other.)  

The program experiences the rules of a game only as a set 
of “black boxes” that return the current state, the legal 
moves from it, and whether or not a state results in a win, a 
loss, or a draw. Consider, for example, what we term here 
confinement, the concept of restricting a five men’s morris 
marker to a corner so that it can no longer slide. (Recall that 
a morris contestant unable to slide loses.) Confinement, the 
rightmost concept in Figure 5, is learned by Hoyle on every 
run. The concept of a mill (three markers of the same color 
on immediately adjacent positions on a line) was also previ-
ously outside the program’s knowledge. (Hoyle only knows 
that certain moves permit it to capture, but not why.) Now 
on every run of five men’s morris, Hoyle learns the first two 
concepts in Figure 5 as a pair of Advisors that subgoal on 

mills.  
We found that value of pattern-based heuristics is 

confirmed in continued play. The reflection Advisors for 
lose tic-tac-toe and the mill Advisors for five men’s morris 
have weights that remain among the top few in the third tier 
during learning with AWL. Although the reflection 
Advisors tend to emerge only after 80 or so contests, they 
typically achieve weights higher than 10 of the 17 second-
tier Advisors, i.e., learned, game-specific knowledge proves 
more powerful than much of the more general game-
independent knowledge supplied by the other advisors.  

We note that there is a refinement of the contents of both 
the waiting list and pattern memory due to the threshold for 
a pattern to get into the waiting list, aging in both the wait-
ing list and pattern memory, and the management of both 
consistent and inconsistent entries. Although we did not 
perform a quantitative study of this memory refinement pro-
cess, we did find that without it performance was degraded. 
This process is ongoing and constantly refines the storage of 
important patterns with experience. 

Discussion 
Our work not only integrates pattern learning with high-
level reasoning, it also suggests how the former gradually 
comes to support and enhance the latter. We do not advocate 
reliance on pattern-learning alone. That would ignore the 
other higher-level processes quite evident in humans. 
Indeed, Hoyle learns many other kinds of useful knowledge 
detailed elsewhere (Epstein 1992). Pattern learning is, how-
ever, an important component in skill development, one that 
those interested in the simulation of human intelligence or 
the design of adaptive game-playing programs cannot afford 
to ignore.  

Each of the patterns Hoyle now learns is a generalization 
over a class of states that occurs with some frequency and 
contains a simple configuration of spatially-related markers. 
These patterns occur in the context of a particular stage of 
the game and are consistently associated with a single out-
come. An associative pattern classifier provides learning 
whose possibly premature guidance is tempered by the 
higher-level reasoning of the other Advisors. When we 
force patterns to prove their reliability and importance 
before they can enter the cache, we reduce the 
combinatorics that would otherwise confront the 
generalizer. More experienced, concept-based Advisors 
gradually emerge to emphasize broader generalities, and are 
expected to advocate expert play to retain their status. 
Finally, the identification and exclusion of uninformative 
patterns constrains the pattern generator and thereby focuses 
the entire process more intelligently.  

For this initial test we used simple games and made a 
number of simplifications in the individual components of 
the program. The Advisor, Patsy, based on individual pat-
terns was placed in the second tier of Hoyle. The correct tier 
assignment for the new Advisors created from pattern-based 
concepts is another subject of current research. They were 
all placed in a third tier for the experiments described here, 
to avoid interference with a preexisting second tier that 
already worked quite well. To improve computational effi-
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Figure 5: Some learned concepts for five men’s morris. 
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the pattern is matched for the subsequent state. 



 

ciency, however, and to model the transition to automaticity, 
the pattern-based Advisors should reside in the second tier. 
If they competed in parallel with the other second-tier 
Advisors, the pattern-based Advisors should comment faster 
and with greater weight in situations where they are appli-
cable, and thereby supplant the others.  

Future work includes more difficult games and other 
kinds of visual biases for spatial relations (such as center, 
edge, perimeter, bounded regions, length, and area), and 
causally-based pattern generation where one or more pat-
terns that give rise to concepts are combined to create new, 
larger, somewhat less regular patterns. We intend to experi-
ment with other learning algorithms to determine which is 
best for our application, and to develop and test a suite of 
generalization rules and meta-rules to construct concepts 
from patterns. 
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