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Game-playing Programs 
Article definition: Game-playing programs rely on fast deep search and knowledge to 
defeat human champions. For more difficult games, simulation and machine learning 
have been employed, and human cognition is under consideration. 

Game trees 
Board games are not only entertaining — they also provide us with challenging, well-
defined problems, and force us to confront fundamental issues in artificial intelligence: 
knowledge representation, search, learning, and planning. Computer game playing has 
thus far relied on fast, deep search and vast stores of knowledge. To date, some programs 
have defeated human champions, but other challenging games remain to be won. 
 
A game is a noise-free, discrete space in which two or more agents (contestants) 
manipulate a finite set of objects (playing pieces) among a finite set of locations (the 
board). A position is a world state in a game; it specifies the whereabouts of each playing 
piece and identifies the contestant whose turn it is to act (the mover). Examples appear in 
Figure 1. Each game has its own finite, static set of rules that specify legal locations on 
the board, and when and how contestants may move (transform one state into another). 
The rules also specify an initial state (the starting position for play), a set of terminal 
states where play must halt, and assign to each terminal state a game-theoretic value, 
which can be thought of as a numerical score for each contestant. 
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Figure 1: A game tree and basic game playing terminology. 

 
As in Figure 1, the search space for a game is typically represented by a game tree, where 
each node represents a position and each link represents one move by one contestant 
(called a ply). A contest is a finite path in a game tree from an initial state to a terminal 



state. A contest ends at the first terminal state it reaches; it may also be terminated by the 
rules because a time limit has been exceeded or because a position has repeatedly 
occurred.  
 
The goal of each contestant is to reach a terminal state that optimizes the game-theoretic 
value from its perspective. An optimal move from position p is a move that creates a 
position with maximal value for the mover in p. In a terminal state, that value is 
determined by the rules; in a non-terminal state, it is the best result the mover can achieve 
if subsequent play to the end of the contest is always optimal. The game theoretic value 
of a non-terminal position is the best the mover can achieve from it during error-free 
play. If a subtree stops at states all of which are labeled with values, a minimax algorithm 
backs those values up, one ply at a time, selecting the optimal move for the mover at each 
node. In Figure 2, for example, each possible next state in tic-tac-toe is shown with its 
game theoretic value; minimax selects the move on the left.  

Figure 2: A minimax algorithm selects the best choice for the mover. 
 
Retrograde analysis backs up the rule-determined values of all terminal nodes in a 
subtree to compute the game-theoretic value of the initial state. It minimaxes from all the 
terminal nodes to compute the game-theoretic value of every node in the game tree, as 
shown in Figure 3. The number of nodes visited during retrograde analysis is dependent 
both on a game’s branching factor (average number of legal moves from each position) 
and the depth of the subtree under consideration. For any challenging game, such as 
checkers (draughts) or chess, retrograde analysis to the initial state is computationally 
intractable. Therefore, move selection requires a way to compare alternatives.  
 
An evaluation function maps positions to values, from the perspective of a single 
contestant. A perfect evaluation function preserves order among all positions’ game-
theoretic values. For games with relatively small game trees, one can generate a perfect 
evaluation function by caching the values from retrograde analysis along with the optimal 
moves. Alternatively, one might devise a way to compute a perfect evaluation function 
from a description of the position alone, given enough knowledge about the nature of the 
game. In this approach, a position is described as a set of features, descriptive properties 
such as piece advantage or control of the center. It is possible, for example, to construct, 
and then program, a perfect, feature-based evaluation function for tic-tac-toe. Given a 



perfect evaluation function, a game-playing program searches only one ply — it 
evaluates all possible next states and makes the move to the next state with the highest 
value. For a challenging game, however, the identity of the features and their relative 
importance may be unknown, even to human experts.  

Figure 3: Retrograde analysis backs up rule-determined values. 

Search and knowledge 
Confronted with a large game tree and without a perfect evaluation function, the typical 
game-playing program relies instead on heuristic search in the game tree. The program 
searches several ply down from the current state, labels each game state it reaches with an 
estimate of its game theoretic value as computed by a heuristic evaluation function, and 
then backs those values up to select the best move. Most classic game-playing programs 
devote extensive time and space to such heuristic search. The most successful variations 
preserve exhaustive search’s correctness: a transposition table to save previously 
evaluated positions, the α-β algorithm to prune (not search) irrelevant segments of the 
game tree, extensions along promising lines of play, and extensions that include forced 
moves. Other search algorithms take conservative risks; they prune unpromising lines 
early or seek quiesence, a relatively stable heuristic evaluation in a small search tree. 
Whatever its search mechanisms, however, a powerful game-playing program typically 
plays only a single game, because it also relies on knowledge. 
 
Knowledge is traditionally incorporated into a game-playing program in three ways. 
First, formulaic behavior early in play (openings) is prerecorded in an opening book. 
Early in a contest, the program identifies the current opening and continues it. Second, 
knowledge about features and their relative importance is embedded in a heuristic 
evaluation function. Finally, prior to competition, the program calculates the true game-
theoretic values of certain nodes with exhaustive search and stores them with their 
optimal moves (endgame database). Because a heuristic evaluation function always 
returns any available endgame values, the larger that database, the more accurate the 
evaluation and the better search is likely to perform. 



Early attempts at mechanized game playing 
Chess has long been the focus of automated game playing. The first known mechanical 
game player was for a chess endgame (king and rook against king), constructed about 
1890 by Torrès y Quevedo. In the 1940’s many researchers began to consider how a 
computer might play chess well, and constructed specialized hardware and algorithms for 
chess. Work by Shannon, Turing, and de Groot was particularly influential. By 1958 a 
program capable of playing the entire game was reported, and by the mid-1960’s 
computers had begun to compete against each other in tournaments (Marsland 1990). 
 
At about the same time, Samuel was laying the foundation for today’s ambitious game-
playing programs, and much of machine learning, with his checkers player (Samuel 1959; 
Samuel 1967). A game state was summarized by his program in a vector of 38 feature 
values. The program searched at least 3 ply, with deeper searches for positions associated 
with piece capture and substantial differences in material. The checker player stored as 
many evaluated positions as possible, reusing them to make subsequent decisions. 
Samuel tested a variety of evaluation functions, beginning with a prespecified linear 
combination of the features. He created a compact representation for game states, as well 
as a routine to learn weighted combinations of 16 of the features at a time. Samuel’s work 
pioneered rote learning, generalization, and co-evolution. His program employed α-β 
search, tuned its evaluation function to book games played by checker masters, 
constructed a library of moves learned by rote, and experimented with non-linear terms 
through a signature table. After playing 28 contests against itself, the checker program 
had learned to play tournament-level checkers, but it remained weaker than the best 
human players. 
 
For many years it was the chess programs that held the spotlight. The first match between 
two computer programs was played by telegraph in 1967, when a Russian program 
defeated  an American one 3 – 1. Although they initially explored a variety of techniques, 
the most successful chess programs went on to demonstrate the power of fast, deep game-
tree search. These included versions of Kaissa, MacHack 6, Chess 4.6, Belle, Cray Blitz, 
Bebe, Hitech, and a program named Deep Thought, the precursor of Deep Blue. As 
computers grew more powerful, so did chess playing programs, moving from Chess 3.0’s 
1400 rating in 1970 to Deep Blue’s championship play in 1997. 

Brute force wins the day 
Brute force is fast, deep search plus enormous memory directed to the solution of a 
problem. In checkers and in chess, brute force has triumphed over acknowledged human 
champions. Both programs had search engines that rapidly explored enormous subtrees, 
and supported that search with extensive, efficient opening books and endgame 
databases. Each also had a carefully tuned, human-constructed, heuristic evaluation 
function, with features whose relative importance were well understood in the human 
expert community.  
 
In 1994, Chinook became the world’s champion checker player, defeating Marion 
Tinsley (Schaeffer 1997). Its opening book included 80,000 positions. Its 10-gigabyte 



endgame database, constructed by exhaustive forward search, included about 443 billion 
positions, every position in which no more than 8 pieces (checkers or kings) remain on 
the board. The frequency with which Chinook’s search reached these game-theoretic 
values was in large measure responsible for the program’s success. 
 
In 1997 Deep Blue defeated Garry Kasparov, the human chess champion. Deep Blue’s 
custom chess-searching hardware enabled it to evaluate 200 million moves per second, 
sometimes to depths over 30 ply. In the year immediately before its victory, the program 
benefited from a substantial infusion of grandmaster-level knowledge, particularly in its 
evaluation function and its opening book. Deep Blue’s endgame database included all 
chess positions with five or fewer pieces, but it was rarely reached.  

Simulation and machine learning, the alternatives 
There are, however, games more difficult than chess, games where programs require 
more than brute force to win. Consider, for example, shogi and Go, played on the boards 
in Figures 4(a) and 4(b), respectively. Although the branching factor for chess is 35, for 
Shogi it is 80 – 150, and for Go it is 250. Such a large branching factor makes deep 
search intractable. Games with very long contests also reduce the opportunity for search 
to reach an endgame database, where the evaluation function would be perfect. For 
example, the typical checkers contest averages about 50 moves, but the typical Go 
contest averages more than 300. In games that include imperfect information (e.g., a 
concealed hand of cards) or non-determinism (e.g., dice), the brute force approach 
represents each possibility as a separate state. Once again, the branching factor makes 
deep search intractable. In bridge, for example, after bidding the declarer can see 26 
cards, but there are more than 20 million ways the other 26 cards may be distributed 
between the opponents’ hands.  

  
 (a)  (b) 

Figure 4: (a) The starting position in Shogi. (b) the Go board. 
 
In a game with a very large branching factor, rather than search all possibilities 
exhaustively, a program can sample the game tree by simulation. Simulation generates 
the unknown information (e.g., the opponents’ hands) at random and evaluates game 



states based on that assumption. Since a single random guess is unlikely to be correct, 
simulation is repeated, typically thousands of times. The evaluation function is applied to 
each state resulting from the same move in the simulated trees, and averaged across them 
to approximate the goodness of a particular move. Simulation can be extended as many 
ply as desired. Maven, for example, plays Scrabble, a game in which contestants place 
one-letter tiles into a crossword format. Scrabble is non-deterministic because tiles are 
selected at random, and it involves imperfect information because unplayed tiles are 
concealed. Nonetheless, Maven is considered the best player of the game, human or 
machine (Sheppard 1999). Instead of deep search, Maven uses a standard, game-specific 
move generator (Appel and Jacobson 1988), a probabilistic simulation of tile selection 
with 3-ply search, and the B* search algorithm in the endgame.  
 
When people lack the requisite expert knowledge, a game-playing program can learn. A 
program that learns executes code that enables it to process information and reuse it 
appropriately. Rather than rely upon the programmer’s knowledge, such a program 
instead acquires knowledge that it needs to play expertly, either during competition 
(online) or in advance (offline). A variety of learning methods have been directed toward 
game playing: rote memorization of expert moves, deduction from the rules of a game, 
and a variety of inductive methods. An approach that succeeds for one game does not 
necessarily do well on another. Thus a game-learning program must be carefully 
engineered.   
 
A game-playing program can learn openings, endgame play, or portions of its evaluation 
function. Openings are relatively accessible from human experts’ play. For example, 
Samuel’s checker player acquired a database of common moves online, and Deep Blue 
learned about grandmasters’ openings offline. Endgame database computations are costly 
but relatively straightforward; Chinook’s endgame database, learned offline, was 
essential to its success. In a game whose large branching factor or lengthy contests 
preclude deep search, however, an endgame database is rarely reached during lookahead.  
 
Machine learning for game playing often focuses on the evaluation function. TD-
gammon is one of the world’s strongest backgammon players. The mover in 
backgammon rolls a pair of dice on every turn; as a result, the branching factor is 400, 
precluding extensive search. TD-gammon models decision making with a neural network 
whose weights are acquired with temporal difference learning in millions of contests 
between two copies of the program. Given a description of the position with human-
supplied features the neural net serves as an evaluation function; during competition, TD-
gammon uses it to select a move after a 2-to-3-ply search (Tesauro 1995).  
 
Ideally, a program could learn not only weights for its evaluation function, but also the 
features it references. Logistello plays Othello (Reversi); in 1997 it defeated Takeshi 
Murakami, the human world champion, winning all 6 contests in the match (Buro 1998). 
Logistello’s heuristic evaluation function is primarily a weighted combination of simple 
patterns that appear on the board, such as horizontal or diagonal lines. (Which player has 
the last move and how far a contest has progressed are also included.) To produce this 
evaluation function, 1.5 million weights for elaborate conjunctions of these features were 



calculated with gradient descent during offline training, from analysis of 11 million 
positions. Although it uses a sophisticated search algorithm and a large opening book, 
Logistello’s evaluation function is the key to its prowess. Its creator supplied the raw 
material for Logistello’s evaluation function, but the program learned features produced 
from them, and learned weights for those features as well. 

Cognition and game-playing programs 
Although no person could search as quickly or recall as accurately as a champion 
program, there are some aspects of these programs that simulate human experts. A good 
human player remembers previous significant experiences, as if the person had a 
knowledge base. A good human player expands the same portion of a game tree only 
once in a contest, as if the person had a transposition table. A good human player has a 
smaller, but equally significant, opening book and recognizes and employs endgame 
knowledge. 
 
There are also features of human expertise that programs generally lack. People plan, but 
planning in game playing has not performed as well as heuristic search. People narrow 
their choices, but simulation or exhaustive search, at least for the first few ply, have 
proved more reliable for programs. People construct a model of the opposition and use it 
to guide decision making, but most programs are oblivious of their opposition. People 
have a variety of rationales for decisions, and are able to offer explanations for them, but 
most programs have opaque representations. Skilled people remember chunks (unordered 
static spatial patterns) that could arise during play (Chase and Simon 1973), but, at least 
for chess programs, heuristic search ultimately proved more powerful. Finally, many 
people play more than one game very well, but the programs described here can each 
only play a single game. (One program, Hoyle, learns to play multiple games, but their 
game trees are substantially smaller than chess’.) 
 
The cognitive differences between people and programs become of interest in the face of 
games, such as shogi and Go, that programs do not yet play well at all. These games do 
not yield readily to search. Moreover, the construction of a powerful evaluation function 
for these games is problematic, since even the appropriate features are unknown. In 
shogi, unlike chess, there is no human consensus on the relative strength of the individual 
pieces (Beal and Smith 1998). In Go there are thousands of plausible features (often 
couched in proverbs) whose interactions are not well understood. Finally, because the 
endgame is likely to have at least as large a branching factor as earlier positions, the 
construction of a useful endgame database for either game is intractable. Although both 
games have attracted many talented researchers and have their own annual computer 
tournaments, no entry has yet played either game as well as a strong amateur human.  
 
Timed photographs of a chess player’s brain demonstrate that that perception is 
interleaved with cognition (Nichelli, Grafman, Pietrini, Alway, Carton, and Miletich 
1994). Although Go masters do not appear to have chunks as originally predicated 
(Reitman 1976), there is recent evidence that these people do see dynamic patterns and 
readily annotate them with plans. Moreover, Go players’ memories now appear to be 
cued to sequences of visual perceptions. As a result, despite their inferiority for chess 



programs, work in Go continues to focus on patterns and plans. Another promising 
technique, foreshadowed by the way human experts look at the Go board, is 
decomposition search, which replaces a single full search with a set of locally restricted 
ones (Muller 1999).  
 
The challenges presented by popular card games, such as bridge and poker, have also 
received attention recently. Both involve more than two contestants and include imperfect 
information. Bridge offers the challenge of pairs of collaborating opponents, while poker 
permits tacit alliances among the contestants. At least one bridge program has won 
masters’ points in play against people, relying on simulation of the concealed card hands. 
Poker pits a single contestant simultaneously against many others, each with an 
individual style of play. Poki plays strong Texas Hold’em poker, although not as well as 
the best humans. The program bases its bets on probabilities, uses simulation as a search 
device, and has begun to model its opponents. 
 
Finally, a synergy can develop between game-playing programs and the human experts 
they simulate.  Scrabble and backgammon both provide examples. Maven has hundreds 
of human-supplied features in its evaluation function. The program learned weights for 
those features from several thousand contests played against itself. Since their 1992 
announcement, Maven’s weights have become the accepted standard for both human and 
machine players. Meanwhile, TD-gammon’s simulations, known as rollouts, have 
become the authority on the appropriateness of certain play. In particular, human 
professionals have changed their opening style based on data from TD-gammon’s 
rollouts. 

Summary 
Game-playing programs are powerfully engineered expert systems. They often have 
special-purpose hardware, and they employ concise representations designed for 
efficiency. Where the branching factor permits, a game-playing program relies on fast, 
deep, algorithmic search, guided by heuristics that estimate the value of alternative 
moves. If that is not possible, simulation is used to determine a decision. Champion 
programs play a single game, and benefit from vast stores of knowledge, knowledge 
either provided by people or learned by the programs from their experience. Nonetheless, 
challenging games remain where humans play best.  
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