Knowledge Representation in Automated Scientific Discovery

Susan L. Epstein

Computer Science Department, Hunter College and The Graduate Center of The City University of New York
695 Park Avenue, New York, NY 10065, USA
susan.epstein@hunter.cuny.edu

Abstract

Scientific discovery is the most ambitious form of problem
solving, one that attends to sets of examples rather than in-
dividual ones. Its goal is to identify novel, useful informa-
tion that further develops a body of scientific knowledge.
This paper considers the building blocks of automated sci-
entific discovery and ways to control their interactions.

Given the right representation (way to describe knowl-
edge), discovery becomes nearly effortless. For example,
two classic papers demonstrate that new representations
are the key to understanding an entire class of problems
(Amarel, 1968; Anzai and Simon, 1979). More recently, a
subject, intrigued by a challenge posed in a lecture, formu-
lated 7 representations of the game tree for a simple game
in 24 hours. He discovered, with the final one, a simple
way to extract a perfect strategy for an entire class of
games (Epstein, 2004). In all three cases, discovery was
driven by new representations. Further evidence comes
from great mathematicians who retrospectively chronicle
their own discoveries (e.g., (Hardy, 1972; Pascal, 1964;
Poincaré, 1970)). They often describe visual imagery that
re-represented knowledge they had already been ponder-
ing. Chess masters have reported similar phenomena.
These new representations are often replete with flashing
lights or bright colors that focus attention in just the right
place, much like the “aha!” experiences of cartoon charac-
ters. This paper considers what must be represented for
automated scientific discovery, and how those representa-
tions impact a program’s ability to reason and explore.

The Building Blocks

Scientists think about concepts, sets of elements with some
commonality, such as “acyclic graph” or “dog.” The gen-
eral concept is a superset of all the concepts under consid-
eration. In biology, the general concept is “living organ-
ism;” in graph theory the general concept is “graph.” The
power set (i.e., the set of all subsets) of the general concept
is the domain of interest.

An example is a member of the general concept, and is
defined by the details that make it a member. A dog is a
particular creature defined by its physical manifestation; a
graph is an ordered pair of sets, where the second (the
edges) is pairs of elements from the first (the vertices). A

Copyright © 2008, Association for the Advancement of Artificial Intelli-
gence (wWww.aaai.org). All rights reserved.

representation of an example captures those details in a de-
scription. The same example can be represented in more
than one way, however. A graph can be represented either
by lists of its vertices and edges, or by a sketch, which de-
picts each variable as a unique dot and each edge between
two variables as a line that joins the corresponding pair of
dots. A property of an example is a statement that the ex-
ample is a member of some concept more specific than the
domain’s general one. For example, a graph is connected
(has the property of connectedness) if it is a member of the
set of all graphs with a single connected component.

Of course, a body of scientific knowledge is more than a
collection of concepts. Its richness lies in the relations that
link its concepts to one another. Examples of relations in-
clude “all dogs have tails” and “all trees are acyclic
graphs.” There are two kinds of relations: theorems and
conjectures. A theorem is a relation with a proof, an argu-
ment that reasons correctly from true premises to a true
conclusion. A conjecture is a relation for which there is ex-
tensive evidence, but no proof.

Because discovery concepts are sets, the most obvious
relations among them are set relations, particularly “sub-
set.” Subsets are the basis of ontological hierarchies (e.g.,
“dogs are mammals” and “trees are acyclic”) that link
known concepts together. Subsets can also demonstrate
concept equivalence, such as “trees are the same as acyclic
connected graphs.” Other relations are more likely to be
domain-dependent, such as “share a recent evolutionary
ancestor” or “contain some representative as a subgraph.”

Scientific discovery mines new examples for previously
undetected concepts and relations. A new example may be
interesting because it is so different from prior experience,
that is, it is a member of few concepts in the knowledge
structure other than the general one. A new example also
provides the opportunity to confirm existing conjectures
and to postulate new ones. Each newly encountered dog
strengthens many subset relations, such as the one between
“dog” and “animals with tails.” A newly encountered ex-
ample is particularly interesting when its very existence
disrupts some carefully organized hierarchy or forces one
to reconsider existing relations. This is why a dog with
wings would be an extraordinary find.

Science assembles examples and concepts and relations
into a knowledge structure. The challenge in scientific dis-
covery is to find new concepts and valid relations that en-
rich it. Essentially, scientists devote themselves to the em-
bellishment of a knowledge structure.



Representation and Inference

Although inspired by examples, discovery ultimately ad-
dresses concepts. Most interesting discovery domains are
unwieldy because their examples are numerous (e.g., num-
ber theory) or ancient (e.g., astronomy) or rapidly evolving
(e.g., living flu viruses). Efficient automated discovery
therefore requires compact concept representations that can
be readily manipulated. When a concept summarizes only
the discoverer’s limited experience in a domain, however,
relations that employ it can only be conjectures. Rather
than enumerating its examples, there are two more useful
ways to represent a concept: as a tester or as a generator.

A ftester is a predicate that, when presented with an ex-
ample, returns true (“this is an example of the concept™) or
false (“this is not”). Because testers are induced from a set
of examples, they often fall prey to overgeneralization.
Consider, for example, a young child, whose discovery
domain includes everyday physical objects. She is likely at
some point to call every four-legged creature “dog” until
told that some creature she has thus labeled is actually a
horse. (“See the hooves!”) At that point, the tester must be
corrected. A thoroughly corrected tester, however, may be
awkward to manage because it comes with a long list of
exceptions or a lengthy checklist at a level of granularity
that related concepts do not require. Penguins, for example,
have provoked entire logics, ones that an ornithologist
would find cumbersome.

In contrast, a generator is an engine that, when exe-
cuted, returns an example of the concept. Because discov-
ery is driven by examples, concept generators that readily
create new examples are essential. Generators provide the
discoverer with experience, particularly when examples are
manipulated (e.g., graph coloring). Automated mathemati-
cal discovery programs often rely on concept definitions
that are generators (Epstein, 1988b; Lenat, 1976). An ex-
ample of a generator appears in Figure 1.

The importance of generators in a knowledge structure is
well illustrated in biology. For centuries, biologists relied
on comparative morphology and behavioral criteria to form
concepts like “fungus,” that is, to group together living
things that are similar. These elaborate testers were based
on careful scrutiny of many examples. They also provoked
arguments that went on for decades. Today, however, the
genome for a biological species is acknowledged to be its
generator. The re-definition of all biological species

Concept generator:
(AyA, + A)*K) wherex EV,y &V, zEV

IAL

Figure 1. Generation of “trees with loops” (edges from a vertex
to itself). Begin with K; = <V ={v}, E = &>, the complete graph
on one vertex, and then iterate. Each iteration either adds a loop
to a vertex already in the graph (A..) or introduces a new vertex
(4,) with an edge (A,) to some vertex currently in the graph.

(a) (b) ()
Figure 2: Tester definitions could not determine whether (b) a
panda was more closely related to (a) a raccoon or to (c) a bear.
Generators (DNA) have resolved this debate.

through strong DNA similarity has finally resolved long-
standing issues in phylogeny, including evolutionary rela-
tions among songbirds, and whether pandas are more
closely related to bears or raccoons. (See Figure 2.)

Our understanding of the physical world is for the most
part insufficient to produce unambiguous, sufficiently de-
tailed definitions of examples. Mathematics, in contrast,
begins with clear definitions of examples, and often allows
us to formulate generators for concepts. As a result, most
automated discovery has focused on mathematics, or has
been restricted to mathematical representations for physical
objects. For example, AM worked in set theory (Lenat,
1976) and GT in graph theory (Epstein, 1988a).

Counterexamples of testers (e.g., a dog-labeled horse)
drive their revision; counterexamples of relations (e.g.,
winged dogs) invalidate them. Proof of a relation is more
complex. When the structure of a generator or a tester is
sufficiently transparent, discovery can use it to prove rela-
tions among concepts. With testers only of the form a < b,
for example, one can use arithmetic principles to deduce
subset relations. Figure 3 shows how to deduce that the
sum of two even numbers is even, using a generator for
“even.” Given procedures to manipulate algebraic repre-
sentations such as the one in Figure 1, a program can prove
theorems about the sets it represents (Epstein, 1988a).
More often, however, the generator is so opaque that the
scientist can only examine additional examples with a
tester, and hope to detect relations inductively.

Heuristics in Discovery

Testers for interesting concepts are often computationally
expensive, even intractable. In that case, discovery must
find some way to enhance those testers. A tester is, after
all, an executable procedure. When, as is often the case, the
tester is of the form “there exists some x such that x has

Concept generator: To produce an even number, multiply
any integer by 2.
Theorem: The sum of two even numbers is even.
Proof:
Generate even numbers 2x and 2y from numbers x and y.
Since 2x + 2y =2(x +y) and x + y is a number
2x + 2y can be generated from x + y
and 2x + 2y is also even.

Figure 3: A proof that employs a concept generator.



property g with respect to this example,” it requires a bind-
ing for x (e.g., a 3-coloring of a graph). Execution of the
tester searches for that binding. If P # NP, then some con-
cepts are forever burdened with exponential testers. The
best we can hope for is that most members of some con-
cepts will be receptive to heuristics for those testers.

A potential pitfall in the construction of a discovery pro-
gram is to commingle a metric (a numerically-valued func-
tion) or a representation with a heuristic (e.g., (Ritchie and
Hanna, 1984)). When such a heuristic fails to support effi-
cient testing, there are two possibilities: the metric or rep-
resentation is not sufficiently relevant, or the heuristic uses
it incorrectly. In graph coloring, for example, one can de-
scribe a graph by the degrees of its vertices (a metric that
supplements the vertex-edge description), and then color
first those vertices of maximum degree (the heuristic). It is
possible, however, to construct graph-coloring problems
where the number of permissible colors varies in a way
that the vertices of minimum degree should be colored first
— the metric is still appropriate but the heuristic is differ-
ent. Moreover, there are often many heuristics that might
enhance a tester.

An effective alternative is to provide multiple metrics
and representations, but to decouple them from the heuris-
tics. Decoupling makes all metrics and representations
available to all heuristics; each heuristic uses any subset of
them it chooses. Of course, representing the same informa-
tion many ways is computationally expensive. Once a dis-
covery program learns which heuristics best support its
testers, it can pare down its portfolio, and retain only those
metrics and representations that support the best heuristics.

This linkage of metric/representation quality to tester
heuristics’ quality has proved successful in game playing
(Epstein, 2001), path finding (Epstein, 1998), and con-
straint solving (Epstein, Freuder and Wallace, 2005) All
three programs are based on FORR (FOr the Right Rea-
sons), an architecture for learning and problem solving
(Epstein, 1994). Given examples of a concept and a set of
tester heuristics for a candidate superset, FORR infers
weights that represent the relative usefulness of those heu-
ristics on the superset’s tester. For example, the concept
could be a set of coloring problems generated to have par-
ticular properties, the superset “has at least one solution,”
and the tester a general search engine. For a given tester, a
heuristic may prove more effective on one concept than on
another. Some heuristics may even rely on metrics that are
inapplicable to a given concept (e.g., number of wings on a
dog or cycles in a tree). The usefulness of a metric or a rep-
resentation is ultimately the learned weights of the heuris-
tics that reference it. Thus weight learning for tester heuris-
tics both selects effective metrics and representations and
improves the tester, which in turn supports discovery.

A new concept is simply a newly assembled set of ex-
amples. A new concept can be created from the intersec-
tion of other concepts (e.g., connected and acyclic graphs).
Another way to generate a new concept is to restrict the
values that an existing property’s metric takes on exam-
ples. Consider, for example, the metric “number of integer

divisors” applied to positive integers. Examples with the
value 2 produce the concept “prime number.” Once its
metric-based heuristics have reliable weights, a discovery
program can formulate a new concept from a highly
weighted, metric-based heuristic. Under this approach, if a
heuristic that maximizes vertex degree receives a high
weight, complete graphs could be discovered.

Weight learning can also support the discovery of new
heuristics. A learned, weighted combination of heuristics
for a tester is itself a new heuristic. One can also specify a
language whose expressions are interpretable as metric-
based heuristics and then have a program learn weights for
them. FORR provides such a facility. The language is do-
main-dependent: for game playing, its expressions are gen-
eralizations of patterns that can appear on the game board;
for constraint satisfaction, they are arithmetic combinations
of metrics that underlie input heuristics. Initially, as FORR
applies its tester to examples, these expressions do not par-
ticipate in decision making, but they earn weights as if they
did. Expressions that earn and maintain high weights serve
together as the metric for a single heuristic that does par-
ticipate. Eventually, an outstanding individual expression
can be identified to stand on its own as a new heuristic.
Because it monitors every expression, this approach re-
quires a language with limited expressive power. Nonethe-
less, it discovered a new heuristic which, exported to an-
other program, improved search performance by as much
as 96% on a new set of larger, more challenging problems
(Epstein et al., 2002). The same approach also discovered
forks for a non-trivial board game (Epstein, 2001). Thus,
learning to identify effective heuristics for a tester both
identifies good metrics and representations and gives rise
to new heuristics and new metrics.

Because much of problem solving can be recast as con-
cept membership testing, the discovery of new heuristics is
important. “3-color this graph” can be construed as “is this
graph an example of 3-colorable?” and “play checkers
well” as “is checkers an example of a draw game?” From
this perspective, discovery is indeed a more general form
of problem solving, as observed earlier, one that focuses on
sets of examples rather than individual ones.

Challenges in Discovery

To establish relations among concepts in a domain, discov-
ery focuses on subsets, is burdened by intractable testers,
and requires heuristics to ease its way. Once metrics and
representations are decoupled from heuristics, the process
is clarified, but substantial challenges still remain. We con-
sider several here: representational bias, focus of attention,
interestingness, and the discovery of new representations.
A scientific discovery program manipulates, and there-
fore must represent, examples, concepts, relations, and
heuristics. How they are represented biases a discovery
program, that is, the program can only contemplate what it
can represent. In example definition, representational bias
delineates the domain. In concept description, representa-
tional bias is the only alternative to examining the power
set of the general concept. A concept representation that is



also a generator, such as GT’s, supports theorem proving.
A sufficiently rich tester, such as graffiti’s a < b, can pro-
duce many interesting conjectures (Fajtlowicz, 1988). Rep-
resentational bias for relations delimits the space of conjec-
tures and theorems; representational bias for heuristics re-
stricts the ways that testers can be enhanced.

A representation with overly limited expressive power
unacceptably constricts discovery. LEX, for example,
learned to select integration formulae appropriate to exam-
ples of “integrand” (Mitchell, Utgoff and Banerji, 1983).
The inadequacy of LEX’s representation for “integrand”
only became apparent when it began to work with rules
that distinguished between odd and even exponents of
trigonometric functions. “Even” and “odd” were not part of
the representation. Extending a representation during dis-
covery is extremely difficult.

At the other extreme, a concept representation with
broad expressive power (e.g., first order predicate calculus)
delineates an enormous search space where focus of atten-
tion (how to single out particular examples, concepts, and
conjectures for investigation) becomes crucial. People fo-
cus their attention remarkably well, partly with semantics
and partly from their familiarity with the knowledge struc-
ture. It is so difficult to construct a human-like theorem
prover, for example, because a set of axioms and theorems
offers few semantic clues as to which clauses ought to be
combined (e.g., resolved) with one another — focus of at-
tention is lacking. Purely syntactic approaches, such as at-
tention to unit clauses, cannot consider the proof method
(other than resolution) that led to them, the examples that
drove the creation of the concepts involved, or alternative
representations for them.

People focus on interesting concepts, and not all con-
cepts are inherently interesting. What should make a new
concept interesting to a discovery program still remains
elusive. AM had an elaborate set of rules that quantified
the interestingness of each concept (Lenat, 1976). For ex-
ample, a concept was interesting if its examples all held the
same, extreme (very large or very small relative to some
metric) value of some descriptive feature. Primes were
therefore interesting because they have one more than the
minimum number of divisors. Nonetheless, interestingness
ultimately proved to have little impact on the path of AM’s
discovery. One might further require that there be ample
connections from such a set of extreme examples, but that
proves inadequate too. GT once created many examples of
a “new” graph concept, and proved many theorems about
it, but it was the set of all edgeless graphs. Graphs with
only one or two edges would be no more interesting. As
observed earlier, a metric underlying a heuristic that earns
a high weight while it guides a tester would be a better
guide to interestingness. This area merits further study.

Finally, as chronicled by Pascal, Poincaré, and Hardy,
human discovery has a strong visual component. The vis-
ual representations they described are a source of power,
but an ill-understood one. Many graph heuristics originate
from sketches, even though the definition of “graph” is
purely mathematical. Incorporation of visual cognition in

discovery programs is the next research frontier.

Acknowledgements

This work was supported in part by the National Science
Foundation under 9222720, IRI1-9703475, 11S-0328743,
11S-0739122, and 1IS-0811437. Thanks go to Peter Lipke
for his patient tutelage on matters biological.

References

Amarel, S. 1968. On Representations of Problems of Rea-
soning about Actions. Machine Intelligence 3. Michie, D.
Edinburgh, Edinburgh University Press: 131-171.

Anzai, Y. and H. Simon 1979. The Theory of Learning by
Doing. Psychological Review 36(2): 124-140.

Epstein, S. L. 1988a. Learning and Discovery: One Sys-
tem's Search for Mathematical Knowledge. Computational
Intelligence 4(1): 42-53.

Epstein, S. L. 1988b. On the Discovery of Mathematical
Concepts. International Journal of Intelligent Systems
3(2): 167-178.

Epstein, S. L. 1994. For the Right Reasons: The FORR Ar-
chitecture for Learning in a Skill Domain. Cognitive Sci-
ence 18(3): 479-511.

Epstein, S. L. 1998. Pragmatic Navigation: Reactivity,
Heuristics, and Search. Artificial Intelligence 100(1-2):
275-322.

Epstein, S. L. 2001. Learning to Play Expertly: A Tutorial
on Hoyle. Machines That Learn to Play Games. Fiirnkranz,
J. and M. Kubat. Huntington, NY, Nova Science: 153-178.
Epstein, S. L. 2004. Thinking through Diagrams: Discov-
ery in Game Playing. In Proceedings of Spatial Cognition
1V, 260-283. Springer-Verlag.

Epstein, S. L., E. C. Freuder, R. Wallace, A. Morozov and
B. Samuels 2002. The Adaptive Constraint Engine. In Pro-
ceedings of CP2002, 525-540. Ithaca, Springer Verlag.
Epstein, S. L., E. C. Freuder and R. J. Wallace 2005.
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.

Fajtlowicz, S. 1988. On conjectures of graffiti. Discrete
Mathematics 72(1-3): 113 - 118.

Hardy, G. H. 1972. A Mathematician's Apology, Cam-
bridge University Press.

Lenat, D. B. 1976. AM: An Artificial Intelligence Ap-
proach to Discovery in Mathematics, Department of Com-
puter Science, Stanford University.

Mitchell, T. M., P. E. Utgoff and R. Banerji 1983. Learn-
ing by Experimentation: Acquiring and Refining Problem-
Solving Heuristics. Machine Learning: An Artificial Intel-
ligence Approach. Michalski, R. S., J. G. Carbonell and T.
M. Mitchell. Palo Alto, Tioga Publishing: 163-190.

Pascal, B. 1964. Pensées de Pascal. Paris, Editions Garnier
Fréres.

Poincaré, H. 1970. La Valeur de la Sciénce. France, Flam-
marion.

Ritchie, G. D. and F. K. Hanna 1984. AM: A Case Study
in AI Methodology. Artificial Intelligence 23(3): 269-294.



