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Abstract 

This paper describes a cognitively-oriented architecture that 
facilitates the development of expertise. Based on knowl-
edge about human decision making, it integrates multiple 
representations, multiple decision-making rationales, and 
multiple learning methods to support the construction of in-
telligent systems. A constraint solver implemented within 
the architecture engineers a problem-solving paradigm. This 
program manages a variety of search heuristics and learns 
new ones. It can transfer what it learns on simple problems 
to solve more difficult ones, and can readily export its 
knowledge to ordinary solvers. It is intended both as a 
learner and as a test bed for the constraint community. Both 
the program and the architecture are ambitious, ongoing re-
search projects to support human reasoning. 
 

The thesis of this work is that AI architectures for learning 
and problem solving can benefit from what works for peo-
ple. Since people function remarkably well in a complex 
world, other problem solvers may profit both from descrip-
tions of human problem solving and from the devices that 
people rely upon to achieve their goals. This paper reports 
on a cognitively-oriented program that learns to solve dif-
ficult constraint problems, has rediscovered an important 
result in graph coloring, and has learned new heuristics that 
readily export to improve ordinary CSP solvers (Epstein et 
al., 2002; Epstein & Freuder, 2001). The program can de-
termine when it has finished learning, and can learn when 
and how to modify its own reasoning structure without sac-
rificing performance. 
 Here, an architecture is a system shell within which an 
application program for a particular domain (set of related 
problem classes) can be constructed. To produce a pro-
gram, one applies an architecture to a domain by providing 
it with knowledge: what to learn, how and when to learn it, 
and how to reason in the domain. An architecture is cogni-
tively-oriented if it simulates significant characteristics of 
human problem solving.. 

1
 

 Since a human expert solves certain problems faster and 
better than other people (D'Andrade, 1990), programs pro-
duced by a cognitively-oriented architecture that facilitates 
the development of expertise should eventually solve faster 
and better than others too. Traditionally, an architecture 
engineers a domain-specific program. The application de-
scribed here, however, formulates knowledge about con-
straint satisfaction. Thus it engineers a problem-solving 
paradigm, rather than a single domain. Furthermore, one 
can specialize the program further, say, for graph coloring 
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or scheduling. 
 The next section references some cognitive science re-
sults and interprets them for an architecture. For clarity, we 
initially illustrate these ideas with an autonomous mobile 
robot moving toward a goal object in a dynamic environ-
ment. Subsequent sections describe how those results in-
fluence the formulation of a particular cognitively-oriented 
architecture, and how that architecture supports a program 
that learns to solve constraint problems. The final section 
discusses related and current work.  

Some Contributions from Cognitive Science 

The results discussed below are particularly relevant in the 
creation of a cognitively-oriented architecture, and in any 
attempt to understand or communicate with one.  

Knowledge  
Human knowledge is represented in a variety of formats. 
People retain sensory memories (e.g., the smell of a hospi-
tal), procedural data (e.g., how to ride a bicycle), and de-
clarative information (e.g., correct spelling). People also 
rely on their senses to focus their attention and to cue their 
decisions. When masters at the game of Go look at a board, 
for example, eye-tracking data indicate that they very 
quickly identify a few crucial possible moves (Yoshikawa, 
Kojima & Saito, 1998). This ability to attend to visual fea-
tures, to determine their significance, and to value them 
accordingly is called spatial cognition. It is why people 
play chess better without blindfolds — vision not only fo-
cuses their attention, but is also an integral part of decision 
making. 
 Much of human knowledge is merely what we call use-
ful knowledge here; it is only probably correct and possibly 
applicable to future decisions (e.g., a particular opening for 
a board game). Nonetheless, people comfortably employ 
useful knowledge to make decisions, even when some of it 
is inconsistent. For example, a high likelihood of rain and a 
dislike of getting wet do not always convince one to carry 
an umbrella. Furthermore, brain-lesion studies show that 
multiple paths to much of our knowledge are formed ac-
cording to several factors (e.g., sound, color, frame of ref-
erence) (Sacks, 1985). As a result, when one access route 
is blocked, another may still be viable.  

Decision making 
To satisfice is to make decisions that are good enough in a 
simple model of a complex world (Simon, 1981). For ex-
ample, a resident of Manhattan about to return home from 



work does not typically contemplate the likelihood of a 
flood or a blackout — she merely walks to the subway. 
Because blackouts and floods are unlikely in her environ-
ment, it does not pay to model them. When choosing 
among algorithms for a program, the most accurate one 
may be intractable (e.g., minimax for chess), or merely of 
low utility (roughly, return on expended effort). A program 
is said to be limitedly rational whenever it replaces a more 
accurate reasoning method with a heuristic one. Such a 
program satisfices. 
 Most interesting problems require not a single decision 
but a sequence of them. Even a reasoning method judged 
valuable on a particular problem may not be equally good 
throughout that sequence. Chess masters, for example, par-
tition a game into three stages: the opening (roughly the 
first 20% of the moves), the endgame (roughly the last 
20% of the moves), and the middlegame (the remainder). 
Chess players make decisions differently in these stages, 
almost as if they were different games. 
 Moreover, one rationale for decision making is rarely 
enough. People appear to work from a collection of cogni-
tive mechanisms for inference in specific domains, includ-
ing low-order perceptual and memory processes (Nichelli 
et al., 1994). Human experts simultaneously entertain a va-
riety of (imperfect) domain-specific rationales for taking 
an action, and introduce new ones gradually (Biswas et al., 
1995; Crowley & Siegler, 1993; Keim et al., 1999; Ratter-
man & Epstein, 1995; Schraagen, 1993). These rationales 
vary in their accuracy, as, for example, when a chess 
player wants to control the center of the board, and also 
wants to trap the king. As nearly as psychologists can de-
tect, these rationales are not ranked lists of general rules, 
but a conglomeration of domain-specific principles, some 
more reliable than others. Among them, these multiple 
principles provide synergy in decision making. 

Learning 
Human expertise is not innate; it develops with practice 
(Ericsson & Staszewski, 1989). People acquire knowledge 
in many different ways, and may learn the same item with 
several different methods. Indeed, recent research suggests 
that multiple learning methods for the same concepts actu-
ally enhance human understanding (Anonymous, under re-
view). Human learning also requires participation, not 
merely observation. For example, one must play a violin to 
learn to play it — watching a violinist may be helpful, but 
it is not enough. 
 People also create new reasoning methods, which are of-
ten flawed (Siegler & Crowley, 1994). Children learning 
multiple-place subtraction, for example, often invent ex-
planations not presented during instruction, and gradually 
introduce them into computation. Most of these invented 
methods are wrong, but their inaccuracy is not revealed un-
til after they have been in use for some time.  

Meta-knowledge 
People gauge their own performance by a variety of stan-

dards, and use those evaluations to modify their behavior. 
These standards often conflict as, for example, accuracy 
versus speed. One way to speed computation is to recog-
nize similar situations and treat them uniformly. Thus, 
people may cache and reuse results of prior computation.  
 Another way people speed computation is to formulate a 
set of (possibly ordered or partially-ordered) decisions for 
some part of the problem (a subgoal), with the understand-
ing that, if things do not go well, the entire set can be dis-
carded. In situation-based reasoning, people under time 
pressure use domain knowledge both to identify a context 
responsive to the selection of a set of decisions, and to dic-
tate the method by which those decisions should be se-
lected (Klein & Calderwood, 1991). That method is not 
guaranteed to return a correct answer or, indeed, any an-
swer at all. Situation-based reasoning can be thought of as 
a uniform procedure that triggers in the presence of some 
context, and responds to it with a set of decisions. Encoun-
tering an obstacle directly between our robot and its goal is 
a situation, which could trigger a procedure to calculate a 
way to go around the obstacle. The robot’s procedure or 
the execution of its output could be made contingent on 
adequate progress. Responses like these, formulated to ad-
dress a particular kind of situation, have proved effective: 
inexpensive to produce and easy to abandon (Agre & 
Chapman, 1990; Epstein, 1998).  
 Another active area of cognitive science research is fast 
and frugal reasoning, a limitedly-rational paradigm ob-
served in human problem solving (Gigerenzer & Todd, 
1999). Under certain circumstances, people may limit their 
search for information to guide them in the decision proc-
ess with non-compensatory strategies, ones that use a sin-
gle rationale to prefer a single option. Fast and frugal rea-
soning methods rely on recognition, the favoring of famil-
iar objects over unfamiliar ones. Situation-based reasoning 
may be paraphrased as “I have been in several similar 
situations before, and I will now mentally test those solu-
tions in turn, until one of them seems as if will work here 
as well.” In contrast, the recognition underlying fast and 
frugal reasoning may be paraphrased as “I have seen this 
choice before and will therefore select it, whether or not 
my current situation is similar to the one in which I made 
this choice.” Fast and frugal methods themselves select 
only among recognized choices, and then apply a second 
standard, such as “try the last heuristic I used with this 
method.” Although at first glance fast and frugal reasoning 
seems more limited than rational, it works surprisingly 
well on challenging problems (Epstein & Ligorio, 2004). 
Fast and frugal reasoning enhances, rather than contradicts, 
the findings on multiple rationales cited earlier. The overall 
structure is, as we shall see, simply a bit more complicated. 

Implications for cognitively-oriented architectures 
In summary, a cognitively-oriented architecture should 
support reasonable behavior. Its programs should solve 
easy problems quickly; hard problems should take longer. 
The programs should not make obvious errors, and they 
should balance accuracy against speed. The architecture it-



self should: 
• Support multiplicity: multiple representations for data, 
multiple rationales for decision making, multiple learning 
methods, and multiple stages. 
• Support the production and interaction of both individual 
decisions and sets of them.  
• Be robust to error, discarding decisions, sets of decisions, 
and the rationales that support them. 
• Tolerate and reason with inconsistent and incomplete in-
formation. 
• Decouple data, learning methods, and decision methods 
from one another. 
• Restructure decision making in response to meta-
heuristics and to what it learns about a problem class. 
 Such an architecture must be modular and support the 
learning of data, of rationales, and of its own structure. As 
a result, its programs run the risk of error (which may 
make it unacceptable in certain domains), and must be able 
to learn in the noisy environment of their own mistakes. 
The architecture in the next section addresses all these cri-
teria. Its cornerstones are satisficing, useful knowledge, 
and visual cognition. 

FORR 

FORR (FOr the Right Reasons) is a cognitively-oriented 
architecture for learning and problem solving. It actively 
encourages the use of multiple learning methods, multiple 
representations, and multiple decision rationales. FORR 
learns to combine rationales to improve problem solving. It 
also acquires useful knowledge for each problem class it 
encounters. It supports situation-based reasoning, and fast 
and frugal reasoning. It can learn new decision-making ra-
tionales on its own, and readily incorporates them into its 
reasoning structure. In short, it meets the criteria of the 
previous section.  
 One applies FORR to a domain by programming the de-
cision-making rationales and the pertinent useful knowl-
edge (what to learn, and when and how to learn it). The 
best-known FORR-based programs are Hoyle (Epstein, 
2001), a program that learns to play board games; Ariadne 
(Epstein, 1998), a program that learns to find its way 
through mazes; and ACE, a program that learns to solve 
constraint satisfaction problems.  

Advisors and the decision hierarchy 
The building blocks of a FORR-based system are its Advi-
sors. An Advisor is a domain-wide but problem-class-
independent, decision-making rationale. (For example, 
Advisors for our robot should theoretically be applicable to 
paths through warehouses, as well as office buildings.) The 
role of an Advisor is to support or oppose current legal ac-
tions. FORR treats a problem solution as a sequence of de-
cisions from one state to the next. For a solved problem, 
the first state in the sequence describes the problem, and 
the last state is a desired solution. This sequence of deci-
sions is generated from the Advisors’ output. A FORR-

based program makes decisions based upon its Advisors’ 
output; FORR controls and measures the learning process. 
 Both the formulation of Advisors and their organization 
rely heavily on domain knowledge. Each Advisor is repre-
sented as a time-limited (and therefore limitedly-rational) 
procedure. Uniformity is imposed only on the input and 
output of these procedures. The input is all useful knowl-
edge learned for the problem class, the current problem 
state, and some set of legal actions in that state. The output 
of each Advisor is its comments, triples of the form 
<strength, action, Advisor>, where the strength of a com-
ment is an integer in [0,10] that indicates the Advisor’s de-
gree of support (above 5) or opposition (below 5). Other 
than input and output, Advisors may rely on their own spe-
cialized knowledge representations and computations.  
 To consult an Advisor is to solicit comments from it, 
that is, to execute it. For example, assume that our robot 
can move only to any location currently visible to it, but 
that obstacles may partially obstruct its vision. An Advisor 
whose rationale is “make no rash decisions” might com-
ment in favor of nearby locations and oppose distant ones, 
while an Advisor for “get close” might comment in favor 
of locations closer to the goal and oppose those farther 
from it.  
 Figure 1 summarizes FORR-based decision making. The 
input is the current state and the legal actions there. If there 
are no such actions, search terminates; if there is exactly 
one action, it is executed. Otherwise, decision making 
moves through a hierarchy, three tiers of Advisors catego-
rized by their trustworthiness and whether they focus on 
individual decisions. Tier-1 Advisors and tier-3 Advisors 
comment on individual decisions; tier-2 Advisors comment 
on subgoal approaches, sets of actions. The programmer 
initially assigns each Advisor to a tier; those in earlier tiers 
take precedence over those in later tiers. Advisors are not 
required to be independent. Useful knowledge is learned 
between tasks, accessible to all Advisors, and may be ac-
quired by any algorithm.  
 Tier-1 Advisors specify a single action, and are expected 
to be correct and at least as fast as those in other tiers. Tier-
1 Advisors permit a FORR-based program to solve easy 
problems quickly. The programmer can endow a tier-1 
Advisor with absolute authority or with veto power. With 
absolute authority, whatever action the Advisor mandates 
in a comment is selected and executed, and no subsequent 
Advisor in any tier is consulted on that iteration. For ex-
ample, an Advisor called Victory for our robot would have 
absolute authority; when the goal is in sight, it would 
comment to move directly to it. If a tier-1 Advisor has veto 
power, the actions it opposes are eliminated from further 
consideration by subsequent Advisors. For example, a tier-
1 Advisor for the robot might reference useful knowledge 
about dead-ends, and comment to avoid those known not to 
include the goal. Tier-1 Advisors are consulted in order of 
relative importance, as pre-specified by the programmer. A 
domain-specific version of Victory is always first in the 
ordering for tier 1. 
 Tier-1 Advisors are consulted in sequence, until either a 



single decision is selected by an Advisor with absolute 
authority, or until vetoes reduce the set of candidate actions 
to a single one. In either event, the selected action is exe-
cuted to produce the next state. A tier-1 Advisor called En-
forcer monitors any currently-selected subgoal approach. 
Enforcer vetoes actions that conflict with the current ap-
proach, and discards the approach itself if none of its ac-
tions remain. If tier 1 does not make a decision and there 
is no current subgoal approach, all remaining (not vetoed) 
actions are forwarded to the Advisors in tier 2, which at-
tempt to generate a subgoal approach.  

Tier-2 Advisors and subgoals 
During the solution of a problem, unpredictable subgoals 
may arise. For example, when our robot detects an obstacle 
dynamically, going around that obstacle could become a 
subgoal. Tier-2 Advisors are rationales that produce a set of 
actions directed to a subgoal. We call the set of actions a 
subgoal approach, and the use of tier 2 to address it we call 
DSO, for dynamic subgoal ordering. DSO includes meth-
ods that encourage the production and identification of 
subgoals, methods that order subgoals relative to each 
other, and methods that formulate subgoal approaches.  
 The creation of subgoals, selection among them, and the 
formulation and selection of approaches to them are all 
domain-dependent. In Ariadne, all this was pre-specified 
by the programmer; in Hoyle, much of it can be learned 
(Lock & Epstein, 2004). If tier 2 generates a subgoal ap-
proach, control returns to tier 1, where Enforcer will moni-
tor the approach’s execution. If neither tier 1 not tier 2 
makes a decision, the remaining actions are forwarded to 
tier 3, where all the Advisors comment in parallel. 

Tier-3 Advisors and voting  
Tier-3 Advisors are procedures that comment on single ac-

tions, without absolute authority, veto power, or any guar-
antee of correctness. To select an action in tier 3, a FORR-
based program combines the comments of its tier-3 Advi-
sors. Each Advisor comments on any number of actions. 
Unlike tier 1, where Advisors are consulted in sequence, in 
tier 3 all Advisors are consulted at once, and a weighted 
combination of their comments (described below) produces 
a decision. An Advisor whose comments support moving 
our robot toward the goal is an example of a tier-3 Advisor, 
because proximity does not guarantee access.    
 FORR includes several modified, hill-climbing, weight-
learning algorithms that reward and penalize decisions af-
ter a task is successfully completed (Epstein et al., 2002). 
A discount factor serves to introduce the Advisor gradually 
into the decision process. Weights are discounted until an 
Advisor has commented 10 times during learning, with the 
expectation that by then its weight will be representative of 
its accuracy. If no single action is deemed best, one from 
among the best is chosen with a method specified by the 
user (i.e., lexical or random tie-breaking). Each tier-3 Ad-
visor has a learned weight and a discount factor. 
 A tier-3 decision is made by voting, a process that com-
bines Advisors’ comments to determine the action with the 
greatest support. (See Figure 2.) Voting multiplies the 
strength of the opinion of each Advisor on each action by 

 
Until the problem is solved or proved impossible 
 Candidates  all legal actions from the current state 

Tier 1: For each Advisor A in the ordered tier 1 
  Comments  comments of A on Candidates 
  If A has absolute authority and Comments recommend actions R 
   then select any action in R and return it 
  If A can veto and Comments veto actions V and non-empty(Candidates—V)  
   then Candidates  Candidates — V 

  If |Candidates| = 1  
   then return the single legal action 
   else continue 
Tier 2: Unless there is a current subgoal approach 
   For each Advisor A in tier 2 
    If approaches are generated  
     then select one and return it 

     else continue 
Tier 3: For each Advisor A in the unordered tier 3 
   collect comments of A on Candidates into Comments 
  Return voting(Comments) 

 Execute the action 
 

Figure 1: FORR’s decision-making algorithm. 
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gi =  number of opinions i has generated
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1 otherwise

 
 
 

wi = weight of Advisor i

cij = weight of consulted Advisor i on choice j

 

 

  

 

 
 

 

 

Figure 2: The voting computation in tier 3. 



the Advisor’s weight and the Advisor’s discount factor. 
These weighted strengths are summed across Advisors for 
each action. The winner of the vote is the action with the 
highest support.  
 To participate in voting, an Advisor must be consulted 
and then comment. A benchmark is a non-voting, baseline 
procedure which is presented with the same actions as the 
Advisors it gauges, and models how well random com-
ments would do on the same decisions. A benchmark 
comments with randomly-generated strength on n ran-
domly-chosen actions (0.5)

n

% of the time. If our robot rep-
resented decisions as location coordinates, there would be 
a single benchmark; if decisions were either orientation or 
direction, there would be two benchmarks, one for each. 
To apply FORR, a programmer specifies useful knowledge 
items, how and when to learn them, and a set of Advisors. 
We turn now to an important problem-solving paradigm. 

Constraint Satisfaction  

Many large-scale, real-world problems are readily repre-
sented, solved, and understood as constraint satisfaction 
problems (CSPs). Constraint programming offers a wealth 
of good, general-purpose methods to solve problems in 
such fields as telecommunications, Internet commerce, 
electronics, bioinformatics, transportation, network man-
agement, supply chain management, and finance (Freuder 
& Mackworth, 1992). Yet each new, large-scale CSP faces 
the same bottleneck: difficult constraint programming 
problems need people to “tune” a solver efficiently. Armed 
with hard-to-extract domain expertise, scarce human CSP 
experts must now select, combine, and refine the various 
techniques currently available for constraint satisfaction 
and optimization. 
 CSP solution remains more art form than automated 
process, in part because the interactions among existing 
CSP methods are not well understood. There is increasing 
evidence to suggest that different classes of CSPs respond 
best to different heuristics (Wallace, 1996), but arriving at 
appropriate methods in practice is not a trivial cookbook 
exercise (Beck, Prosser & Selensky, 2003). At present, for 
each new, large-scale CSP, a constraint programmer must 
seek the right method combination. 
 A CSP consists of a set of variables, each with a domain 
of values, and a set of constraints that specify which com-
binations of values are allowed (Beck, Prosser & Selensky, 
2003; Tsang, 1993). An example of a CSP and its underly-
ing constraint graph appear in Figure 3. (For simplicity, we 
restrict discussion to binary CSPs, where each constraint 
involves no more than two variables.) A solution for a CSP 
is a value assignment for all the variables that satisfies all 
the constraints. Every CSP has an underlying constraint 
graph, which represents each variable by a vertex whose 
possible labels are its domain values. An edge in the con-
straint graph appears between two vertices whenever there 
is a constraint on the variables corresponding to them. One 
may think of an edge as labeled by the permissible pairs of 
values between its endpoints. The degree of a variable is 

the number of edges to it in the underlying constraint 
graph. As decisions are made, this graph can be viewed 
dynamically, as in Figure 4. 
 Four parameters characterize a CSP: <n, k, d, t>. Here, n 
is the number of variables in the CSP, and k its maximum 
domain size. The density d of a CSP is the fraction of pos-
sible edges it includes: 2e /n(n –1) for e edges. The tight-
ness t of a CSP is the percentage of possible value pairs it 
excludes from the domains of the endpoints of its edges. 
The set of all problems with the same values for n, k, d, 
and t form a class of CSPs. Thus the CSP in Figure 3 is in 
the class <4, 5, .5, .328>. There are also specializations of 
CSPs that describe particularly interesting problem classes, 
such as graph coloring.  
 Programs that generate random problems within a spe-
cific class are readily available. Such generators can pro-
duce problems with one, several, or no solutions. A prob-
lem with low density and tightness is likely to be under-
constrained and typically admits multiple solutions; one 
with high density and tightness is likely to be over-
constrained and have no solutions. Although CSP solution 
is NP-hard, the most difficult problems for a fixed number 
of variables and domain size are those that generally lie 
within a relatively narrow range of pairs of values of den-
sity and tightness (Cheeseman, Kanefsky & Taylor, 1991), 
known as the phase transition. The best-known estimate of 
difficulty for a CSP class is kappa (Gent et al., 1996). 
Solvable problem classes with kappa near 1 are said to be 
at the complexity peak, that is, they generally have a single 
solution that is particularly difficult to find. 

ACE 

ACE, a project in collaboration with the Cork Constraint 
Computation Centre, is a FORR-based program for con-
straint solving. It has a large library of problem classes, 
each represented by many randomly-generated examples. 
From generic components, ACE learns to synthesize an ef-
fective algorithm adapted to a specific CSP problem class. 
ACE learns to solve difficult CSPs efficiently. ACE also 
characterizes different classes of CSPs differently. As a re-
sult, ACE’s learning can provide guidance in problem 
classes where ordinary CSP approaches stumble.  
 In ACE, the solution to a CSP is a sequence of decisions 
in which one alternately selects a variable and then assigns 
a value to that selected variable. An Advisor is applicable 
either to variable selection or to value selection (so there 

Domains
A: {1, 2, 3}
B: {1, 2, 4, 5, 6}
C: {1, 2}
D: {1, 2, 3}

Constraints

A = B
A > D
C  D

(1 1) (2 2)

(2 1) (3 1) (3 2) 

(1 3) (2 1) (2 3)

A

C D

Variables
{A, B, C, D}

 
Figure 3: A simple constraint problem and its underlying 
constraint graph. Labels on the edges give acceptable val-

ues for the variables in alphabetical order. For example, 
(3 1) on AD means A can be 3 when D is 1. This problem 
has exactly one solution.  



are two benchmarks for weight learning). In tier 1, ACE 
has only a few Advisors. Its version of Victory arbitrarily 
assigns a remaining, consistent value to the last unbound 
variable. Another Advisor vetoes the selection of any vari-
able without neighbors in the dynamic constraint graph. In 
tier 2, ACE’s Advisors capitalize on spatial cognition as a 
person might, seeking to disconnect the graph into non-
trivial connected components as in Figure 4. A subgoal ap-
proach either disconnects the graph into components or re-
stricts computation to one component at a time. 
 In tier 3, ACE has an ever-expanding list of Advisors 
based on CSP lore and on the evolving CSP literature. 
Some tier-3 Advisors are duals, one of which maximizes a 
metric while the other minimizes it. A static metric is com-
puted once, before problem solving begins; a dynamic met-
ric is recomputed periodically during decision making. For 
example, one traditional static metric for variable selection 
is the degree of a variable, the number of neighbors it has 
in the original constraint graph. The Advisor Maximize 
Degree supports the selection of unvalued variables in de-
creasing degree order. Although Maximize Degree is 
popular among CSP solvers, ACE also implements its dual, 
Minimize Degree, which supports the selection of unvalued 
variables in increasing degree order. Another example of a 
metric, this time a naïve, dynamic one for value selection 
of an already-chosen variable, is common value, the num-
ber of variables already assigned this value. Minimize 
Common Value supports the selection of values less fre-
quently in use in the partial solution; Maximize Common 
Value is its dual. At this writing, there are about 60 Advi-
sors, with more under development. The next section 
sketches a variety of ways that FORR supports ACE’s 
autonomous enhancement of its decision process. 

Reformulating the Decision Process 

FORR computes a variety of meta-heuristics (knowledge 
about its heuristics) on its Advisors to support the 
reformulation of the decision process (Epstein, 2004). The 
most basic reformulation is the weight learning in tier 3, 
which uses meta-heuristics for accuracy and risk to reward 
and punish the Advisors. A FORR-based program learns 
on a set of examples from its problem class, and then is 
tested on a different set of examples from the same class. 
Although all Advisors are consulted during learning, only 

those that have earned a weight greater than that of their 
respective benchmark are consulted during testing. As a re-
sult, only that useful knowledge referenced by the remain-
ing Advisors need be computed during testing. 
 A FORR-based program can also learn new tier-3 Advi-
sors. Learning new Advisors requires a programmer-
specified language in which to express them. (Details in 
(Epstein, Gelfand & Lock, 1998).) FORR monitors these 
expressions; good ones eventually participate in the deci-
sion process as contributors to a single Advisor that repre-
sents the language. The very best become individual Advi-
sors. For example, ACE has a language that considers 
products and quotients of four metrics during three stages 
of problem solving. On <30, 8, .1,. 5>, a class of relatively 
small problems, ACE consistently learned an individual 
heuristic this way, a novel one to the CSP community. 
ACE’s learned heuristic was incorporated into three differ-
ent, traditional CSP solvers, outside of ACE. The originals 
and their enhanced versions were tested on reasonably dif-
ficult, much larger problems from <150, 5, .05, .24>. The 
enhanced versions searched 25% – 96% fewer nodes than 
the original ones (Epstein, et al., 2002).  
 Another reformulation is the identification of multiple 
stages during a problem’s solution, stages during which 
tier-3 Advisors have different weights. ACE learns, as use-
ful knowledge, the location of a break point for a final 
stage. After that break, and only when selecting a variable 
during testing, ACE supersedes tier 3, applying the high-
est-weighted variable-selection Advisor alone, before the 
others. The break effectively creates a second stage where 
most weights are zero, and usually speeds decision making 
without introducing additional error. For relatively easy 
problems, ACE learns that, in the final stage, it is actually 
more efficient not to reason at all, and selects variables 
there arbitrarily. 
 Two structural reformulations are also available in 
FORR: promotion and prioritization. Promotion moves 
into tier 1 any tier-3 Advisor whose weight is so high that 
the Advisor appears correct. Promotion speeds computa-
tion because the decision is either made in tier 1 or fewer 
alternatives survive for consideration in tier 3. This speed-
up, however, is rarely worth the extended search that re-
sults from any promoted Advisor’s occasional egregious 
errors. Prioritization partitions those tier-3 Advisors re-
tained for testing into a hierarchy of subsets based on their 
learned weights. Under prioritization, the top-ranked subset 

      
 (a)  (b)  (c)     

Figure 4: DSO for ACE is inspired by spatial cognition. A constraint graph (a) before and (b) after the variable at the white ver-
tex is assigned a value. Assignment removes the vertex and its edges, producing two connected components, each of which could 
become a subgoal. (c) Some constraint graphs for logic puzzles, which benefit from such an approach.  



votes first; if it determines a best action, that becomes the 
decision. If a subset prefers more than one action (a tie), 
then only the tied actions are forwarded to the next subset 
for consideration, until a decision is made or a tie is broken 
after the last subset votes. Prioritization speeds computa-
tion because a decision can often be made without devot-
ing cycles to the full complement of tier-3 Advisors. Under 
prioritization into some (problem-class-dependent) number 
of subsets, ACE typically reduces its computation time by 
50% or more, without sacrificing accuracy. 
 There is a distinction in FORR between the programmer, 
who writes domain-specific code, and the user, who merely 
executes experiments using that code. The user, however, 
has considerable latitude in the design of an experiment as 
a sequence of problem solution attempts called phases. 
Beyond the ordinary “learn and then test,” an experiment 
may include a preliminary phase to test and then suppress 
poor Advisors before learning to solve problems. It may 
have multiple learning phases to support learning transfer, 
where a program learns first on an easier class and then 
continues learning on a harder class. It may include an 
analysis phase to reformulate the decision structure before 
testing (or before additional learning). It is also possible to 
ablate Advisors, tiers, and even types of phases entirely. 
There are also general options (e.g., fast and frugal reason-
ing methods). One option is the ability to halt when learn-
ing no longer has an impact. For example, as learning pro-
gresses, corrections under one of the weight-learning algo-
rithms become smaller, relative to the overall weight. In 
this case, corrections have a diminishing impact, so a pro-
gram can monitor the weight fluctuations of its tier-3 Ad-
visors, and determine on its own when to stop learning.  

Related and Current Work 

Because FORR-based programs do unsupervised learning 
through trial and error with delayed rewards, they are rein-
forcement learners (Sutton & Barto, 1998). Ordinarily, re-
inforcement learning learns a policy, a mapping from esti-
mated values of repeatedly experienced states to actions. In 
learning to solve a broad class of challenging problems, 
however, one is unlikely ever to revisit a state, given the 
size of both an individual problem’s search space and the 
size of a problem class. Instead, FORR learns a policy that 
tells the program how to act in any state, one that combines 
action preferences as expressed by its Advisors’ comments.  
 Two AI artifacts are reminiscent of FORR: STAGGER 
and SAGE.2. STAGGER could learn new heuristics, but 
its learning was failure-driven, and produced boolean clas-
sifiers, whereas ACE is success-driven and learns a search-
control preference function for a sequence of decisions in a 
class of problems (Schlimmer & Fisher, 1986). SAGE.2 
also learned search control from unsupervised experience, 
reinforced decisions on a successful path, gradually intro-
duced new factors, specified a threshold, and could transfer 
its ability to harder problems (Langley, 1985). SAGE.2, 
however, learned repeatedly on the same task, reinforcing 
repeating symbolic rules, while ACE learns on different 

problems in a specified class, reinforcing the sources of 
correct comments. When SAGE.2 failed, it revised its rules 
uniformly; when ACE errs, it reduces its weights in pro-
portion to the size of the error. SAGE.2 learned during 
search, and compared states, but it lacked random bench-
marks and subgoals. ACE, in contrast, learns only after 
search and does not compare states, although it has both 
random benchmarks and subgoals.  
 Most “learning” in CSP programs is mere memorization 
of no goods, combinations of variable-value bindings for a 
single problem that produce an inconsistency (Dechter, 
2003). The only other substantial effort to learn to solve 
constraint problems of which we are aware was 
MULTITAC (Minton, 1996). MULTITAC generated Lisp 
programs that were specialized solvers constructed from 
low-level semantic components. A MULTITAC solution 
was also directed to a class of problems, which the user 
had to represent in first-order logic. MULTITAC processed 
only 10 training instances and used a hill-climbing beam 
search through the plausible control rules it generated, to 
produce efficient constraint-checking code and select ap-
propriate data structures. Unlike ACE, its resultant algo-
rithms were tie-breaking rather than collaborative, and its 
structure lacked the fluidity and flexibility of FORR. It 
had, for example, no stages, no voting, and no discounting. 
 Current work on FORR includes a learned structure for 
tier 2, the application of additional meta-heuristics to iden-
tify prioritization classes, and new weight-learning algo-
rithms. Finally, if ACE engineers a problem-solving para-
digm, then it is both frugal and clever to specialize ACE it-
self for particular kinds of CSPs. For example, Later is a 
tier-1 Advisor that delays the selection of any variable 
whose dynamic domain is larger than its forward degree. 
Later is incorrect for general CSPs, but correct for graph 
coloring. Using Later, ACE rediscovered the well-known 
Brélaz heuristic (Epstein & Freuder, 2001). There are Ad-
visors and useful knowledge specific to other kinds of 
CSPs as well. Adding them to ACE would both benefit 
from the CSP paradigm and enhance it.  
 FORR-based programs are intended as colleagues in re-
search. ACE, for example, can support constraint pro-
grammers in their quest for method combination appropri-
ate to a particular class of problems specified by the user. It 
can also support a novice constraint programmer in the se-
lection of heuristics. ACE can learn new, efficient heuris-
tics, ones that were previously unidentified by experts and 
can be readily used by them in other programming envi-
ronments. It can learn heuristics for problem classes that do 
not succumb to ordinary, off-the-shelf CSP approaches. 
Thus we do not pit a FORR-based program against others, 
but use it to provide insight, and to export problem-solving 
improvements to other solvers, both human and machine. 
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