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Abstract. Parallelization offers the opportunity to accelerate search on
constraint satisfaction problems. To parallelize a sequential solver under
a popular message passing protocol, the new paradigm described here
combines portfolio-based methods and search space splitting. To split
effectively and to balance processor workload, this paradigm adaptively
exploits knowledge acquired during search and allocates additional re-
sources to the most difficult parts of a problem. Extensive experiments
in a parallel environment show that this paradigm significantly improves
the performance of an underlying sequential solver, outperforms more
naive approaches to parallelization, and solves many difficult problems
left open after recent solver competitions.

1 Introduction

SPREAD (Search by Probing and REcursive Adaptive Domain-splitting) is an
adaptive paradigm that harnesses parallel computation to enhance an underly-
ing sequential constraint solver (henceforward, a solver). Because SPREAD does
not alter its solver, only minimal programming for message passing is required for
use with modern solvers. Our thesis is that, on difficult problems, parallelization
that combines efficient task assignment with effective exploitation of informa-
tion can significantly improve performance. The principal results reported here
are that SPREAD significantly improves the performance of its solver, outper-
forms a variety of reasonable alternatives, and solves many difficult constraint
satisfaction problems left open after recent solver competitions.

SPREAD makes only two assumptions about its solver. First, the solver di-
rects search with a variable-ordering heuristic toward contention, variables whose
constraints are more likely to cause wipeout [1]. (Here, we used learned variable
weights [2], but variable impact would be an alternative [3].) Second, the solver
uses a restart strategy to extricate search from early unproductive assignments
[4]. Most modern solvers satisfy both conditions.

SPREAD uses a manager-worker framework, where a manager assigns tasks
and coordinates messages among all the other processors (the workers). SPREAD
has two phases: a time-limited portfolio phase followed by a splitting phase. In
the portfolio phase, SPREAD’s multiple workers search in parallel from random



seeds; if any worker reports a solution or proves that there is none, the problem is
solved. Otherwise, once the portfolio phase exhausts its time allocation, SPREAD
begins its splitting phase, where the manager partitions the original problem into
subproblems based on weights learned thus far. The manager distributes the sub-
problems to the workers with search limits based on the search effort during the
portfolio phase. If any worker reports a solution, or if all the subproblems are
proved to have no solution, the problem is solved. Any subproblem returned un-
solved to the manager undergoes further partitioning. Those new subproblems
are enqueued and eventually re-distributed with larger search limits as work-
ers become available. This recursive partitioning mechanism naturally directs
computational power to difficult subproblems.

SPREAD facilitates parallelization. It accepts any constraint supported by its
solver. To partition problems, SPREAD manipulates domains rather than con-
straints, so that users need not learn propagators provided by the solver or imple-
ment new ones. Because its domain splitting method is general, SPREAD could be
extended to continuous variable domains. SPREAD’s portfolio phase solves easy
problems quickly and stably. For more difficult problems, the portfolio phase
also learns weights that determine how the manager in the subsequent splitting
phase generates subproblems. Moreover, workers can exploit those same weights
during their search on subproblems. In practice, the variables used to generate
subproblems can be statically chosen before the splitting phase (SPREAD-S),
or determined dynamically from weights learned during search on the corre-
sponding subproblem (SPREAD-D). (For clarity, we refer to the paradigm here
as SPREAD, and the individual implementations as SPREAD-S and SPREAD-D.)
After relevant background and related work in the next section, we describe
SPREAD, offer some reasonable alternatives, evaluate SPREAD-S and SPREAD-D
against them, and discuss their advantages and limitations.

2 Background and related work

A constraint satisfaction problem (CSP) P = (X,D,C) is defined by a set of
variables X = {X3, ..., X,,}, each with an associated domain D = {dy,...,d,},
and a set of constraints C = {c1,...,cm }. A solution to P assigns a value to each
variable in X from its respective domain so that it satisfies C. If P has a solution,
it is satisfiable; otherwise it is unsatisfiable. The solver here is assumed complete;
it executes systematic backtracking, traditionally envisioned as a search tree.
There, after each value assignment, inference removes from the domains of the
as-yet-unbound variables all values that it shows inconsistent with C. If a domain
becomes empty (a wipeout), weight learning increases the weight of the constraint
that removed the last value. Once search stops, the weight of a variable is taken
as the sum of the weights on the constraints that restrict it [2].

Parallelization seeks to exploit the massive computing resources increasingly
available on multicore computers, and in clusters, grids, and clouds. Research on
parallelization for CSP solvers includes a broad spectrum of parallel program-
ming models (e.g., OpenMP [5-7], Message Passing Interface (MPI) [8,9]) and



a variety of platforms (e.g., single node [5,7], cluster [9,10], and grid [11]), on
a scale from a few processors to thousands. In particular, MPI is intended for
high-performance parallel computing on platforms without shared memory. Its
convenience and portability have made it the de facto standard for a variety of
technological platforms. This work uses MPI on a cluster and executes exten-
sive experiments on up to 256 processors, a number widely available in modern
computing environments.

Search space splitting can explore different search subspaces on different pro-
cessors. For SAT instances, with their boolean domains, search space splitting
usually relies on a guiding path (e.g., Fig. 1(a)). A boolean flag ¢; indicates
whether a node is closed (both values attempted, §; = 0, black circle) or open
(one value attempted, 0; = 1, white circle) [8]. Although identification of a help-
ful guiding path is non-trivial (as in [5]), variables with particular properties
have proved effective for splitting [7]. Tterative partitioning with clause learning,
where search spaces of SAT subproblems may overlap, can also be an effective
strategy [11].

Given non-boolean domains and various kinds of constraints, search space
splitting for CSPs becomes more complex. A SAT solver can conveniently parti-
tion its search space by adding new clauses (e.g., parity constraints [12]), without
any modification to its search strategy or propagation methods. A CSP solver
that tries to add new constraints to split a search space, however, might confront
constraints it could not directly process. Even splitting only with already exist-
ing constraints (as in [13]) might have to contend with different formulations and
different models for the same problem under different solvers. Partitioning by do-
main manipulation avoids such difficulties. One approach, network extraction
(NE), performs a sequence of domain splits on a subset of X under a given
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Fig.1. (a) A guiding path with open nodes at X1, X3, and X4. (b) Extraction of
subproblem P, from P; (under variable order X, Y, Z) produces subproblems Ri, R,
Rs3. (c¢) Iterative bisection partitioning on X and Y creates a virtual binary search tree
of subproblems, shown with their bit-string representations.



variable ordering for a single processor [14], as in Fig. 1(b). A split on the ith
variable produces subproblems P! and P? that differ only in the ith variable’s
domain: P! has some values for the ith variable, and P? has the rest. NE was
developed to avoid duplicate search on visited search spaces after restart [14].

Another prevalent parallelization approach for CSP solvers uses an algo-
rithm portfolio [15]. A portfolio-based method schedules a set of algorithms (its
port folio) on one or more processors, hoping to outperform any of its constituent
algorithms [12, 16]. Although this approach can benefit from information shared
among processors, as when parallel SAT solvers share clauses [17], most portfolio-
based methods for CSPs do not share information [12].

Additional parallelization methods include various workload-balancing mech-
anisms, such as work stealing [5,6,10] and work sharing [9]. The SAT-solver
parallelization methods most relevant to SPREAD are described in [7] and [11].
The first passes information from a portfolio phase to a subsequent splitting
phase for effective partitioning; the second iteratively partitions a SAT problem
with learned clauses. SPREAD combines and extends them to parallelize adaptive
search for CSPs. (An earlier version of SPREAD appeared as a modification to an
explore-and-follow parallelization paradigm [18].) The CSP work most relevant
to SPREAD is [13]. SPREAD, however, better utilizes its computing resources ini-
tially, splits the search space by domain manipulation, avoids nogood learning,
and proves convenient for systematic experimental evaluation.

3 The SPREAD paradigm

SPREAD uses its manager to partition and distribute tasks, and leaves search
entirely to its workers. Each worker executes the solver exactly as it would on a
single processor, but may receive different parameter values from the manager.
SPREAD starts with a weak portfolio, where different workers execute the same
solver from different random seeds on the full problem. The subsequent split-
ting phase formulates subproblems, and recursively partitions those that prove
difficult to direct additional computing resources to them.

Given problem P with search limit ¢ and restart schedule policy, the SPREAD-
S manager executes the portfolio phase with Algorithm 1 on workers under the
control of Algorithm 2. The manager then uses Recursive Splitting with Iterative
Bisection Partitioning (RS-IBP) during the splitting phase with Algorithm 3.
As is traditional in MPI, the manager executes on processor 0, and the other k
processors are workers. We extend SPREAD-S to SPREAD-D at the end of this
section.

Portfolio phase. To begin, the manager sends the initialization signal 0
to each of the k workers (Algorithm 1, lines 2-4). On receipt of that message,
workers (Algorithm 2) execute a weak algorithm portfolio, attempting to solve
P within ¢ with different random seeds. Any proof of either P’s satisfiability or
unsatisfiability within ¢ leads to an immediate report as well as the termination
of the MPI environment, including execution on all workers (Algorithm 2, lines
5-6). Otherwise, worker ¢ has exhausted ¢, and reports to the manager its learned



weights w; and backtrack count b; (Algorithm 2, line 8). The manager receives
w,, and by, from worker p (Algorithm 1, line 6), possibly in non-numerical order.
Finally, the manager forwards to the splitting phase weights, the average of the
variable weights w; received from all the workers, and base, the average of the
backtrack counts b; received from them, where they will be used to guide search
on the subproblems (Algorithm 1, lines 8-9).

Algorithm 1 Portfolio (Manager) Algorithm 3 RS-IBP (Manager)
Input: P, policy Input: P, weights w, base, policy
Output: weights, backtrack counts Output: solution of P
1: signal < 0 1: v + get_splitting_number (k)
2:fori=1tok 2: threshold < compute_threshold(v)
3 w; < 0,b;+0 3: splits < choose(v, P,w)
4:  MPIL.Send(signal, ©) 4: for P® in IBP(P, splits)
5: while i > 0 5. Q.push(P?)
6: MPLRecv((wp, by,), p) 6: for i = 1 to 2" do L.push(base)
7o o1+ 1—1 7. #enqueued < Q.size()
8: Compute weights from all w; 8: # feedback < 0, signal < 1
and base from all b; 9: for i = 1 to k do distribute(i)
9: return (weights, base) 10: while # feedback < #enqueued
11:  MPLRecv((feedback, PS), p)
Algorithm 2 Worker 12:  #feedback + #enqueued + 1
Input: P, ¢, policy 13: if feedback =0
Output: result of search on P 14:  if 1Q.empty()
1: while TRUE 15: distribute(p)
2:  MPIL.Recv(signal, 0) 16: else
3. if signal = -1 break 17:  if Q.size() < threshold
4: if signal =0 // portfolio phase 18: splits + choose(&, P, w)
5. if solve(P, ¢, policy, rand_seed) 19: for P? in IBP(P?, splits)
6: Output result and abort MPI ~ 20: Q.push(P)
7. else 21: L.push(get_limit(P? base))
8: MPI.Send({w;, b;), 0) 22: #enqueued < #enqueued+1
9: else // splitting phase 23:  else
10:  MPLRecv({P®,(,,weights),0) 24: Q.push(P®)
11:  Initialize variable weights of P  25: L.push(get_limit(P%, base))
12:  if solve(P?, ¢, policy, rand_seed) 26: #enqueued +— #enqueued + 1
13: if P° is satisfiable 27: fori=1tok
14: Output sol and abort MPI ~ 28: if i is idle && 1Q.empty()
15: else do MPIL.Send((0, P®), 0) 29: distribute(i)

16:  else do MPL.Send ({1, P®), 0)  30: Send signal -1 to all processors

A portfolio-based method that shares information must address the trade-off
between diversification and intensification [19]. Diversification uses dramatically
different search strategies, and expects its searchers to proceed independently.
In contrast, intensification explores with relatively small variations around a



single strategy, and expects to share the information it gathers among all its
searchers. Because SPREAD is intended to solve difficult CSPs, it does inten-
sification in its portfolio phase, as recommended in [19]. Indeed, the primary
purpose of SPREAD’s portfolio phase is to glean information to support search
space splitting, not to solve P.

Iterative bisection partitioning. A bisection partition (BP) on variable
X; with domain d; replaces X; with two variables, X! and X', whose respective
domains d; and d partition d;. To generate subproblems with search spaces that
may have similar sizes, without bias toward particular domain values, we adopt
an (almost) even bisection partition where d; = {v1, ..., vy}, di = {vy41,...,v1q/},
and x = [|d|/2]. Iterative bisection partitioning (I BP) repeats BP on v ordered
splitting variables to generate 2V subproblems. Fig. 1 (c¢) illustrates IBP on vari-
ables X and Y of P; to generate subproblems Ry, Ry, R3, and R4. Intuitively,
overall search performance on P; could be improved by processing such subprob-
lems on different processors in parallel.

In SPREAD, the manager chooses as splitting variables those with the highest
weights. This conserves the promising variable ordering already found effective
in the portfolio phase by a solver that exploits those weights (e.g., variable-
ordering heuristic dom/wdeg [2]). Moreover, since IBP splits domains of CSP
instances much the way a guiding path splits {0,1} for SAT problems, an IBP-
generated subproblem can analogously be represented by a guiding path, where
L; indicates whether the ith splitting variable X; is associated with d} (L; =
0) or with d} (L; = 1). (See Fig. 1(c).) This simple bit-string representation
reduces the communication effort required to pass subproblems to workers.

Splitting phase. In its splitting phase, SPREAD recursively splits the search
space with IBP (Algorithm 3). Initially, the manager partitions P into several
subproblems, each represented as a bit string for the partition that gave rise to
it, and allocates base backtracks to each one. Subproblems and their backtrack
limits are maintained in queues Q and L, respectively. For k workers, the man-
ager determines how many initial splitting variables to use (here, v = [log, 2k]),
computes the queue length threshold (here, 2), and then chooses splits, the v
variables with the highest weights in weights learned for P during the portfolio
phase (lines 1-3). Next the manager partitions P on splits in descending order
of weight, and tracks the resultant subproblems and their respective backtrack
limits (lines 4-6). Before it distributes subproblems to workers with backtrack
limits and variable weights (line 9), the manager notifies the ith worker with
signal 1 that it is about to do so. The manager then dequeues and sends the
first k£ subproblems on Q with their corresponding weights and backtrack limits
from £, and awaits feedback.

As in the portfolio phase, a worker immediately reports any detected solu-
tion to the manager, and terminates the MPI environment (Algorithm 2, line
14). If a worker proves its subproblem P° unsatisfiable, however, it notifies the
manager with message 0 (Algorithm 2, line 15). The manager replies with a new
subproblem from Q (if any is waiting, Algorithm 3, lines 14-15). Otherwise, the
worker has exhausted its resources ¢, and returns its subproblem to the man-



ager with message 1 (Algorithm 2, line 16). If the subproblem queue has fewer
than threshold subproblems, the manager recursively partitions the returned
subproblem on new splitting variables, and enqueues the resultant subproblems
with their resource limits (Algorithm 3, lines 18-22). If there is insufficient space
on the queue to repartition the subproblem, the manager re-enqueues it as it
was, but with a larger resource limit (Algorithm 3, lines 24-26). Whether or
not it repartitions returned subproblems, the manager continues to distribute
subproblems from Q to any idle worker (Algorithm 3, lines 27-29). RS-IBP ter-
minates when some worker finds a solution, or when all subproblems are proved
unsatisfiable.

When eventually distributed, an unresolved subproblem (even without repar-
titioning) will break ties with a random seed, and may therefore have a different
search experience. To bound the size of Q, for each split, SPREAD-S here chooses
& as max{[log,(threshold — Q.size())],1} (Algorithm 3, line 18). This bounds
the length of Q at 2v4+2v~!'—1, which happens only when an unresolved subprob-
lem confronts a queue of length 2°~! — 1. Nonetheless, IBP’s concise bit-string
representation makes it space-efficient, and in practice allows large queues.

Spread-D. SPREAD-S always uses the same splitting variables in the same
order, determined by the weights first learned during its portfolio phase. In-
tuitively, for a returned subproblem, it could be more accurate to determine
splitting variables dynamically, with weights learned during search on that sub-
problem. SPREAD-D is an extension of SPREAD-S that dynamically chooses its
splitting variables. When a SPREAD-D worker fails to solve a subproblem within
the allocated resource, it returns to the manager both the subproblem and the
weights learned on it (i.e., received initially from the manager and modified dur-
ing this search). This requires modification of only Algorithm 2, line 16 and
Algorithm 3, line 11. The manager then chooses, in line 18, additional splitting
variables with the highest weights acquired during search on the returned sub-
problem. Because SPREAD-D never changes splits, which originally designated
the subproblem returned in line 2, it guarantees mutually exclusive subproblems.

In the portfolio phase, SPREAD-S and SPREAD-D terminate only when some
worker finds a solution or proves the problem unsatisfiable. Otherwise they enter
the splitting phase where, without a search limit, they terminate only when a
solution is found or all subproblems are proved unsatisfiable. SPREAD is com-
plete, because IBP generates subproblems with mutually exclusive, collectively
exhaustive search spaces, and a subproblem is always partitioned or receives
larger search limits. Section 5 demonstrates that SPREAD is also effective.

4 Experimental design

The experiments reported here evaluate parallelization methods on their ability
to solve both problems difficult for the underlying solver and problems difficult
for all the solvers in the two most recent international CSP solver competitions
[20, 21]. From the repository of more than 7000 problems in those competitions,
we selected 51 representative classes that cover a broad variety of CSPs with



relatively uniform population distribution, shown in Fig. 2. To avoid any bias
toward large classes, we stratified selection from each class to reflect any pre-
specified subclasses and naming conventions, and chose a subset from each class
in proportion to its original subclass sizes. This produced 1765 problems in
classes of sizes from 7 to 65.

The experimental platform was a Cray XE6m system with 160 dual-socket
compute nodes. Each node contains two 8-core AMD Magny-Cours processors
running at 2.3 GHz. (Here a SPREAD processor corresponds to a Cray core.)
Without a readily-available parallel CSP solver as a benchmark, this paper com-
pares the performance of SPREAD-S and SPREAD-D to a variety of parallelization
methods inspired by relevant work. We chose to parallelize the solver Mistral-
1.331 (with C++ source code from [20]) because it is compatible with MPI on the
Cray, and allows us to curate sets of difficult problems from recent CSP solver
competitions and to evaluate the performance improvement under SPREAD-S
and SPREAD-D. Mistral can be compiled to run sequentially on the Cray XE6m
either under the GCC compiler (Mistral-GCC) or the CC compiler (Mistral-
CC), but Mistral-GCC runs about two to three times faster than Mistral-CC.
This gives the Mistral-GCC benchmark a considerable advantage over all our
parallel solvers, which require the CC compiler for MPI.

We solved each of the 1765 problems with Mistral-GCC, and eliminated the
1398 problems solved by Mistral-GCC in less than one minute. The 119 that
could be solved by sequential Mistral-GCC within 1 to 30 minutes on the Cray
became the hard set; the remaining 248 became the harder set. Finally, the
challenge set consists of the 133 problems never solved by any solver within 30
minutes in either competition, and not already included in the harder set.

We tested Mistral-GCC and Mistral-CC alone, as well as SPREAD-S and
SPREAD-D with Mistral-CC, and the following parallelization approaches:

— Naive Random (NR) races 63 copies of Mistral-CC with random seeds.

— Parallel Portfolio (PP) races 63 combinations of heuristics and restart poli-
cies. The heuristics were impact, dom/wldeg, dom/wdeg, and impact /wdeg.
The restart policies were Luby-k (k (backtracks per unit) € {128, 256, 512,
1024, 2048, 4096} ), geometric (restart limit z(n) = 100p™ at step n, where
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Fig. 2. Population distribution of the 1765 problems in the hard and harder problem
sets, identified under stratified selection from 51 CSP competition classes,
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Fig. 3. On the 119-problem hard set, solution time in seconds for SPREAD-D (z-axis)
plotted against that for other methods (y-axis). Each circle represents a problem; black
areas indicate a heavy concentration of problems. Circles at the top and far right
represent unsolved problems.

p = 1.3, 1.5 or 2.0), arithmetic (z(n) = 16000n, 8000n, 1000n?, and 500n?),
and dynamic. Dynamic adaptively determines whether to execute geometric
restart with exponent 1.3, 1.5, or 2.0 based on the problem formulation, and
restarts on the minimum of 1000 and the number of variables. Given these
4x16 possibilities but only 63 workers, PP did not execute impact/wdeg
with dynamic restart and exponent 2.0.

— Naive Variable (NV') partially fixes the variable orders, as suggested in [16].
NV races 63 copies of Mistral, each of which randomly selects and orders the
first 3 variables it assigns (but not their values) and reuses those variables
on every restart.

— Random Partitioning (RP) splits on 7 randomly-chosen splitting variables,
and enqueues those 128 subproblems for distribution to 63 workers, which
run them to completion. Some workers process more than one subproblem.

— No-Weight SPREAD (NWSPREAD) is an ablated version of SPREAD intended
to gauge the impact of learned weights. NWSPREAD does not use the weights
from the portfolio phase for the workers, either to split or to search.

5 Experimental Results

Unless otherwise stated, all results reported here use the median of the values
from three runs (as in recent parallel SAT solver competitions [22]), under a
30-minute per problem time limit, with the portfolio phase in both versions of
SPREAD limited to 100 seconds. The initial backtrack limit was base, the average
generated in the portfolio phase (Algorithm 1, line 8). When a subproblem was
partitioned on ¢ additional splitting variables, this limit was multiplied by (1.5).

On the hard problem set. Fig. 3 compares SPREAD-D’s runtime to that of
the other approaches in Section 4. Although a few instances (along the right mar-
gin) went unsolved under SPREAD-D, Fig. 3 shows that both versions of SPREAD
clearly outperform most of the other benchmark methods. Indeed, on the prob-
lems solved both by SPREAD-D and each competitor, SPREAD-D achieved aver-



age speedups of 19.08 (¢ = 79.41) over Mistral-GCC, 27.91 (o = 148.32) over
Mistral-CC, 2.65 (o = 2.77) over NR, 1.98 (o = 1.92) over PP, 4.03 (o = 3.89)
over NV, 3.34 (¢ = 6.48) over RP, and 1.59 (¢ = 1.61) over NW. Both SPREAD-S
and SPREAD-D solved 43.70% of the hard set within 100 — 200 seconds. This is
the time when both SPREAD versions have just begun to use critical splitting
variables, while PP tries a complementary algorithm portfolio instead. The plot
for PP on the lower left is a clear demonstration that search space splitting is
essential. Moreover, search space splitting without the knowledge from the port-
folio phase (NWSPREAD, on the lower right) was dramatically inferior; it could
not solve 75.63% of these problems in 30 minutes, even though NR solved 17.65%
of them within 100 seconds. Given their performance, NWSPREAD, sequential
Mistral-CC, and Mistral-GCC were excluded from further comparisons.
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Fig. 4. On the 248 problems in the harder problem set, cumulative number of solved
problems across 1800 seconds for SPREAD-D, SPREAD-S, and four competitors.

On the harder problem set. Fig. 4 compares both versions of SPREAD to
the remaining parallelization methods. Given 30 minutes per problem, SPREAD-
S solved 56 problems (44 satisfiable), 16 more (40.00% improvement) than the
best benchmark method PP (which solved 40), and 31 more (124.00%) than
the worst, NV (which solved 25). In addition, SPREAD-D solved 59 (46 satisfi-
able), 3 more than SPREAD-S. As one would expect, both versions of SPREAD
behaved early on much like the portfolio-based methods NR and PP. SPREAD-S
solved 10 (all satisfiable) within the first 100 seconds, its portfolio phase, while
SPREAD-D solved 12 (all satisfiable). Both versions of SPREAD also solved more
problems that required more time. In the last 800 seconds, SPREAD-S solved 18
(11 satisfiable) and SPREAD-D solved 12 (6 satisfiable).

On the challenge set. SPREAD-S and SPREAD-D significantly outperformed
the other parallelization methods. Table 1 compares runtimes for SPREAD-S,
SPREAD-D, and RP on the 35 problems solved by at least one of them more
than once. (The other approaches from Fig. 4, NR, NV, and PP, solved 1, 1,
and 2 problems, respectively, all among these 35.) SPREAD-S and SPREAD-D are
shown with both 10-second and 100-second portfolio phases; neither ever solved



Table 1. Challenge problem solution times for SPREAD-S (S-S) and SPREAD-D (S-D),
with best in boldface. 10 denotes a 10-second (rather than 100-second) portfolio phase.
— denotes failure to solve in 30 minutes.

Problem [SAT] RP | S-S-10 [ S-S-100 | S-D-10 | S-D-100
costasArray-20 yes | 721.84 - - 876.13| 1120.20
crossword-m1-words-21-10 yes - - 846.01| 746.36] 795.21
crossword-mlc-ogd-vgl0-13_ext| no - 744.89| 583.22| 748.62| 750.28
crossword-mlc-ogd-vgl0-14_ext| no - 1302.41| 402.33| 1264.02| 1280.17
crossword-mlc-ogd-vgl2-12_ext| no - 461.62| 586.02| 450.51| 450.22
crossword-mlc-uk-vgll-12_ext | no - - 1081.71 - -

frb53-24-2-mgd _ext yes - 749.33| 329.85| 749.25| 330.59
frb53-24-5_ext yes | 748.17 63.04| 255.86| 62.74| 256.10
frb56-25-2-mgd_ext yes - 661.94| 822.12| 661.32| 822.18
graphcoloring-myciel6-6 no - - - - 1185.96
graphcoloring-myciel7-6 no - - - - 1178.54
langford-2-14 no | 485.81| 187.39| 401.30| 150.96 -

langford-3-16 no | 567.92| 659.73| 446.50| 537.89| 129.86
rand-3-24-24-76-632-17_ext yes | 358.80| 240.02| 326.82] 240.18| 239.56

rand-3-24-24-76-632-fcd-47_ext | yes | 823.91| 693.89| 207.30| 691.45| 697.14
rand-3-24-24-76-632-fcd-50_ext | yes | 692.31 59.71| 168.40 59.63| 58.01

rand-3-28-28-93-632-16_ext yes 1551.52 - 1551.47| 1541.81
rand-3-28-28-93-632-23_ext yes - 551.02| 758.57| 550.41| 592.62
rand-3-28-28-93-632-25_ext yes - 448.201 464.58| 448.14| 449.93
rand-3-28-28-93-632-3_ext yes - 1306.23| 648.04| 1305.86| 1304.37
rand-3-28-28-93-632-30_ext yes - 893.93| 1061.22| 894.57| 897.32
rand-3-28-28-93-632-35_ext no - 1186.84| 1321.97| 1192.83| 1189.95
rand-3-28-28-93-632-37_ext yes - - 238.10 - —

rand-3-28-28-93-632-8_ext no - 1126.08 - 1126.21| 1118.44
rand-3-28-28-93-632-fcd-16_ext | yes - 1531.64| 530.76| 1529.82| 1519.74
rand-3-28-28-93-632-fcd-20_ext | yes | 24.79| 299.64| 314.52| 299.73| 295.269
rand-3-28-28-93-632-fcd-21_ext | yes - 1322.25 - 1322.01] 1221.21
rand-3-28-28-93-632-fcd-24_ext | yes - 1122.49 - 1116.40| 1116.19
rand-3-28-28-93-632-fcd-27_ext | yes - - 1349.44 - -

rand-3-28-28-93-632-fcd-31_ext | yes - 700.22| 211.54| 690.09| 684.804
rand-3-28-28-93-632-fcd-35_ext | yes - 494.40( 616.61| 492.14| 489.88
rand-3-28-28-93-632-fcd-40_ext | yes - 137.29| 219.16| 137.32| 197.24
rand-3-28-28-93-632-fcd-42_ext | yes - 144.94| 124.55| 152.84| 138.62

rand-3-28-28-93-632-fcd-46_ext | yes | 1410.23| 168.30| 159.21| 171.66| 166.41

super-js-taillard-20-20 no 1142.61
Problems solved least twice - 9 27 27 30 30
Problems solved at least once - 20 31 30 33 32

a problem during the portfolio phase. Although SPREAD did best with rand
problems, it also solved problems in such categories as Langford, crossword,
super-jobshop, and graph-coloring.

SPREAD’s search is influenced by the variables it splits on and by their order,
but the portfolio-phase search limit also has a strong effect. (Recall that the



splitting-phase search limits are proportional to the backtracks consumed in
the portfolio phase.) Because we report a median of three runs, to record a
problem on any but the last line in Table 1, a program must have solved it at
least twice. Both versions of SPREAD actually solved more problems; the last row
indicates how many different problems they solved at least once in the three runs.
Solved problems not listed in Table 1 include the satisfiable queenAttacking-8
and tdsp-C5-3-91, and the unsatisfiable pseudo-par-32-3-c, super-js-taillard-20-
12, and super-js-taillard-20-22. Were the splitting-phase search limit infinite,
SPREAD would partition only once and would probably benefit from a longer
portfolio phase, but could readily be modified to search for all solutions.

Scalability. Fig. 5 shows that, given more processors, SPREAD consistently
solved more problems from the hard set. More than 64 processors, however,
introduced only marginal improvement on these problems. (Data omitted.) Be-
cause we did not tune SPREAD specifically for Mistral, we would expect similar
improvement with other CSP solvers. Recall that, among our curated problems,
the hard set contains the easiest ones, where further improvement by SPREAD is
relatively difficult. In contrast, Fig. 6 shows how SPREAD scales on two typical
problems from the harder problem set, given one hour. With more processors,
SPREAD was significantly more likely to succeed within the time limit, and its
runtime variance decreased, which produced more stable performance.
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-4&- 8 processors
-+- 16 processors
—-%- 32 processors
—— 64 processors

1500
!
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Runtime

500
1

0 20 40 60 80 100 120

Cumulative number of solved problems

Fig. 5. Cumulative number of problems from the hard set solved by SPREAD-S.

Other statistics. When a worker completes its subproblem but no sub-
problems remain in the queue, that worker becomes idle. To investigate how
well SPREAD uses its computing resources, let the idle ratio of the ith worker
be the fraction of overall runtime that it was idle. SPREAD-S’s average idle ratio
on problems solved during the splitting phase rose as high as 0.8251 on hard,
0.8793 on harder, and 0.5015 on challenge problems. Large idle ratios were likely
caused by a high backtrack limit on an extremely unbalanced search tree, which
forced most other workers to wait for a new assignment. The idle ratio could be
improved by a backtrack limit tailored to a particular problem class. Overall,
however, SPREAD’s idle ratio was under 0.1 on 56.92% of the hard, 69.92% of



the harder, and 75.00% of the challenge problems. SPREAD-D’s idle ratio was
similar: 58.50%, 76.81%, and 75.00% under 0.1, respectively. Finally, Table 2
provides data on subproblems generated during the splitting phase.
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Fig. 6. Runtimes to solution within 1 hour across 10 runs of SPREAD-S with different
numbers of processors for (a) rlfapScens11-fl (unsatisfiable) (b) js-taillard-20-15-105-4
(satisfiable). Numbers with the uppermost triangles count failed runs.

6 Discussion

There are many plausible ways to parallelize a solver. One might perturb initial
assignments, to vary the top of the search tree, using the same variables with
different values. That was tested here as NV, and shown adequate only for the
easiest of our test problems. Given the success of restarts and the ability of
solvers to learn about contention, one might race the solver against copies of
itself with different seeds. That was tested here as NR, and shown only slightly
more effective. Given the success of some splitting and portfolio approaches, one
might execute random partitioning, or race different solvers against one another.
That was tested here as RP and PP, respectively, and shown adequate for some
problems, but significantly less so for more difficult ones.

SPREAD could define its phases’ search limits in number of backtracks, con-
sistency checks, or search tree size. In the portfolio phase, time is the limiting
factor because it forces all the workers to finish at once. In the splitting phase,
however, there is a backtrack limit, to reduce the likelihood that all the workers
will communicate with the manager at once.

To split a search space, SPREAD uses IBP, which, for generality, assumes no
knowledge about problem domains. It could, however, be profitable to exploit
domain characteristics. For example, one might partition the large domain of a
critical variable into more subproblems, or partition extremely small domains
(e.g., binary, as in SAT) with parity constraints [12].

Our work now proceeds along three lines. First, IBP may be misled by in-
formation collected during the portfolio phase. A typical example comes from
the queens-knights (QK) problems. Although the contention in QK lies with the



Table 2. During the splitting phase, mean split subproblems (#), average maximum
subproblem queue length (Maz), and average maximum split variable number (u).

Hard Harder Challenge
Implementation # Max I # Max m # Max m
SPREAD-S 156 129 7.6 518 136 13.6 244 132 9.6
SPREAD-D 146 129 7.5 374 137 11.3 211 130 8.6

knights, weight-based variable-ordering heuristics prefer the queens variables at
the beginning of search, when weight-based heuristics (e.g., dom/wdeg) are close
to those not based on weights (e.g., dom/deg). We are exploring adaptive meth-
ods that dynamically choose duration for the portfolio phase. Second, SPREAD-D
did not always outperform SPREAD-S. In SPREAD-D, weights emphasize the local
perspective of the subproblem, and preserve the portfolio phase’s global perspec-
tive on the full problem only at the top of the search tree. We suspect that the
initial partitioning is effective because it is based on parallel probing, and that
repartitioning is less effective because it lacks the benefit of restart within the
subproblem. We are therefore exploring restart strategies for SPREAD. Finally,
nogood learning (as clause learning) has proved crucial in SAT, but has thus
far received relatively little attention in parallel CSP solvers, including SPREAD.
Future work includes combinations of adaptive splitting variable selection with
nogood learning to avoid the loss of useful information.

Meanwhile, SPREAD offers a complete and effective method to parallelize a
CSP solver. As a parallelization paradigm, SPREAD makes no assumption about
domains or constraint types, and so accepts any class of CSPs that its solver can
handle. Its bit-string representation permits programmers to ignore the imple-
mentation details of the solver, significantly simplifying parallelization, and dra-
matically reduces communication effort. Its portfolio phase solves easy problems
quickly, and informs the splitting phase for effective partitioning. By recursively
partitioning difficult subproblems with RS-IBP, it gradually allocates more com-
puting cycles to the difficult parts of a problem, and thereby adaptively balances
processor workload. Finally, SPREAD provides a natural way to embed restart
policies into an MPI environment without recoding its underlying solver.
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