On the Discovery of Mathematical
Concepts

S. L. Epstein
Department of Computer Science, Hunter College of The City University
of New York, 695 Park Avenue, New York, New York 10021

The Graph Theorist (GT) is a system intended to perform mathematical research in
graph theory. This paper focuses upon GT's ability to discover new mathematical
concepts by varying the definitions in its input knowledge base. Each new definition is a
correct and complete generator for a class of graphs. The new concepts arise from the
specialization of an existing concept, the generalization of an existing concept, and the
merger of two or more existing concepts. Discovery is driven both by examples (specific
graphs) and by definitional form (algorithms). GT explores new concepts either to
develop an area of knowledge or to link a newly-acquired concept into a pre-existing
knowledge base. From an initial knowledge base containing only the definition of
“graph,” GT discovers such concepts as acyclic graphs, connected graphs and bipartite
graphs. Given an input concept, such as “*star,”” GT discovers “‘trees’” while searching
for the appropriate links to integrate star into its knowledge base. The discovery pro-
cesses construct a semantic net linking frames for all of GT's concepts together.

L. INTRODUCTION

The Graph Theorist (GT) is a knowledge-intensive, domain-specific learn-
ing system' which uses algorithmic class descriptions to discover new mathe-
matical concepts and relations among them. GT is based upon a set of powerful
representation languages for object classes discussed and defined formally in
Epstein.” A variety of well-defined operations can be coerced from these lan-
guages. In particular they can be used to:

® generate correct examples of any class
® test whether or not an object belongs in a particular class
® reason about relations among classes

The representation of a class in any of these languages is an algebraic defini-
tion. Each definition has a semantic interpretation as a stylized algorithm which
defines the class by generating it correctly and completely. GT incorporates

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS. VOL. 3. I167-178 (1988)
@ 1988 John Wiley & Sons, Inc. CCC 0884-8173/88/020167-12%04.00

168 EPSTEIN

such definitions as slots in its frame representation for a graph property. The
entire frame represents a concept.

GT operates either independently or under interactive guidance. It gener-
ates correct examples of any of its concepts, constructs new concepts, and
conjectures and proves relations among concepts. The discovery and proof of
relations among a set of input concepts is discussed in Epstein.? This article is
devoted to the origin of new concepts and relations among them.

II. BACKGROUND

Much important work in machine learning (for example, Laird,*
Langley,™® Lee,” Michalski,** and Stepp'’) constructs concepts to explain
empirical data—data either input or encountered in the course of task execu-
tion. These concepts are rules which people consider coherent classifications
and/or explanations. Such data-driven scientific research is based upon obser-
vation and inductive inference, in domains where partial information and real-
world noise are the norm. There are, however, scientific research areas, partic-
ularly in mathematics, where classes of objects are already clearly delineated
by definitions. In modelling such domains, the origin of these classes (what
Michalski' calls constructive induction) and the relations among them should
be the focus of attention. An outstanding example of concept learning for
exploration, rather than explanation, was Lenat’s AM."

AM began with a set of 115 frames, each representing a mathematical
concept. A frame consisted of fixed slots containing information on examples,
hierarchical pointers, conjectures about such pointers and heuristics attached
to the concept. Some of AM’s initial (i.e., input) concepts were for classes of
mathematical objects, such as sets or lists. Other initial concepts were for
activities defined on those classes, such as set-insert or list-intersect. Examples
for a class were generated by applying seemingly-appropriate operators. For
example, if an operator f were defined on the classes A and B with f: A — B,
and if C were a subset of B, AM might have selected some examples a; ,az,....a,
of A, constructed fla,), flaz),...,.fla,) (all of which would have belonged to
B), and then examined them to see if they were indeed examples of C, or
merely in B—C. This uncertainty in the generation of examples was due to the
nature of an AM definition for a class of mathematical objects. Each definition
was a LISP predicate which tested whether or not an object was a member of
the class.

AM explored these fundamental frames under the guidance of 243 heuristic
rules. It generated examples of the concepts, conjectured about relations
among them, and defined new frames (concepts) for subsequent exploration.
Beginning only with set-theoretic concepts, it included among its discoveries
natural numbers, primes and the fundamental theorem of arithmetic. AM, how-
ever, was never able to prove its conjectures. to generate new examples certain
to be in a specified class, or to introduce radically new descriptions into class
definitions.

MATHEMATICAL CONCEPTS 169
III. CONCEPT DESCRIPTION IN GT

GT derives much of its power from a set of representation languages
whose theoretical formulation is detailed rigorously in Epstein® and summa-
rized in Epstein.'? The treatment of the representation here is informal and
describes only selected, implemented segments of the theory. For example, GT
currently only supports undirected, unlabelled graphs, but coding provisions
have been made for directed and labelled graphs, and the theoretical framework
supports them. This section provides fundamental definitions and describes the
algebraic representation and its semantic interpretation.

Let V be an arbitrary, finite set of elements (vertices) and let E be any
subset (edges) of the Cartesian product V x V. Then the ordered pair G = (V,E)
is said to be a finite graph. Let U be the universe of all finite graphs. Then any
subset P of U is said to designate a graph property p and, for G in P, G is said to
have property p. (The distinction between the property p and the class P is
syntactic, not semantic. The context will dictate which is used.) Any al-
gorithmic definition of the graph property p must specify precisely the set P. In
particular, if an algorithm claims to generate P, that algorithm must be both
correct (i.e., every generated graph must be in P) and complete (i.e., for each
graph G in P there must be a finite sequence of steps executed by the algorithm
with final output G).

In GT, a concept is a frame representing a graph property and knowledge
associated with it. An edited example of a GT frame for the concept CON-
NECTED appears on the left in Figure 1. The slots of the frame include a list
of examples, a list of hierarchical relations with other concepts and a descrip-
tion of the origin of the property. (Entries of NIL for relations are statements of
partial knowledge, to be read as “‘none discovered yet.””) The frame also in-
cludes one or more definitions of the graph property in a specific, three-part
formulation.

In GT, a definition of a graph property is an ordered triple (f.S,o). § is the
seed set, a set of one or more minimal graphs (seeds), each of which has the
property in question. (Typically the seed set is finite and GT lists its elements.)
The seed set in the example of Figure | for CONNECTED contains only a
single graph, K,, the complete graph on one vertex. The operator f in the
definition describes the way(s) any graph with the given property may be trans-
formed to construct another graph with the same property. An operator in GT
is built from the set of primitives listed in Table 1. These primitives may be
concatenated into terms (such as “'A,.A."") to denote sequential operation from
right to left. Terms may be summed (as in ““A,, + A,.A.") to represent alterna-
tive actions. Thus the operator A, + A,.A. for CONNECTED is read **either
add an edge from w to x or else add a vertex z and then an edge from v to z."
The selector o in the definition describes the restrictions for binding the vari-
ables appearing in the operator f to the vertices and edges in a graph. The
currently-implemented selector descriptions of vertices and edges appear in
Table 1. Selector descriptions may be empty, i.e., need not constrain binding at

170 EPSTEIN

Property-Name: CONNECTED

Number-of-Seeds: 1

Seed-Set-List: {K,}

Function: A, + A,;A;

Sigma: wx,yeV, ZEV

Origin: specialization of property-13

Example-list: {K,. connected-2,connected-3....,connected-13}
Extremal-cases: {K,}

Subsumes-list: TREE

Does-not-subsume-list: {ACYCLIC}

Subsumed-by-list: {IS-A-GRAPH, property-3, property-13}
Is-not-subsumed-by-list: {TREE, ACYCLIC}
Merger-created-with-list: {ACYCLIC}
Merger-explored-with-list: NIL

Primary-definition: T

[s-equivalent-to-list: NIL

Equivalence-explored-with-list: NIL

Delta-pairs: ((0 1)(1 1))

VL4l

Figure 1. GT Representation of CONNECTED.

all. In the example of Figure 1, the selector for CONNECTED is read *‘where
w.x and y are in the vertex set, and z is not in the vertex set.”

The semantic interpretation of such a three-part definition for a graph
property p is a single, uniform algorithm called a p-generator. A p-generator
capitalizes on the underlying commonality of its class, the view of the set P as
one or more prototypes (seeds) which can be methodically deformed (under f
and o) to produce exactly those graphs in the class. The p-generator may be
thought of as an automaton which is started by the input of any graph in seed
set . CONNECTED, for example, would require K. The p-generator then
iterates an undetermined number of times. On each iteration the selector o

Table 1. Implemented GT Operators and Selectors.

Symbol Application Interpretation

A, Operator Add vertex x to the graph: V « VU{x}

A, Operator Add edge xv to the graph: E «— EU{xv}

D, Operator Delete vertex x from the graph: V « V — {x}
D, Operator Delete edge xy from the graph: E «— E — {xy}
xeV Selector x is a vertex in the graph

x&V Selector x is a vertex not in the graph

x#y Selector x and y are distinct vertices

dix) =n Selector x's degree is n, a non-negative integer

d(x) = max Selector x's degree is the largest in the graph

xveEE Selector xy is an edge in the graph

Xy&EE Selector xy is an edge not in the graph

MATHEMATICAL CONCEPTS 171

chooses vertices and/or edges with respect to the current graph G, and then the
operator modifies GG, using those choices, to produce a new G. CONNECTED,
on each iteration, either adds a new vertex x to the graph, or adds a new vertex
z and an edge from an old vertex y to z.
Thus the algorithm for generating the class P of graphs is:
Accept Ge §
Output G
Until o fails do
G < fo(G)
Output G
Halt
Under all possible initial choices from § and all possible iterations of f subject
to o, the output of this algorithm is precisely P, that is, if the superscript i
denotes ‘‘iterate i times,"’

P= U (fo)(S)

The graphs on the right in Figure 1 illustrate several possible iterations of the
definition of CONNECTED; each pictured graph is output by the algorithm and
is connected. The definition generates the infinite class of connected graphs; it
will never halt because bindings for the variables in o can be found on each
iteration.

The content of the following three general texts is taken as graph theory: a
classical development in elegant mathematical fashion," a broad overview of
topics presented as definitions and theorems,'* and an algorithmic approach."
What guarantee is there that p-generators exist for every P in U, or at least for
every interesting P in graph theory? At this writing, more than 40 properties
have been selected from the three benchmark texts and described correctly and
completely as p-generators.” Among these are k-connected, k-chromatic, pla-
nar and Hamiltonian.

The use of p-generators as property definitions entails several kinds of
nondeterminism. Any graph in the seed set is an acceptable input; any binding
satisfying o is valid; any summand in f suffices for an iteration. In addition,
many different sequences of iterations will construct isomorphic graphs, and
more than one definition may be written for certain properties. This ostensible
indefiniteness and redundancy is tolerated because the property definitions
preserve detail in a concise and flexible format.

IV. CONSTRUCTION OF NEW CONCEPTS IN GT

GT definitions transparently display both the changes they force upon
objects (in the operator f) and the preconditions they require (in the selector o).
This separation encourages the development of completely and correctly de-
fined new concepts whose relations to their parent concepts do not require
proof. GT currently has three methods for constructing new concepts: speciali-
zation, generalization and merger.

172 EPSTEIN

A. New Concepts Discovered by Specialization

A property p- is said to be a specialization of a property p, if and only if P,
is a subset of P, i.e., every graph with property p- also has property p,. To
specialize from a definition of the form (/,5,o), GT performs one of the follow-
ing actions:

® constrain the seed set
® constrain the operator
® constrain the selector

When GT discovers property p, as a specialization of property p,, the facts that
P, is a subset of P, and P, a superset of P,. are recorded in GT’s knowledge
base.

A seed set is constrained by using a proper subset of it. Consider, for
example, the property

P = (Al =+ A_\':A:.‘ {K|1K-‘}‘ [-" €V, y e V])

The definition p, begins either with K; or Ky, the complete graph on four
vertices. On any iteration, p; either adds an isolated vertex x to the graph or
adds a vertex z and an edge vz from a vertex y in the graph to z. One specializa-
tion of p, is

P = (Al ¥ A'\‘:A,‘.! {K4}. [X e V. y € V])

created by eliminating K, from the seed set of p,. Every graph generated by p»
begins with a seed from p, (namely, K,), iterates according to the definition of
py. and, therefore, has property p,. There are, however, graphs (for example,
K5 and K1) which are in P, but not in P,. Thus p; is a proper subset of p,.

An operator may be constrained in two ways. First, a term may be elimi-
nated from the operator (with irrelevant constraints removed from the selec-
tor). For example,

p3 = (AA., {K,,Ks}, [y € V])

constructs only the connected p, graphs. One may prove p; a specialization of
p1 by the argument used for p, above. Second, and less obviously, recall that a
p-generator assumes iteration. Thus any forced repetition of terms from the
operator forms a special case of the operator. (The selector requires readily-
computable additions.) Consider:

ps = (A A, + AAA., (K Ky}, [xywt €V, yE V]

YRy

Property p4 adds either a pair of isolated vertices or an isolated vertex, an edge,
and a vertex z, on each iteration. Property p, begins with a seed from p;, and
each of its terms is equivalent to a finite number of iterations of p, therefore, py
is a specialization of p;.

GT constrains the selector of a graph property by making the binding
restrictions more detailed, either by the addition of a constraint or the identifi-
cation of variables. As an example of the first, consider:

MATHEMATICAL CONCEPTS 173

ps = (A, + A A {K| Ky}, [x.2 & V,y € V])

Using the argument employed for p,, ps is seen to be a specialization of p, ; Ps is
that subset of P, which is acyclic everywhere except possibly in a single K,
subgraph. Additional constraints must always be consistent with the definition
of a graph, and never obviously make binding impossible. (For example, x € V
would not be added when the selector already specifies x & V). As an example
of the second selector specialization, consider:

Pe = (A + A A, {K Ky}, [x € V, y € V])

Here GT has selected two variables, y and z in p,, whose a-descriptions do not
contradict each other, and has made them identical.

Figure 2 shows how GT applies specialization to discover new concepts in
graph theory. Initially, the knowledge base consists only of the p-generator for
all finite graphs, which appears in line 1. The more interesting properties have
been renamed for the figure. (The discovered version of CONNECTED is an
alternative definition equivalent to that in Figure 1.)

Another of GT’s discoveries is

BIPARTITE = (A, +A, A, +A,.{K }Ix.y € V. w.z € V, ww € E, 2z & E])

For BIPARTITE. GT has partitioned the vertices of the graph into two sets,
one with loops and one without: edges are drawn only between one vertex with
a loop and one without. (A loop is an edge from a vertex to itself.)

B. New Concepts Discovered by Generalization

A property p; is said to be a generalization of a property p, if and only if P,
is a subset of P, i.e., every graph with property p; also has property p,.
Because *"p; is a generalization of p,”" is equivalent to **p; is a specialization of
p2,"" the construction of generalizations is fairly obvious from the preceding
discussion. To generalize a concept, GT may:

® expand the seed set
® expand the operator
® relax the selector

Property Origin
(1) IS-A-GRAPH: (A, + A_, {K,}, [x,yEV]) Given
(2) PROPERTY-4: (A A., {K,}, [x.yEV]) Forced repetition (1)
(3) PROPERTY-6: (A,,A.+A,, {K}, [x,yEV]) Forced repetition (1)
(4) PROPERTY-14: (A,.A., (K}, [x&V]) Identification of variables (2)
(5) TREE: (A.A., {K,}, [xEV, z&V]) Add binding restrictions (4)
(6) CONNECTED: (A.A., {K |}, [xEV, x#z]) Add binding restrictions (4)
(7) PROPERTY-30: {A..A. + A,, {K,}, [xEV]) Identification of variables (3)
(8) ACYCLIC: (A..A, + A, {K,}, [xEV, z&V]) Add binding restrictions (7)

Figure 2. Examples of Discovery by Specialization.

174 EPSTEIN

To expand a seed set, GT adds another graph or set of graphs to it. To expand
an operator, GT adds new terms or splits existing ones (the inverse of forced
iteration). To relax the selector, GT removes details from the binding restric-
tions in o. Each of the examples of specialization in Section 4.A may be read,
in reverse, as an example of generalization. When GT discovers a new concept
p» as a generalization of a concept p;, the facts that P, is a superset of P,, and
P, a subset of P,, are recorded in the knowledge base.

Why would GT need to know how to generalize at all? GT models a variety
of research behaviors, one of which is the appropriate insertion of new informa-
tion into a pre-existing knowledge base. A new property is generalized until it
can be linked into GT’s relational hierarchy. For example, when given

STAR = (A A, {Ki3}, [x € V, y &€ V, d(x) = max])

the concept is generalized until it is identified with one in the knowledge base.
Directed to relax STAR's binding constraints, GT produces three new property
definitions, one of which differs from TREE only in its seed. When directed to
relax the constraints once again, GT produces two definitions, one of which
differs from line 4 in Figure 2 only in its seed. GT eventually recognizes stars as
a special case of connected graphs, discovering trees along the way. Another
motivation for concept generalization is the conjecture and proof of relations
among properties. When a property is highly-detailed, the entailed matching
can be expensive. Reasoning about a more general case, which typically has a
simpler form, may be much more efficient. For example, if A is a special case of
B and B is disjoint from C, A will also be disjoint from C. Often GT's discovery
and proof that B is disjoint from C is faster.

C. New Concepts Discovered by Merger

In mathematics, the intersection of classes of objects is frequently very
useful and applied often. GT represents such an intersection by merger. The
merger of a property p, for class P, with a property p for a class P; results in a
new property representing P, M P,, the set of graphs with both properties. Let
p1 = {fi.8,01) and p; = (;,5:,02). GT currently has four algorithms to con-
struct the merger of p, and p,. The first three are fairly straightforward:

® If p, is a generalization of p,, the merger is simply p,. For example, the
merger of CONNECTED and TREE is simply TREE.

® If f5 is a constrained version of f; and every seed in §, lies in P,, the
merger is {f,5,,0), where o is o, and o,, but eliminates any references
to variables not in f>. For example, the merger of STAR and TREE is
simply STAR.

® When f) is a generalization of f5, o) is a generalization of o, and S is
nonempty, the merger is (f3,5,0:), where § is §; M 5, plus those seeds
of §; in P, and those seeds of S, in P,. For example, the merger of

pr= (A, + AA (K| K}, [x & V,y E V]

MATHEMATICAL CONCEPTS 175

with
pr = (A A (K .KGLIreEV,s & V]

P = (Aul‘Al‘w {Kl »KI}' l” (= V. v & V])

based on matching v with r as « and z with s as v.

The fourth and most interesting of GT's merger algorithms deals with the
cases which do not fit these categories. Let n be the number of vertices in a
graph and m be the number of edges. Each iteration of a p-generator effects a
change (An) in the number of vertices and a change (Am) in the number of
edges. GT calculates the An and Am values for each term in the properties to be
merged. A delta pair (An,Am) is the ordered pair of the changes for a term in a
property; it captures some aspects of the minimal effect of one iteration of a p-
generator. For example, the only delta pair for

TREE = (A, A,, {K\}, [xE V,y & V])

is (1.1), meaning that on each iteration one vertex and one edge are added to the
graph and for

ODD-VERTICES = (A, A, + A, (K, L [rs € V. tue V, r# s))

the delta pairs are (2 0) and (0 1). GT seeks a minimal positive integer solution
to that system of equations which asserts that some number of repetitions of
the delta pair for each term in one property is equivalent to some number of
repetitions of the delta pairs in the second property. In the example, let «
represent the number of applications of the single term in TREE, let 3 repre-
sent the number of applications of the first term in ODD-VERTICES and let p
represent the number of applications of the second. GT seeks the positive
minimal integer solutions to:

la = 2B + Ou (An)
le =08 + lp (Am)

The answer, @ = p = 2 and 8 = 1, indicates that in the merger both An and Am
will be 2. Each of the properties is specialized by forced iteration to meet these
requirements:

TREE' = (A, A,A A, {K\}, [x,u EV, yv & V])
ODD-VERTICES' = (A,A,A.A,,, (K}, [rs €V, tzp,g €V, r # 5]
When GT attempts a merger of TREE’ and ODD-VERTICES' it discovers that
the first is really a special case of the second, under the matching of r and z with
v, s and g with v, r with x and p with «. (An extremely limited form of commu-

tativity is used here to shift operators of the form A, to the right when the
vertex does not appear elsewhere in the term.) Thus the merger is

ODD-TREE = (A A,A A, {K\}, [xu €EV,yv & V,y # v)])

176 EPSTEIN

Upon inspection, this property is clearly correct and complete, with An = Am
= 2. GT has discovered, among other merged properties, TREE as ACYCLIC
merged with CONNECTED.

V. RESULTS AND PERSPECTIVE

GT discovers new mathematical concepts by syntactic changes whose
semantics are well-understood and accessible to the program. The key in GT is
a more transparent and flexible class definition, one which generates guaran-
teed examples, constructs efficient intersections, and creates from a broad
descriptive vocabulary. These concepts form a rich knowledge base conducive
to further mathematical discovery.

From the examples and definitions of Section 4, the following is evident:

Theorem: The heuristics used by GT to constrain/relax any definition
of a graph property P construct valid specializations/generalizations
of P.

This theorem guarantees that the definitions GT constructs are, in fact, graph
properties. It also justifies the hierarchical links GT inserts during the discov-
ery process.

Since GT has several different starting points, a concept may be discov-
ered in more than one way. Running on a Symbolics 3675 in Symbolics Com-
mon Lisp and beginning only with the definition of a graph and the heuristics
described here, GT discovers, among other concepts:

® acyclic graphs

® connected graphs
® bipartite graphs
® trees

® stars

GT is able to incorporate all of these correctly into its hierarchical knowledge
structure. A demonstration during which all of these discoveries takes place
requires approximately three and a half minutes of elapsed time. Alternatively.
GT can begin with a small initial knowledge base of concept definitions and
generalize the concept ““star’” until it is able to link it into its knowledge base.
During the (less than one minute of elapsed) time required to do this, GT also
discovers “‘tree.””

When GT “‘invents’" a new property definition, it is subjected to careful
scrutiny before a concept frame is created for it. Many generated definitions are
trivial, i.e., they may iterate only once or twice, or even be limited entirely to
their seed set. Other definitions, intended as a specialization of some parent

MATHEMATICAL CONCEPTS 177

concept, may very quickly produce many more examples than were known for
the parent. Still other definitions, intended as generalizations of some parent
concept, may produce only graphs already known as examples of the parent.
All of these definitions are deemed uninteresting and rejected as potential con-
cepts.

Some of GT's discovery paths are a bit surprising. For example, although
TREE is a special case of CONNECTED, definitions for both concepts appear
during a single exploration cycle. In another unanticipated action, when STAR
is being generalized, GT moves backward, first to TREE and then to a defini-
tion for *‘connected graphs with loops,” skipping over ACYCLIC and CON-
NECTED completely. Even well-planned inductive leaps do not always arrive
where expected.

VI. FUTURE WORK

Michalski’s and Dietterich's work on generalization rules for concept ac-
quisition provide some excellent suggestions for concept discovery in GT.!6-!7
GT already embodies both selective and constructive generalization tech-
niques, such as the “*dropping condition’ rule (as selector relaxation) and the
“closing interval’ rule (as a merger heuristic). Other rules currently under
consideration and/or development include extending reference, counting argu-
ments and internal disjunction. GT’s descriptive ability lies in the number and
nature of the primitive operators permitted in f and of the selector descriptions
permitted in o. As the set of such operators and descriptions is extended, a
lattice of descriptive languages (detailed in Epstein®) can be constructed. Such
an “‘extended’’ language offers additional alternatives, and ordinarily has
greater expressive power (as measured by the number of graph properties it
defines) than GT’s current representation. In turn, operations with an extended
language are likely to require more computer resources. Within the discovery
framework described here, plans exist to extend the p-generator language for
the representation of directed graphs and, eventually, for labelled graphs.
These extensions will also provide a testbed for the study of performance under
representational shifts.

The key to the most interesting specializations, those involving additional
descriptions in o, is the language in which those descriptions may be written.
Utgoff '™ warns that, unless the [o-]language is extensible, GT may not be able
to access many interesting ideas. Ways to have GT extend the o-language itself
are currently being studied. Despite substantial empirical support, the exis-
tence of a definition of the form (f.5,0) for every property p remains an open
question.

Finally, GT's ability to spawn new concepts with such variety dooms it to
a combinatoric explosion. At the moment GT accepts directives to generalize,
specialize or merge; it does not originate these directives itself. The ability to
differentiate an “‘interesting’” new concept from an uninteresting one is a non-
trivial control issue which is the focus of current work.

178

EPSTEIN

References

. R.S. Michalski, ‘“*Understanding the Nature of Learning: Issues and Research Di-

rections,” in Machine Learning: An Artificial Intelligence Approach, 2, R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell, (Eds), Tioga Publishing, Palo Alto,
1986, 3-25.

. S.L. Epstein, “*Knowledge Representation in Mathematics: A Case Study in Graph

Theory,” (Ph.D. Dissertation), Rutgers University, 1983,

. S.L. Epstein, "*On the Discovery of Mathematical Theorems,"” Proceedings of the

Tenth International Joint Conference on Artificial Intelligence, Milan, 1987, 194—
197.

. P.G. Laird, “‘Inductive Inference by Refinement,”” Proceedings of the Fifth Na-

tional Conference on Artificial Intelligence, Philadelphia, PA. 1986, 472-476.

. P. Langley, G.L. Bradshaw, and H.A. Simon, ‘‘Rediscovering Chemistry with the

BACON System,”" in Machine Learning: An Artificial Intelligence Approach, R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell (Eds), Tioga Publishing, Palo Alto,
1983, 307-329.

. P. Langley, J.M. Zytkow, H.A. Simon, and G.L. Bradshaw, *“The Search for

Regularity: Four Aspects of Scientific Discovery.'’ in Machine Learning: An Artifi-
cial Intelligence Approach, 2, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell
(Eds), Tioga Publishing, Palo Alto, 1986, 425-469.

. W.D. Lee and S.R. Ray, “*Rule Refinement Using the Probabilistic Generator,”

Proceedings of the Fifth National Joint Conference on Artificial Intelligence, Phila-
delphia, PA, 1986, 442-447.

. R.S. Michalski and R.E. Stepp, **Concept-based Clustering versus Numerical Tax-

onomy,"" Technical Report 1073, Department of Computer Science, University of
Illinois, 1981.

. R.S. Michalski and R.E. Stepp, "*Learning from Observation: Conceptual Cluster-

ing,” in Machine Learning: An Artificial Intelligence Approach, R.S. Michalski,
J.G. Carbonell, and T.M. Mitchell, (Eds), Tioga Publishing, Palo Alto, 1983, 331—
363.

. R.E. Stepp and R.S. Michalski, **Conceptual Clustering: Inventing Goal-Oriented

Classifications of Structured Objects,” in Machine Learning: An Artificial Intelli-
gence Approach, 2, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, (Eds),
Tioga Publishing, Palo Alto, 1986, 471-498.

. D.B. Lenat, **AM: An Artificial Intelligence Approach to Discovery in Mathemat-

ics,”” (Ph.D. Dissertation), Stanford University, 1976.

. S.L. Epstein, **Languages for Problem Solving in Graph Theory,” in The Role of

Language in Problem Solving, 2, North Holland, New York. 1987

. 0. Ore. American Mathematical Society Colloquium Publications, 38: Theory of

Graphs, Providence, RI, American Mathematical Society, 1962.

. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.
. J. Bondy and U. Murty, Graph Theory with Applications, North-Holland, New

York, 1976.

. R.S. Michalski, “*A Theory and Methodology of Inductive Learning,”” in Machine

Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell, and
T.M. Mitchell, (Eds), Tioga Publishing, Palo Alto, 1983, 83-134,

. T.G. Dietterich and R.S. Michalski, “*A Comparative Review of Selected Methods

for Learning from Examples,” in Machine Learning: An Artificial Intelligence
Approach, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, (Eds), Tioga Pub-
lishing, Palo Alto, 1983, 41-81.

. P.E. Utgoff, **Shift of Bias for Inductive Concept Learning,”" in Machine Learning:

An Artificial Intelligence Approach, 2, R.S. Michalski, J.G. Carbonell, and T.M.
Mitchell, (Eds), Tioga Publishing, Palo Alto, 1986, 107-148.

Copyright of International Journal of Intelligent Systems is the property of Wiley
Periodicals, Inc. 2004 and its content may not be copied or emailed to multiple sites
or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

