
Chapter 5
Learning a Mixture of Search Heuristics

Susan L. Epstein and Smiljana Petrovic

5.1 Introduction

An important goal of artificial intelligence research is to construct robust au-
tonomous artifacts whose behavior becomes increasingly expert, that is, they per-
form a particular task faster and better than the rest of us [10]. This chapter explores
the idea that, if one expert is a good decision maker, the combined recommendations
of multiple experts will serve as an even better decision maker. The conjecture that
a combination of decision makers will outperform an individual one dates at least
from the Marquis de Condorcet (1745-1794) [50]. His Jury Theorem asserted that
the judgment of a committee of competent experts, each of whom is correct with
probability greater than 0.5, is superior to the judgment of any individual expert.

It is difficult, or even impossible, to specify all the domain knowledge a program
requires in a challenging domain. Thus an expert program must learn, that is, im-
prove its behavior based on its own problem-solving experience. Machine learning
algorithms extract their knowledge from training examples, models of desired be-
havior drawn from experience. Ideally, an oracle labels each training example as
correct or incorrect, and the algorithm seeks to learn how to label not only those
examples correctly, but also new testing examples drawn from the same population.
Thus it is important that the learner not overfit, that is, not shape decisions so closely
to the training examples that it performs less well on the remainder of the population
from which they were drawn.

An autonomous learner has no oracle or teacher. It must monitor its own perfor-
mance to direct its own learning, that is, it must create its own training examples
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and gauge its own performance. In addition, the learner must somehow infer the
correct/incorrect labels for those examples from its own performance on the partic-
ular problem from the examples arose. Furthermore, the autonomous learner must
evaluate its performance more generally: Is the program doing well? Has it learned
enough? Should it start over?

Typically, one creates an autonomous learner because there is no oracle at hand.
Such is the case in the search for solutions to constraint satisfaction problems
(CSPs). The constraint literature is rich in heuristics to solve these problems, but
the efficacy of an individual heuristic may vary dramatically with the kind of CSP it
confronts, and even with the individual problem. A combination of heuristics seems
a reasonable approach, but that combination must somehow be learned. This chap-
ter begins, then, with general background on combinations of decision makers and
machine learning, followed by specific work on combinations to guide CSP search.
Subsequent sections describe ACE, an ambitious project that learns a mixture of
heuristics to solve CSPs.

5.2 Machine Learning and Mixtures of Experts

In the face of uncertainty, a prediction algorithm draws upon theory and knowledge
to forecast a correct decision. Often however, there may be multiple reasonable pre-
dictors, and it may be difficult for the system builder to select from among them.
Dietterich gives several reasons not to make such a selection, that is, to have a ma-
chine learning algorithm employ a mixture of hypotheses [11]. On limited data,
there may be different hypotheses that appear equally accurate. In that case, al-
though one could approximate the unknown true hypothesis by the simplest one,
averaging or mixing all of them together could produce a better approximation.
Moreover, even if the target function cannot be represented by any of the individual
hypotheses, their combination could produce an acceptable representation.

An ensemble method combines a set of individual hypotheses. There is substan-
tial theoretical and empirical confirmation that the average case performance of an
ensemble of hypotheses outperforms the best individual hypothesis, particularly if
they are represented as decision trees or neural networks [2, 31, 46]. Indeed, for suf-
ficiently accurate and diverse classifiers, the accuracy of an ensemble of classifiers
has been shown to increase with the number of hypotheses it combines [22]. One
well-known ensemble method is AdaBoost, which ultimately combines a sequence
of learned hypotheses, emphasizing examples misclassified by previously generated
hypotheses [14, 42].

More generally, a mixture of experts algorithm learns from a sequence of trials
how to combine its experts’ predictions [26]. In a supervised environment, a trial
has three steps: the mixture algorithm receives predictions from each of e experts,
makes its own prediction y based on them, and then receives the correct value y´.
The objective is to create a mixture algorithm that minimizes the loss function (the
distance between y and y´). The performance of such an algorithm is often mea-
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sured by its relative loss: the additional loss to that incurred on the same example
by the best individual expert. Under the worst-case assumption, mixture of experts
algorithms have been proved asymptotically close to the behavior of the best expert
[26].

5.3 Constraint Satisfaction and Heuristic Search

A CSP is a set of variables, each with a domain of values, and a set of constraints ex-
pressed as relations over subsets of those variables. In a binary CSP, each constraint
is on at most two variables. A problem class is a set of CSPs with the same charac-
terization. For example, binary CSPs in model B are characterized by <n, m, d, t>,
where n is the number of variables, m the maximum domain size, d the density (frac-
tion of constraints out of n(n−1)/2 possible constraints) and t the tightness (fraction
of possible value pairs that each constraint excludes) [19]. A binary CSP can be rep-
resented as a constraint graph, where vertices correspond to the variables (labeled
by their domains), and each edge represents a constraint between its respective vari-
ables.

A randomly generated problem class may also mandate a specific structure for its
CSPs. For example, each of the composed problems used here consists of a subgraph
(its central component) loosely joined to one or more additional subgraphs (its satel-
lites) [1]. Figure 5.1 illustrates a composed problem with two satellites. Geometric
CSPs also have non-random structure. A random geometric graph <n, D> has n
vertices, each represented by a random point in the unit square [25]. There is an
edge between two vertices if and only if their (Euclidean) distance is no larger than
D. A class of random geometric CSPs <n, D, d, t> is based on a set of random ge-
ometric graphs <n, D>. In <n, D, d, t>, the variables represent random points, and
constraints are on variables corresponding to points close to each other. Additional
edges ensure that the graph is connected. Density and tightness are given by the
parameters d and t, respectively. Figure 5.2 illustrates a geometric graph with 500
variables. Real-world CSPs typically display some non-random structure in their
constraint graphs.

Fig. 5.1 Composed problem
with two satellites
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Fig. 5.2 Geometric graph
from [25]

This chapter presents experiments on six CSP classes. Geo (the geometric prob-
lems <50, 10, 0.4, 0.82>) and Comp (the composed problems with central compo-
nent in model B with <22, 6, 0.6, 0.1>, linked to a single model B satellite with
<8, 6, 0.72, 0.45> by edges with density 0.115 and tightness 0.05) are classes of
structured CSPs. The others are model B <50, 10, 0.38, 0.2>, which is exception-
ally hard for its size (n and m); <50, 10, 0.18, 0.37>, which is the same size but
somewhat easier; <20, 30, 0.444, 0.5>, whose problems have large domains; and
<30, 8, 0.26, 0.34> which are easily compared to the other classes, but difficult
for their size. Some of these problems appeared in the First International Constraint
Solver Competition at CP-2005.

An instantiation assigns a value to all (full instantiation) or some (partial instan-
tiation) of the variables. A solution to a CSP is a full instantiation that satisfies all
the constraints. A solvable CSP has at least one solution. A solver solves a CSP if
it either finds a solution or proves that it is unsolvable, that is, that it has no solu-
tion. All problems used in the experiments reported here are randomly generated,
solvable binary CSPs with at least one solution.

Traditional (global) CSP search makes a sequence of decisions that instantiates
the variables in a problem one at a time with values from their respective domains.
After each value assignment, some form of inference detects values in the domains
of future variables (those not yet instantiated) that are incompatible with the cur-
rent instantiation. The work reported here uses the MAC-3 inference algorithm to
maintain arc consistency during search [40]. MAC-3 temporarily removes currently
unsupportable values to calculate dynamic domains that reflect the current instantia-
tion. If, after inference, every value in some future variable’s domain is inconsistent
(violates some constraint), a wipeout has occurred and the current partial instan-
tiation cannot be extended to a solution. At that point, some retraction method is
applied. Here we use chronological backtracking, which prunes the subtree (digres-
sion) rooted at an inconsistent node (assignment of values to some subset of the
variables) and withdraws the most recent value assignment(s).

The efficacy of a constraint solver is gauged by its ability to solve a problem,
along with the computational resources (CPU time and search tree size in nodes)
required to do so. Search for a CSP solution is NP-complete; the worst-case cost is
exponential in the number of variables n for any known algorithm. Often, however,
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a CSP can be solved with a cost much smaller than that of the worst case. A CSP
search algorithm specifies heuristics for variable (and possibly value) selection, an
inference method, and a backtracking method. It is also possible to restart search on
a problem, beginning over with no assignments and choosing a new first variable-
value pair for assignment.

In global search, there are two kinds of search decisions: select a variable or
select a value for a variable. Constraint researchers have devised a broad range of
variable-ordering and value-ordering heuristics to speed search. Each heuristic re-
lies on its own metric, a measure that the heuristic either maximizes or minimizes
when it makes a decision. Min domain and max degree are classic examples of these
heuristics. (A full list of the metrics for the heuristics used in these experiments ap-
pears in the Appendix.) A metric may rely upon dynamic and/or learned knowledge.
Each such heuristic may be seen as expressing a preference for choices based on the
scores returned by its metric. As demonstrated in Section 5.5.1, however, no single
heuristic is “best” on all CSP classes. Our research therefore seeks a combination of
heuristics.

In the experiments reported here, resources were controlled with a node limit that
imposed an upper bound on the number of assignments of a value to a variable dur-
ing search on a given problem. Unless otherwise noted, the node limit per problem
was 50,000 for <50, 10, 0.38, 0.2>; 20,000 for <20, 30, 0.444, 0.5>; 10,000 for
<50, 10, 0.18, 0.37>; 500 for <30, 8, 0.26, 0.34>; and 5,000 for Comp and Geo
problems. Performance was declared inadequate if at least ten out of 50 problems
went unsolved under a specified resource limit.

A good mixture of heuristics can outperform even the best individual heuristic, as
Table 5.1 demonstrates. The first line shows the best performance achieved by any
traditional single heuristic we tested. The second line illustrates the performance
of a random selection of heuristics, without any learning. (These experiments are
non-deterministic and therefore averaged over a set of ten runs.) On one class, the
sets of heuristics proved inadequate on every run, and on the other class, five runs
were inadequate and the other five dramatically underperformed every other ap-
proach. The third line shows that a good pair of heuristics, one for variable ordering
and the other for value ordering, can perform significantly better than an individual
heuristic. The last line of Table 5.1 demonstrates that a customized combination of
more than two heuristics, discovered with the methods described here, can further
improve performance. Of course, the use of more than one heuristic may increase
solution time, particularly on easier problems where a single heuristic may suffice.
On harder problems, however, increased decision time is justified by the ability to
solve more problems. This chapter addresses work on the automatic identification
of such particularly effective mixtures.
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Table 5.1: Search tree size under individual heuristics and under mixtures of heuris-
tics on two classes of problems. Each class has its own particular combination of
more than two heuristics that performs better

<20, 30, 0.444, 0.5> <50, 10, 0.38, 0.2>
Guidance Nodes Solved Time Nodes Solved Time

Best individual heuristic tested 3,403.42 100% 10.70 17,399.06 84% 79.02

Randomly selected combination
of more than two heuristics

five inadequate runs ten inadequate runs

Best pair of variable-ordering and
value-ordering heuristic identified

1,988.10 100% 17.73 10,889.00 96% 76.16

Best learned weighted
combination of more than 2
heuristics found by ACE

1,956.62 100% 29.22 8,559.66 98% 111.20

5.4 Search with More than One Heuristic

Many well-respected machine-learning methods have been applied to combine al-
gorithms to solve constraint satisfaction problems. This work can be characterized
along several dimensions: whether more than one algorithm is used on a single prob-
lem, whether the algorithms and heuristics are known or discovered, and whether
they address a single problem or a class of problems.

5.4.1 Approaches that Begin with Known Algorithms and
Heuristics

Given a set of available algorithms, one approach is to choose a single algorithm to
solve an entire problem based upon experience with other problems (not necessarily
in the same class). Case-based reasoning has been used this way for CSP search. A
feature vector characterizes a solved CSP and points to a set of strategies (a model,
a search algorithm, a variable-ordering heuristic, and a value-ordering heuristic)
appropriate for that instance [17]. Given a new CSP, majority voting by strategies
associated with similar CSPs chooses a strategy for the current one. In a more elab-
orate single-selection method, a Support Vector Machine (SVM) with a Gaussian
kernel learns to select the best heuristic during search at checkpoints parameterized
by the user [3]. Training instances are described by static features of a CSP, dynamic
features of the current partial instantiation, and labels on each checkpoint that in-
dicate whether each heuristic has a better runtime than the default heuristic there.
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The solver applies the default heuristic initially but, after restart, replaces the default
with a randomly selected heuristic chosen from those that the SVM preferred.

A slightly more complex approach permits a different individual heuristic to
make the decisions at each step, again based on experience solving other problems
not necessarily in the same class. A hyperheuristic decides which heuristic to apply
at each decision step during search [7]. A hyperheuristic is a set of problem states,
each labeled by a condition-action rule of the form “if the state has these properties,
then apply this heuristic.” A genetic algorithm evolves a hyperheuristic for a given
set of states [45]. To solve a CSP, the best among the evolved hyperheuristics is
chosen, and then the heuristic associated with the problem state most similar to the
current partial instantiation is applied.

Alternatively, a solver can be built for a single CSP from a set of known search
algorithms that take turns searching. For example, REBA (Reduced Exceptional
Behavior Algorithm) applies more complex algorithms only to harder problems
[5]. It begins search with a simple algorithm, and when there is no indication of
progress, switches to a more complex algorithm. If necessary, this process can con-
tinue through a prespecified sequence of complex algorithms. The complexity rank-
ing can be tailored to a given class of CSPs, and is usually based on the median cost
of solution and an algorithm’s sensitivity to exceptionally hard problems from the
class. In general the most complex of these algorithms have better worst-case perfor-
mance but a higher average cost when applied to classes with many easy problems
that could be quickly solved by simpler algorithms. Another approach that alter-
nates among solvers is CPHydra. It maintains a database of cases on not necessarily
similar CSPs, indexed both by static problem features and by modeling selections
[30]. Each case includes the time each solver available to CPHydra took to solve
the problem. CPHydra retrieves the most similar cases and uses them to generate a
schedule that interleaves the fastest solvers on those cases.

It is also possible to race algorithms against one another to solve a single prob-
lem. An algorithm portfolio selects a subset from among its available algorithms ac-
cording to some schedule. Each of these algorithms is run in parallel to the others (or
interleaved on a single processor with the same priority), until the fastest one solves
the problem [21]. With a dynamic algorithm portfolio, schedule selection changes
the proportion of CPU time allocated to each heuristic during search. Dynamic al-
gorithm portfolios favor more promising algorithms [16] or improve average-case
running time relative to the fastest individual solver [44]. A particularly successful
example is SATzilla-07. It builds a portfolio for each SAT (propositional satisfiabil-
ity) problem instance online as it searches [49]. Based on features of the instance
and each algorithm’s past performance, SATzilla-07 uses linear regression to build
a computationally inexpensive model of empirical hardness that predicts each algo-
rithm’s runtime on a given SAT problem.
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5.4.2 Approaches that Discover Their Own Algorithms

Other autonomous learners seek to discover their own heuristics, given inference
and backtracking mechanisms. One approach is to discover a combination of exist-
ing algorithms appropriate for a class of problems. For example, Multi-TAC learns
an ordered list of variable-ordering heuristics for a given class of CSPs [28]. Begin-
ning with an initially empty list of heuristics, each remaining heuristic is attached to
the parent to create a different child. The utility of a child is the number of instances
it solves within a given time limit, with total time as a tiebreaker. The child with the
highest utility becomes the new parent. This process repeats recursively until it does
not produce any child that improves upon its parent. The resulting list is consulted
in order. Whenever one heuristic cannot discriminate among the variables, those it
ranks at the top are forwarded to the next heuristic on the list. Another way to link a
class of problems to a combination of algorithms is to construct a class description
based on the algorithms’ performance. For example, one effort constructs and stores
portfolios for quantified Boolean formulae that are generalizations of SAT problems
[41].

Local search is an alternative paradigm to global search. Local search only con-
siders full instantiations, and moves to another full instantiation that changes the
value of some metric. Heuristics specify the metric and how to select among instanti-
ations that qualify. Multiple search heuristics have been integrated with value-biased
stochastic sampling [9]. On a given problem instance, multiple restarts sample the
performance of different base heuristics. Then the program applies extreme value
theory to construct solution quality distributions for each heuristic, and uses this
information to bias the selection of a heuristic on subsequent iterations. Extensive
research has also been conducted on optimization problems to learn which low-level
local search heuristics should be applied in a region of the solution space [8]. One
approach combined local search heuristics for SAT problems [29]. Each step chose
a constraint to be adjusted based on some measure of its inconsistency in the current
instantiation. Then a heuristic was selected probabilistically, based on its expected
utility value (ability to ameliorate the violation of that constraint). All utility values
were initially equal, and then positively or negatively reinforced based on the dif-
ference between the current total cost and the total cost the last time that constraint
was selected.

The building blocks for a new algorithm need not be standalone algorithms them-
selves. For example, CLASS discovers local search variable-ordering heuristics for
a class of SAT problems with a genetic algorithm on prespecified heuristic primi-
tives [15]. Its primitives describe the currently satisfied clauses and search experi-
ence. CLASS uses them to construct LISP-like s-expressions that represent versions
of standard local search variable-selection heuristics. Its initial population is a set of
randomly generated expressions. Each population is scored by its performance on a
set of problems. Then, to construct the next generation, instead of using traditional
crossover and mutation, CLASS creates ten new children from its primitives and
makes the ten lowest-scoring expressions less likely to survive. The best heuristic
found during the course of the search is returned.
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5.5 A Plan for Autonomous Search

As constraint satisfaction is increasingly applied to real-world problems, some work
on mixtures of heuristics is more applicable than others. Local search, for exam-
ple, will not halt on an unsolvable problem, and many real-world problems are un-
solvable. Classes of problems recur, particularly in real-world environments (e.g.,
scheduling the same factory every week), and so it seems reasonable to learn to
solve a class of CSPs rather than address each new problem in isolation. The suc-
cess of a case-based method depends in large part on its index and ability to detect
similarity, but real-world CSPs vary broadly, and that breadth challenges both the
index and the similarity matching. Methods that learn heuristics are designed to re-
place the traditional heuristics, which perform far better on some problem classes
than on others. Nonetheless, the research supporting these heuristics is extensive,
and when they work, they work very well; discarding them seems premature.

The remainder of this chapter therefore uses global search on a class of similar
CSPs with a large set of known heuristics. Although there are a great many well-
tested heuristics, the successful methods that combine or interleave them have dealt
with relatively few candidates (possible heuristics), despite the burgeoning litera-
ture. There are three challenges here: which candidates to consider for a mixture,
how to extract training examples, and how autonomous search should gauge its own
performance.

5.5.1 Candidate Heuristics

Learning is necessary for CSP solutions because even well-trusted individual heuris-
tics vary dramatically in their performance on different classes. Consider, for exam-
ple, the performance of five popular variable-ordering heuristics on the three classes
in Table 5.2. Min-domain/dynamic-degree is the most successful on <20, 30, 0.444,
0.5> problems, but it is inadequate on Comp problems.

Table 5.2: Average number of nodes explored by traditional variable-ordering
heuristics (with lexical value ordering) on 50 problems from each of three classes.
The best (in bold) and the worst (in italics) performance by a single heuristic vary
with the problem class. Problem classes were defined in Section 5.3

Geo Comp <20, 30, 0.444, 0.5>
Heuristics Nodes Solved Nodes Solved Nodes Solved

Min-domain/dynamic-degree 258.1 98% inadequate 3403.4 100%
Min-dynamic-domain/weighted-degree 246.4 100% 57.67 100% 3534.3 100%
Min-domain/static-degree 254.6 98% inadequate 3561.3 100%
Max-static-degree 397.7 98% inadequate 4742.1 96%
Max-weighted-degree 343.3 98% 50.44 100% 5827.9 98%
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On real-world problems and on problems with non-random structure, the oppo-
site of a traditional heuristic may provide better guidance during search [33, 27, 32].
The dual of a heuristic reverses the import of its metric (e.g., max domain is the dual
of min domain). Table 5.3 demonstrates the superior performance of some duals on
Comp problems. Recall that a Comp problem has a central component that is sub-
stantially larger, looser (has lower tightness), and sparser (has lower density) than
its satellite. Once a solution to the subproblem defined by the satellite is found, it is
relatively easy to extend that solution to the looser and sparser central component.
In contrast, if one extends a partial solution for the subproblem defined by the cen-
tral component to the satellite variables, inconsistencies eventually arise deep within
the search tree. Despite the low density of the central component in such a problem,
its variables’ degrees are often larger than those in the significantly smaller satel-
lite. The central component proves particularly attractive to two of the traditional
heuristics in Table 5.2 , which then flounder there. We emphasize again that the
characteristics of such composed problems are often found in real-world problems.
Our approach, therefore, is to take as candidates many popular heuristics, along with
their duals.

Table 5.3: Average number of nodes explored by three traditional heuristics (in ital-
ics) and their duals on Comp problems (described in Section 5.3). Note the better
performance of two of the duals here

Heuristics Nodes Solved

Min-static-degree 33.15 100%
Max-static-degree inadequate —
Max-domain/dynamic-degree 532.22 95%
Min-domain/dynamic-degree inadequate —
Max-domain 1168.71 90%
Min-domain 373.22 97%

5.5.2 Training Examples

From a successful search, the solver extracts both positive and negative training
examples. Each training example is the current instantiation and the decision made
there. Here, too, difficulties arise. The search trace is not necessarily the best way
to solve that CSP. There may have been a better (smaller search tree or less elapsed
time) way to solve it. Thus the training examples selected may not be those an
oracle would have provided. Nonetheless, decisions not subsequently retracted on
the path to the solution can be considered better than those that were retracted, so
we take them as positive examples. We also know that the roots of retracted subtrees
(regressions) were errors, and therefore take them as negative examples. (Note that
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Fig. 5.3 The extraction of
positive and negative training
instances from the trace of a
successful CSP search

assigning value v to variable X is not an error if in some solution of the problem
X = v; what we address here is whether assigning v to X given the current partial
instantiation is an error.)

As in Figure 5.3, positive training instances are those made along an error-free
path extracted from a solution trace. Negative training instances are value selec-
tions that led to a digression, as well as variable selections whose subsequent value
assignment failed. (Given correct value selections, any variable ordering can pro-
duce a backtrack-free solution; ACE deems a variable selection inadequate if the
subsequent value assignment to that variable failed.) Decisions below the root of a
digression do not become training instances.

Although machine learning assumes that training and testing examples come
from the same population, a solver’s experience in a class of CSPs will not be uni-
form, and thus the solver is likely to be misled. Despite the common characterization
of the examples, the difficulty a solver has on problems in the same class has been
shown to have a heavy tail, that is, to have a Pareto-normal distribution. This means
that a portion of problems in the class will be very difficult for the solver’s algo-
rithm, and that portion will not decrease exponentially. Furthermore, although CSPs
in the same class are ostensibly similar, there is evidence that their difficulty may
vary substantially for a given search algorithm [23]. Thus our learner will inevitably
be confronted with a non-uniform, heuristically selected set of training examples.

5.5.3 Performance Assessment

CSP search performance is traditionally gauged by the size of the search tree ex-
panded (number of partial instantiations) and elapsed CPU time. Here, a solver ex-
ecutes in a run of two phases: a learning phase during which it attempts to solve a
sequence of CSPs from a given class, and a testing phase during which it attempts to
solve a sequence of hitherto unseen problems drawn from the same class. Because
the class is of uneven difficulty, the problems in the learning phase may not be in-
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dicative of the class as a whole. Thus we average the solver’s performance over an
experiment, here a set of ten runs.

Ideally, a solver should also consider its performance more broadly. It should be
aware of its general progress on the class. If it believes it can learn no more, it should
terminate learning itself and proceed to testing. And if it believes that learning is not
going well, it should elect to discard what it has learned and start over. The solver
constructed to meet these expectations is called ACE.

5.6 ACE

When ACE (the Adaptive Constraint Engine) learns to solve a class of binary CSPs,
it customizes a weighted mixture of heuristics for the class [13]. ACE is based on
FORR, an architecture for the development of expertise from multiple heuristics
[12]. ACE’s search algorithm (in Figure 5.4) alternately selects a variable and then
selects a value for it from its domain. The size of the resultant search tree depends
upon the order in which values and variables are selected.

5.6.1 Decision Hierarchy

Decision-making procedures in ACE are called Advisors. They are organized into
three tiers, and presented with the current set of choices (variables or values). Tier-1
Advisors are correct and quick, and preordered by the user. If any of them approves a
choice, it is executed. (For example, Victory recommends any value from the domain
of the final unassigned variable. Since inference has already removed inconsistent
values, any remaining value produces a solution.) Disapproval from any tier-1 Advi-
sor eliminates some subset of choices; the remaining choices are passed to the next
Advisor. (The set of choices is not permitted to go empty.) Tier-2 Advisors address
subgoals; they are outside the scope of this chapter and not used in the experiments
reported here.

The work described here focuses on the Advisors in tier 3. Each tier-3 Advisor
comments upon (produces a strength for) some of its favored choices, those whose
metric scores are among the f most favored. Because a metric can return identical
values for different choices, an Advisor usually makes many more than f comments.
(Here f = 5, unless otherwise stated.) The strength s(A, c) is the degree of support
from Advisor A for choice c. Each tier-3 Advisor’s view is based on a descriptive
metric. All tier-3 Advisors are consulted together. As in Figure 5.4, a decision in
tier 3 is made by weighted voting, where the strength s(A, c) given to choice c by
Advisor A is multiplied by the weight w(A) of Advisor A. All weights are initialized
to 0.05, and then learned for a class of problems by the processes described below.
The discount factor q(A) in (0,1] modulates the influence of Advisor A until it has
commented often enough during learning. As data is observed on A, q(A) moves
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Fig. 5.4: Search in ACE with a weighted mixture of variable-ordering Advisors from
Avar, and value-ordering Advisors fromAval . q(A) is the discount factor. w(A) is the
weight of Advisor A. s(A, c) is the strength of Advisor A for choice c.

Search (p, Avar , Aval )
Until problem p is solved or the allocated resources are exhausted
Select unvalued variable v

v = argmax
cvar∈V

∑
A∈Avar

q(A) ·w(A) · s(A,cvar)

Select value d for variable v from v’s domain Dv

d = argmax
cval∈Dv

∑
A∈Aval

q(A) ·w(A) · s(A,cval)

Update domains of all unvalued variables *inference*
Unless domains of all unvalued variables are nonempty

return to a previous alternative value *retraction*

toward 1, effectively increasing the impact of A on a given class as its learned weight
becomes more trustworthy.

Weighted voting selects the choice with the greatest sum of weighted strengths
from all Advisors. (Ties are broken randomly.) Each tier-3 Advisor’s heuristic view
is based on a descriptive metric. For each metric, there is a dual pair of Advisors, one
that favors smaller values for the metric and one that favors larger values. Typically,
only one of the pair has been reported in the literature as a heuristic. Weights are
learned from problem-solving experience.

5.6.2 Weight Learning

Given a class of binary, solvable problems, ACE’s goal is to formulate a mixture
of Advisors whose joint decisions lead to effective search on a class of CSPs. Its
learning scenario specifies that the learner seeks only one solution to one problem
at a time, and learns only from problems that it solves. There is no information
about whether a single different decision might have produced a far smaller search
tree. This is therefore a form of incremental, self-supervised reinforcement learning
based only on limited search experience and incomplete information. As a result,
any weight-learning algorithm for ACE must select training examples from which
to learn, determine what constitutes a heuristic’s support for a decision, and specify
a way to assign credits and penalties.

ACE learns weights only after it solves a problem. ACE’s two most successful ap-
proaches to weight learning are Digression-based Weight Learning (DWL) [13] and
Relative Support Weight Learning (RSWL) [35]. It uses them to update the weights
of its tier-3 Advisors. Both weight-learning algorithms glean training instances from
their own (likely imperfect) successful searches (as described in Section 5.5.2).
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Fig. 5.5: Learning weights for Advisors. The Search algorithm is defined in Fig-
ure 5.4

Learn Weights
Initialize all weights to 0.05
Until termination of the learning phase

Identify learning problem p
Search ( p, Avar , Aval )
If p is solved

then for each training instance t from p
for each Advisor A that supports t

when t is a positive training instance, increase w(A) *credit*
when t is a negative training instance, decrease w(A) *penalize*

else when full restart criteria are satisfied
initialize all weights to 0.05

A weight-learning algorithm defines what it means to support a decision. Under
DWL, an Advisor is said to support only those decisions to which it assigned the
highest strength. In contrast, RSWL considers all strengths. The relative support
of an Advisor for a choice is the normalized difference between the strength the
Advisor assigned to that choice and the average strength it assigned to all available
choices at that decision point. For RSWL, an Advisor supports a choice if its relative
support for that choice is positive, and opposes that choice if its relative support is
negative. As in Figure 5.5, heuristics that support positive training instances receive
credits, and heuristics that support negative training instances receive penalties. For
both DWL and RSWL, an Advisor’s weight is the averaged sum of the credits and
penalties it receives, but the two weight-learning algorithms determine credits and
penalties differently.

DWL reinforces Advisors’ weights based on the size of the search tree and the
size of each digression. An Advisor that supports a positive training instance is
rewarded with a weight increment that depends upon the size of the search tree,
relative to the minimal size of the search tree in all previous problems. An Advisor
that supports a negative training instance is penalized in proportion to the number of
search nodes in the resultant digression. Small search trees indicate a good variable
order, so the variable-ordering Advisors that support positive training instances from
a successful small tree are highly rewarded. For value ordering, however, a small
search tree is interpreted as an indication that the problem was relatively easy (i.e.,
any value selection would likely have led to a solution), and therefore results in only
small weight increments. In contrast, a successful but large search tree suggests that
a problem was relatively difficult, so value-ordering Advisors that support positive
training instances from it receive substantial weight increments [13].

RSWL is more local in nature. With each training instance RSWL reinforces
weights based upon the distribution of each heuristic’s preferences across all the
available choices. RSWL reinforces weights based both upon relative support and
upon an estimate of how difficult it is to make the correct decision. For example, an
Advisor that strongly singles out the correct decision in a positive training instance
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receives more credit than a less discriminating Advisor, and the penalty for a wrong
choice from among a few is harsher than for a wrong choice from among many.

In addition to an input set of Advisors, ACE has one benchmark for variable
ordering and another for value ordering. Each benchmark Advisor models random
advice; it makes random comments with random strengths. Although the bench-
marks’ comments never participate in decision making, the benchmarks themselves
earn weights. That weight serves as a filter for the benchmark’s associated Advisors;
an Advisor must have a learned weight higher than its benchmark’s (that is, provide
better than random advice) to be constructive.

5.7 Techniques that Improve Learning

This section describes four techniques that use both search performance and prob-
lem difficulty to adapt learning: full restart, random subsets of heuristics, consid-
eration of decision difficulty, and the nuances of preferences. Section 8 provides
empirical demonstrations of their efficacy.

5.7.1 Full Restart

From a large initial list of heuristics that contains minimizing and maximizing ver-
sions of many metrics, some perform poorly on a particular class of problems (class-
inappropriate heuristics) while others perform well (class-appropriate heuristics).
In some cases, class-inappropriate heuristics occasionally acquire high weights on
an initial problem and then control subsequent decisions. As a result, subsequent
problems may have extremely large search trees.

Given unlimited resources, DWL will recover from class-inappropriate heuristics
with high weights, because they typically generate large search trees and large di-
gressions. In response, DWL will impose large penalties and provide small credits to
the variable-ordering Advisors that lead decisions. With their significantly reduced
weights, class-inappropriate Advisors will no longer dominate the class-appropriate
Advisors. Nonetheless, solving a hard problem without good heuristics is compu-
tationally expensive. If adequate resources are unavailable under a given node limit
and a problem goes unsolved, no weight changes occur at all.

Under full restart, however, ACE monitors the frequency and the order of un-
solved problems in the problem sequence. If it deems the current learning attempt
not promising, ACE abandons the learning process (and any learned weights) and
begins learning on new problems with freshly initialized weights [34]. Note that full
restart is different from restart on an individual problem, discussed in Section 5.3,
which diversifies the search for a solution to that problem alone [20]. We focus here
only on the impact of full restart of the entire learning process.
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The node limit is a critical parameter for full restart. Because ACE abandons a
problem if it does not find a solution within the node limit, the node limit is the
criterion for unsuccessful search. Since the full restart threshold directly depends
upon the number of failures, the node limit is the performance standard for full
restart. The node limit also controls resources; lengthy searches permitted under
high node limits are expensive.

Resource limits and full restart impact the cost of learning in complex ways. With
higher node limits, weights can eventually recover without the use of full restart,
but recovery is more expensive. With lower node limits, the cost of learning (total
number of nodes across all learning problems) with full restart is slightly higher
than without it. The learner fails on all the difficult problems, and even on some
of medium difficulty, repeatedly triggering full restart until the weight profile (the
set of tier-3 weights) is good enough to solve almost all the problems. Full restart
abandons some problems and uses additional problems, which increases the cost
of learning. The difference in cost is small, however, since each problem’s cost
is subject to a relatively low node limit. As the node limit increases, full restart
produces fewer inadequate runs, but at a higher cost. It takes longer to trigger full
restart because the learned weight profile is deemed good enough and failures are
less frequent. Moreover, with a high node limit, every failure is expensive. When
full restart eventually triggers, the prospect of relatively extensive effort on further
problems is gone. Because it detects and eliminates unpromising learning runs early,
full restart avoids many costly searches and drastically reduces overall learning cost.
Experimental results and further discussion of full restart appear in Section 5.8.1.

5.7.2 Learning with Random Subsets

The interaction among heuristics can also serve as a filter during learning. Given a
large and inconsistent initial set of heuristics, many class-inappropriate ones may
combine to make bad decisions, and thereby make it difficult to solve any problem
within a given node limit. Because only solved problems provide training instances
for weight learning, no learning can take place until some problem is solved. Rather
than consult all its Advisors at once, ACE can randomly select a new subset of
Advisors for each problem, consult them, make decisions based on their comments,
and update only their weights [37]. This method, learning with random subsets,
eventually uses a subset in which class-appropriate heuristics predominate and agree
on choices that solve a problem.

It is possible to preprocess individual heuristics on representatives of a prob-
lem class (possibly by racing [4]), and then eliminate from the candidate heuris-
tics those with poor individual performance. That approach, however, requires mul-
tiple solution attempts on some set of problems. Multiple individual runs would
consume more computational resources, because many different Advisors reference
(and share the values of) the same metrics in our approach. Moreover, elimination
of poorly performing heuristics after preprocessing might prevent the discovery of
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important synergies (e.g., tiebreakers) between eliminated heuristics and retained
ones.

For a fixed node limit and set of heuristics, an underlying assumption here is that
the ratio of class-appropriate to class-inappropriate heuristics determines whether a
problem is likely to be solved. When class-inappropriate heuristics predominate in a
set of heuristics, the problem is unlikely to be solved and no learning occurs. The se-
lection of a new random subset of heuristics for each new problem, however, should
eventually produce some subset S with a majority of class-appropriate heuristics that
solves its problem within a reasonable resource limit. As a result, the Advisors in S
will have their weights adjusted. On the next problem, the new random subset S′ is
likely to contain some low-weight Advisors outside of S, and some reselected from
S. Any previously successful Advisors from S that are selected for S′ will have larger
positive weights than the other Advisors in S′, and will therefore heavily influence
search decisions. If S succeeded because it contained more class-appropriate than
class-inappropriate heuristics, S ∩ S′ is also likely to have more class-appropriate
heuristics and therefore solve the new problem, so again those that participate in
correct decisions will be rewarded. On the other hand, in the less likely case that the
majority of S ∩ S′ consists of reinforced, class-inappropriate heuristics, the problem
will likely go unsolved, and the class-inappropriate heuristics will not be rewarded
further.

Learning with random subsets manages a substantial set of heuristics, most of
which may be class-inappropriate and contradictory. It results in fewer early failures
(problems that go unsolved under initial weights, before any learning occurs) within
the given node limit, and thereby makes training instances available for learning
sooner. Learning with random subsets is also expedited by faster decisions during
learning because it often solicits advice from fewer Advisors.

When there are roughly as many class-appropriate as class-inappropriate Advi-
sors, the subset sizes are less important than when class-inappropriate Advisors out-
number class-appropriate ones. Intuitively, if there are few class-appropriate heuris-
tics available, the probability that they are selected as a majority in a larger sub-
set is small (indeed, 0 if the subset size is more than twice the number of class-
appropriate Advisors). For example, given a class-appropriate Advisors and b class-
inappropriate Advisors, the probability that the majority of a subset of r randomly-
selected Advisors is class-appropriate is

p =
r

∑
k=⌊ r

2+1⌋

(
a
k

)(
b

r− k

)
(

a+b
r

) (5.1)

and the expected number of trials until the subset has a majority of class-appropriate
Advisors is

p =
∞

∑
i=1

i(1− p)i−1 p =
1
p
. (5.2)
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When there are more class-inappropriate Advisors (a < b), a smaller set is more
likely to have a majority of class-appropriate Advisors. For example, if a = 6, b =
9, and r = 4, equation (1) evaluates to 0.14 and equation (2) to 7. For a = 6, b = 9,
and r = 10, however, the probability of a randomly selected subset with a majority
of class-appropriate heuristics is only 0.04 and the expected number of trials until
the subset has a majority of class-appropriate Advisors is 23.8.

Weight convergence is linked to subset size. Weights converge faster when sub-
sets are larger. When the random subsets are smaller, subsequent random subsets
are less likely to overlap with those that preceded them, and therefore less likely to
include Advisors whose weights have been revised. As a result, failures occur often,
even after some class-appropriate heuristics receive high weights. ACE monitors
its learning progress, and can adapt the size of random subsets. In this scenario,
random subsets are initially small, but as learning progresses and more Advisors
participate and obtain weights, the size of the random subsets increase. This makes
overlap more likely, and thereby speeds learning. Experimental results and further
discussion of learning with random subsets appear in Section 5.8.2.

5.7.3 Learning Based on Decision Difficulty

Correct easy decisions are less significant for learning; it is correct difficult deci-
sions that are noteworthy. Thus it may be constructive to estimate the difficulty of
each decision the solver faces as if it were a fresh problem, and adjust Advisors’
weights accordingly. Our rationale for this is that, on easy problems, any decision
leads to a solution. Credit for an easy decision effectively increases the weight of
Advisors that support it, but if the decision was made during search, those Advisors
probably already had high weights. ACE addresses this issue with two algorithms,
each dependent upon a single parameter: RSWL-κ and RSWL-d.

Constrainedness, as measured by κ , has traditionally been used to identify hard
classes of CSPs [18]. κ depends upon n, d, m, and t, as defined in Section 3:

κ =
n−1

2
·d · logm

1
1− t

. (5.3)

For every search algorithm, and for fixed n and m, hard problem classes have κ
close to 1. RSWL-κ uses equation (3) to measure the difficulty κP of subproblem P
at each decision point. For a given parameter k, RSWL-κ gives credit to an Advisor
only when it supports a positive training instance derived from a search state where
|κP–1|< k. RSWL-κ penalizes an Advisor only when it supports a negative training
instance derived from a search state where |κP –1| > k. The calculation of κP on
every training instance is computationally expensive.

RSWL-d uses the number of unassigned variables at the current search node as a
rough, quick estimate of problem hardness. Decisions at the top of the search tree
are known to be more difficult [38]. For a given parameter h, no penalty is given at
all for any decision in the top h percent of the nodes in the search tree, and no credit



5 Learning a Mixture of Search Heuristics 117

Fig. 5.6 A constraint graph
for a CSP problem on 12
variables

is given for any decision below them. Experimental results and further discussion of
learning with decision difficulty appear in Section 5.8.3.

5.7.4 Combining Heuristics’ Preferences

The preferences expressed by heuristics can be used to make decisions during
search. The intuition here is that comparative nuances, as expressed by preferences,
contain more information than just what is ”best.” Recall that each heuristic reflects
an underlying metric that returns a score for each possible choice. Comparative
opinions (here, heuristics’ preferences) can be exploited in a variety of ways that
consider both the scores returned by the metrics on which these heuristics rely and
the distributions of those scores across a set of possible choices.

The simplest way to combine heuristics’ preferences is to scale them into some
common range. Mere ranking of these scores, however, reflects only the preferences
for one choice over another, not the extent to which one choice is preferred over
another. For example in Figure 5.6, the degrees of variables X and Y1 differ by 9,
while the degrees of Y1 and Z differ by only 1. Nonetheless, ranking by degree
assigns equally spaced strengths (3, 2 and 1, respectively) to X, Y1, and Z. Ranking
also ignores how many choices share the same score. For example, in Table 5.4,
the ranks of choices Y1 and Z differ by only 1, although the heuristic prefers only
one choice over Y1 and 11 choices over Z. We have explored several methods that
express Advisors’ preferences and address those shortcomings [36].

Linear interpolation not only considers the relative position of scores, but also
the actual differences between them. Under linear interpolation, strength differences
are proportional to score differences. For example, in Table 5.4, strengths can be
determined by the value of the linear function through the points (11, 3) and (1, 1).
Instead of strength 2 for all the Y variables, linear interpolation gives them strength
1.2, which is closer to the strength 1 given to variable Z, because the degrees of the Y
variables are closer to the degree of Z. The significantly higher degree of variable X
is reflected in the distance between its strength and those given to the other variables.
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Table 5.4: The impact of different preference expression methods on a single metric

Variables X Y1,Y2,...,Y10 Z

Degree metric scores 11 2 1
Rank strength 3 2 1
Linear strength 3.0 1.2 1.0
Borda-w strength 11.0 1.0 0.0
Borda-wt strength 12.0 11.0 1.0

The Borda methods were inspired by an election method devised by Jean-Charles
de Borda in the late eighteenth century [39]. Borda methods consider the total num-
ber of available choices, the number of choices with a smaller score and the number
of choices with an equal score. Thus the strength for a choice is based on its position
relative to the other choices.

The first Borda method, Borda-w, awards a point for each win (metric score
higher than the score of some other commented choice). Examples for Borda-w
strengths are also shown in Table 5.4. The set of lowest-scoring variables (here, only
Z) always has strength 0. Because every Y variable outscored only Z, the strength
of any Y variable is 1. The highest-scoring choice X outscored 11 choices, so X’s
strength is 11.

The second Borda method, Borda-wt, awards one point for each win and one
point for each tie (score equal to the score of some other choice). It can be interpreted
as emphasizing losses. The highest-scoring set of variables (here, only X) always has
strength equal to the number of variables to be scored. For example, in Table 5.4, no
choice outscored the highest-scoring choice X, so its strength is 12, one choice (X)
outscored the Y variables, so their strengths are reduced by one point (12 – 1 = 11),
and 11 choices outscored Z, resulting in strength 1.

The difference between the two Borda methods is evident when many choices
share the same score. Borda-w considers only how many choices score lower, so that
a large subset results in a big gap in strength between that subset and the previous
(more preferred) one. Under Borda-wt, a large subset results in a big gap in strength
between that subset and the next (less preferred) one. In Table 5.4, for example, the
10 Y variables share the same score. Under Borda-w, the difference between the
strength of every Y variable and X is 10, while the difference between the strength
of any Y variable and Z is only 1. Under Borda-wt, however, the difference between
the strength of any Y and X is only 1, while the difference between the strength of
any Y and Z is 10. The Borda approach can be further emphasized by making a point
inversely proportional to the number of subsets of tied values. Experimental results
and further discussion of learning with preferences using this emphasis appear in
Section 5.8.4.
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5.8 Results

The methods in the previous section are investigated here with ACE. As described
in Section 5.5.3, each run under ACE is a learning phase followed by a testing
phase. During a learning phase ACE refines its Advisor weights; the testing phase
provides a sequence of fresh problems with learning turned off. All of the following
experiments average results across ten runs, and differences cited are statistically
significant at the 95% confidence level.

In the experiments that follow, learning terminated after 30 problems, counting
from the first solved problem, or terminated if no problem in the first 30 was solved
at all. Under full restart, more learning problems can be used, but the upper bound
for the total number of problems in a learning phase was always 80. For each prob-
lem class, every testing phase used the same 50 problems. When any ten of the 50
testing problems went unsolved within the node limit, learning in that run was de-
clared inadequate and further testing was halted. In every learning phase, ACE had
access to 40 tier-3 Advisors, 28 for variable selection and 12 for value selection
(described in the Appendix). During a testing phase, ACE used only those Advisors
whose learned weights exceeded those of their respective benchmarks.

5.8.1 Full Restart Improves Performance

The benefits of full restart are illustrated here on <30, 8, 0.26, 0.34> problems
with DWL, where the node limit during learning is treated as a parameter and the
node limit during testing is 10,000 nodes. A run was declared successful if testing
was not halted due to repeated failures. The learning cost is the total number of
nodes during the learning phase of a run, calculated as the product of the average
number of nodes per problem and the average number of problems per run. The
restart strategy is defined by a full restart threshold (k, l), which performs a full
restart after failure on k problems out of the last l. (Here, k = 3 and l = 4.) This
seeks to avoid full restarts when multiple but sporadic failures are actually due to
uneven problem difficulty rather than to an inadequate weight profile. Problems that
went unsolved under initial weights before any learning occurred (early failures)
were not counted toward full restart. If the first 30 problems went unsolved under
the initial weights, learning was terminated and the run judged unsuccessful. The
learner’s performance here is measured by the number of successful runs (out of
ten) and the learning cost across a range of node limits.

Under every node limit tested, full restart produced more runs that were suc-
cessful, as Figure 5.7 illustrates. At lower node limits, Figure 5.8 shows that better
testing performance came with a learning cost similar to or slightly higher than the
cost without full restart. At higher node limits, the learning cost was considerably
lower with full restart. With very low node limits (200 or 300 nodes), even with
full restart DWL could not solve all the problems. During learning, many problems
went unsolved under a low node limit and therefore did not provide training in-
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Fig. 5.7 Number of suc-
cessful runs (out of ten) on
<30, 8, 0.26, 0.34> problems
under different node limits

stances. On some (inadequate) runs, no solution was found to any of the first 30
problems, so learning was terminated without any weight changes. When the node
limit was somewhat higher (400 nodes), more problems were solved, more training
instances became available and more runs were successful. These reasonably low
node limits set a high standard for the learner; only weight profiles well tuned to the
class will solve problems within them and thereby provide good training instances.
Further increases in the node limit (500, 600, 700 and 800 nodes), however, did
not further increase the number of successful runs. Under higher node limits, prob-
lems were solved even with weight profiles that were not particularly good for the
class, and may have produced training instances that were not appropriate. Under
extremely high node limits (5,000 nodes), problems were solved even under inad-
equate weight profiles, but the weight-learning mechanism was able to recover a
good weight profile, and again the number of successful runs increased.

Similar performance was observed under RSWL and on Geo and the other model
B classes identified in Section 5.3, but not on the Comp problems. Some Comp
problems go unsolved under any node limit, while many others are solved. Because
failures there are sporadic, they do not trigger full restart. The use of full restart on
them does not improve learning, but it does not harm it either. (Data omitted.) Full
restart is therefore used throughout the remainder of these experiments.

Fig. 5.8 Learning cost, mea-
sured by the average num-
ber of nodes per run, on
<30, 8, 0.26, 0.34> problems
under different node limits



5 Learning a Mixture of Search Heuristics 121

Fig. 5.9: Weights of eight variable-ordering Advisors and their common benchmark
during learning after each of 30 problems in <50, 10, 0.38, 0.2> on a single run

5.8.2 Random Subsets Improve Performance

When the full complement of Advisors was present but resource limits were strict,
even with full restart ACE sometimes failed to solve problems in some diffi-
cult classes. Random subsets corrected this. Figure 5.9 illustrates weight conver-
gence during learning with random subsets. On this run some Advisors (e.g., Min-
domain/dynamic-degree and Min-static-degree) recovered from initially inadequate
weights. The figure tracks the weights of eight variable-ordering heuristics and their
common benchmark (described in Section 5.6.2) after each of 30 problems. Here the
problems were drawn from <50, 10, 0.38, 0.2>, and 30% of the variable-ordering
Advisors and 30% of the value-ordering Advisors were randomly selected for each
problem. Plateaus in weights correspond to problems where the particular heuris-
tic was not selected for the current random subset, or the problem went unsolved,
so that no learning or weight changes occurred. The first four problems were early
failures (problems that went unsolved under initial weights, before any learning
occurred). When the fifth problem was solved, some class-inappropriate Advisors
received high weights from its training instances. On the next few problems, either
highly weighted but class-inappropriate heuristics were reselected and the problem
went unsolved and no weights changed, or some class-appropriate Advisors were
selected and gained high weights. Eventually the latter began to dominate decisions,
so that the disagreeing class-inappropriate Advisors had their weights reduced. Af-
ter the 21st problem, when the weight of Min-static-connected-edges had signifi-
cantly decreased, the weights clearly separated the class-appropriate Advisors from
the class-inappropriate ones. Afterwards, as learning progressed, the weights stabi-
lized.

Experiments that illustrate the benefits of random subsets tested four ways to
choose the Advisors from each problem:
1. All used all the Advisors on every problem.
2. Fixed chose a fixed percentage q (30% or 70%), and then chose q variable-

ordering Advisors and q value-ordering Advisors, without replacement.



122 Susan L. Epstein and Smiljana Petrovic

3. Varying chose a random value r in [30, 70] for each problem, and then chose
r percent of the variable-ordering Advisors and r percent of the value-ordering
Advisors, without replacement.

4. Incremental initially selected q of the variable-ordering Advisors and q of the
value-ordering Advisors. Then, for each subsequent problem, it increased the
sizes of the random subsets in proportion to the number of Advisors whose
weight was greater than their initially assigned weight.

On problems in <50, 10, 0.18, 0.37>, Table 5.5 compares these approaches for
learning with random subsets of Advisors to learning with all the Advisors at once.
When all 40 Advisors were consulted, the predominance of class-inappropriate Ad-
visors sometimes prevented the solution of any problem under the given node limit,
so that some learning phases were terminated after 30 unsolved problems. In those
runs no learning occurred. With random subsets, however, adequate weights were
learned on every run, and there were fewer early failures.

Table 5.5: Early failures, successful runs, decision time and percentage of computa-
tion time during learning with random subsets of Advisors, compared to computa-
tion time with all the Advisors on problems in <50, 10, 0.18, 0.37>

Advisors
Early failures
per run

Successful
runs

Time per learning
decision

Learning
time per run

All 27.0 4 100.00% 100.00%
Fixed q = 70% 5.2 10 74.30% 24.39%
Varying r ∈ [30%,70%] 1.9 10 65.84% 20.74%
Incremental q = 30% 1.8 10 75.35% 19.76%
Fixed q = 30% 3.1 10 55.39% 21.85%

Table 5.5 also demonstrates that using random subsets significantly reduces
learning time. The time to select a variable or a value is not necessarily directly
proportional to the number of selected Advisors. This is primarily because dual
pairs of Advisors share the same fundamental computational cost: calculating their
common metric. For example, the bulk of the work for Min-product-domain-value
lies in the one-step lookahead that calculates (and stores) the products of the do-
main sizes of the neighbors after each potential value assignment. Consulting only
Min-product-domain-value and not Max-product-domain-value will therefore not
significantly reduce computational time. Moreover, the metrics for some Advisors
are based upon metrics already calculated for others that are not their duals. The re-
duction in total computation time per run also reflects any reduction in the number
of learning problems.

The robustness of learning with random subsets is demonstrated with experi-
ments documented in Table 5.6 that begin with fewer Advisors, a majority of which
are class-inappropriate. Based on weights from successful runs with all Advisors,
Advisors were first identified as class-appropriate or class-inappropriate for prob-
lems in <50, 10, 0.18, 0.37>. ACE was then provided with two different sets Avar
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of variable-ordering Advisors in which class-inappropriate Advisors outnumbered
class-appropriate ones (nine to six or nine to four). When all the provided Advisors
were consulted, the predominance of class-inappropriate Advisors effectively pre-
vented the solution of any problem under the given node limit and no learning took
place. When learning with random subsets, as the size of the random subsets de-
creased, the number of successful runs increased. As a result, random subsets with
fixed q = 30% is used throughout the remainder of these experiments.

Table 5.6: Learning with more class-inappropriate than class-appropriate Advisors
on problems in <50, 10, 0.18, 0.37>. Smaller, fixed-size random subsets appear to
perform best

6 class-appropriate 4 class-appropriate
9 class-inappropriate 9 class-inappropriate

Advisors Early failures Successful
runs

Early failures Successful
runs

All 30.0 0 30.0 0
Fixed q = 70% 21.2 7 30.0 0
Varying r ∈ [30%, 70%] 8.4 10 17.6 6
Incremental q = 30% 3.8 10 12.0 9
Fixed q = 30% 5.1 10 13.3 10

5.8.3 The Impact of Decision Difficulty

Consideration of relative support and some assessment of problem difficulty can im-
prove testing performance, as shown in Table 5.7. On problems in <50, 10, 0.38, 0.2>,
RSWL solved more problems during both learning and testing than did DWL, and
required fewer full restarts. Moreover, both RSWL-κ and RSWL-d solved more
problems with fewer nodes during testing.

5.8.4 Performance with Preferences

We tested both linear interpolation and the Borda methods on the CSP classes iden-
tified in Section 5.3. On the unstructured model B problems, preference expression
made no significant difference. On Comp, however, across a broad range of node
limits, preference expression had an effect, as shown in Table 5.8.

Initially, most variables in the central component score similarly on most metrics,
and most variables in the satellite score similarly to one another but differently from
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Table 5.7: Learning and testing performance with different preference expression
methods on <50, 10, 0.38, 0.2> problems. Bold figures indicate statistically sig-
nificant reductions, at the 95% confidence level, in the number of nodes and in the
percentage of solved problems compared to search under DWL

Learning Testing

Weight-learning algorithm Problems
Unsolved
problems

Full
restarts Nodes Solved

DWL 36.8 14.1 0.8 13,708.58 91.8%
RSWL 31.5 7.5 0.2 13,111.44 95.2%
RSWL-d, h=30% 30.9 8.4 0.1 11,849.00 94.6%
RSWL-κ , k=0.2 32.9 8.9 0.3 11,231.60 95.0%

Table 5.8: Testing performance with RSWL on Comp problems with reduced node
limits and a variety of preference expression methods. Although there appear to be
substantial differences, the variance is such that only the figure in bold is a statisti-
cally significant improvement at the 95% confidence level

Node Ranking Borda-w Borda-wt Linear
Limit Nodes Solved Nodes Solved Nodes Solved Nodes Solved

5000 161.1 97.8% 134.1 98.0% 638.5 88.6% 164.2 97.8%
1000 161.1 97.8% 134.1 98.0% 564.7 89.8% 164.2 97.8%
500 161.5 97.8% 121.1 98.2% 728.5 86.6% 164.2 97.8%
100 161.4 97.8% 111.6 98.4% 642.1 88.2% 163.7 97.8%

35 160.4 97.8% 111.7 98.4% 660.0 89.0% 33.5 100.0%

those in the central component. Under Borda–wt, if only a few choices score higher,
the strength of the choices from the next lower-scoring subset is close enough to in-
fluence the decision. If there are many high-scoring choices, in the enhanced version
the next lower subset will have a much lower strength, which decreases its influence.
Moreover, when many choices share the same score, they are penalized for failure to
discriminate, and their strength is lowered. When Borda–w assigns lower strengths
to large subsets from the central component, it makes them less attractive. That en-
courages variables in the satellites to be selected first; this is often the right way to
solve such problems.

Linear interpolation performed similarly to RSWL with ranking on Comp prob-
lems, except under the lowest node limit tested. Given only 35 nodes, RSWL with
linear preference expression was able to solve every problem during testing. The
35-node limit imposes a very high learning standard; it allows learning only from
very space-efficient solutions search trees. (A backtrack-free solution would expand
exactly 30 nodes for a Comp problem.) Only with the nuances of information pro-
vided by linear preference expression did ACE develop a weight profile that solved
all the testing problems in every run.
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5.9 Conclusions and Future Work

Our fundamental underlying assumption is that the right way to make search deci-
sions in a class of CSPs has some uniformity, that is, that it is possible to learn from
one problem how to solve another. ACE tries to solve a CSP from a class, and, if it
finds a solution, it extracts training examples from the search trace. If it fails to solve
the CSP, however, given the size of the search space, the solver will learn nothing
from the effort it expended.

Given a training example, the learning algorithms described here reinforce heuris-
tics that prove successful on a set of problems and discard those that do not. Our pro-
gram represents its learned knowledge about how to solve problems as a weighted
sum of the output from some subset of its heuristics. Thus the learner’s task is both
to choose the best heuristics and to weight them appropriately.

ACE is a successful, adaptive solver. It learns to select a weighted mixture of
heuristics for a given problem class, one that produces search trees smaller than
those from outstanding individual heuristics in the CSP literature. ACE learns from
its own search performance, based upon the accuracy, intensity, frequency and dis-
tribution of its heuristics’ preferences. ACE adapts its decision making, its rein-
forcement policy, and its heuristic selection mechanisms effectively.

Our current work extends these ideas on several fronts. Under an option called
Pusher, ACE consults the single highest-weighted tier-3 variable-ordering heuristic
below the maximum search depth at which it has experienced backtracking on other
problems in the same class [13]. Current work includes learning different weight
profiles for different stages in solving a problem, where stages are determined by
search tree depth or the constrainedness of the subproblem at the decision point.
A generalization of that approach would associate weight profile(s) with an en-
tire benchmark family of problems, and begin with the weights of the most similar
benchmark family for each new problem instance.

Rather than rely on an endless set of fresh problems, we plan to reuse unsolved
problems and implement boosting with little additional effort during learning [42].
A major focus is the automated selection of good parameter settings for an individ-
ual class (including the node limit and full-restart parameters), given the results in
[24]. We also intend to extend our research to classes containing both solvable and
unsolvable problems, and to optimization problems. Finally, we plan to study this
approach further in light of the factor analysis evidence of strong correlations be-
tween CSP ordering heuristics [47]. Meanwhile, ACE proficiently tailors a mixture
of search heuristics for each new problem class it encounters.

Appendix

Two vertices with an edge between them are neighbors. Here, the degree of an edge
is the sum of the degrees of its endpoints, and the edge degree of a variable is the
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sum of the edge degrees of the edges on which it is incident. Each of the following
metrics produces two Advisors.

Metrics for variable selection were static degree, dynamic domain size, FF2
[43], dynamic degree, number of valued neighbors, ratio of dynamic domain size
to dynamic degree, ratio of dynamic domain size to degree, number of acceptable
constraint pairs, static and dynamic edge degree with preference for the higher or
lower degree endpoint, weighted degree [6], and ratio of dynamic domain size to
weighted degree.

Metrics for value selection were number of value pairs for the selected variable
that include this value, and, for each potential value assignment: minimum resulting
domain size among neighbors, number of value pairs from neighbors to their neigh-
bors, number of values among neighbors of neighbors, neighbors’ domain size, a
weighted function of neighbors’ domain size, and the product of the neighbors’ do-
main sizes.
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