Learning to Avoid Collisions
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Abstract

Members of a multi-robot team, operating within close quar-
ters, need to avoid crashing into each other. Simple collision
avoidance methods can be used to prevent such collisions,
typically by computing the distance to other robots and stop-
ping, perhaps moving away, when this distance falls below a
fixed threshold. While a simple method like this may skirt
disaster, the results may be inefficient in terms of the amount
of time that robots are halted, waiting for others to pass by,
or in terms of the path traversed, moving around other robots.
The experiments reported here describe a method in which a
human operator, through a graphical user interface, watches
robots performing an exploration task and can manually in-
terrupt robots” movements before they crash into each other,
and then resume their movements when their paths are clear.
Experiment logs record the robots’ state when they are halted
and resumed, and a behavior pattern for collision avoidance
is learned, by classifying the states in which “halt” and “re-
sume” commands are issued. Preliminary work is reported
here.

Introduction

We are interested in the use of human-robot teams to solve
problems that are dangerous for entiely human teams to
tackle, but are beyind the capabilities of entirely robot
teams. As canonical examples of the kinds of task that
fit this description we consider urban search and rescue
(USAR)(Jacoff, Messina, and Evans 2000; Murphy, Casper,
and Micire 2001) and humanitarian de-mining (Habib 2007;
Santana, Barata, and Correia 2007). In urban search and res-
cue, robots explore an enclosed space, such as a collapsed
building, and seek to locate human victims. In humanitarian
de-mining, robots explore an open space, such as a field in
a war zone, to search for anti-personnel mines that may be
hidden from view. The goal is to locate mines so that they
can be disarmed and the region rendered safe.

In both cases, teams of robots are deployed to locate tar-
gets of interest in terrain that is potentially unsafe for hu-
mans, and in both cases the robots will typically need a hu-
man operator to help with parts of the task that they cannot
easily handle on their own. In the case of urban search and
rescue this might be identifying a human victim, in the case
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of humanitarian demining, this might be determining what
kind of device the robot team has located.

In our work (Sklar et al. 2011; 2012), we are especially
interested in the use of inexpensive, limited function robots
since we believe that teams of such robots are closer to de-
ployment on the kinds of task we are interested in than teams
made up of more expensive and more capable robots. Such
robots have a particular need for human assistance, and there
are a number of ways in which such robots can profitably
learn from a human teacher. This paper reports on a prelim-
inary investigation of one such instance, where the human
operator trains the robot team members to avoid crashing
into each other.

Related Work

The idea that an interactive system can improve its behavior
through observation of human users’ key strokes and mouse
clicks, i.e., data mining the clickstream, is not new. In the
1960s and 70s, Teitelman developed an automatic error cor-
rection facility that grew into DWIM (Do What I Mean)
(Teitelman 1979). In the early 1990’s, Cypher created Ea-
ger, an agent that learned to recognize repetitive tasks in an
email application and take over from the user (Cypher 1991).
Maes used machine learning techniques to train agents to
help with email, filter news messages, and recommend en-
tertainment. These agents gradually gained confidence in
their understanding of users’ preferences (Maes 1994).

In robotics, the idea that robots can learn from humans has
been explored in the area of learning by demonstration (?),
also known as programming by demonstration (?). This is
commonly viewed in the framework of reinforcement learn-
ing, with the focus being on learning a policy from a series
of state/action pairs (?). Other approaches to robots learning
from people include (?), where human teachers provide ex-
amples that seed evolutionary learning, (?), where the robot
tries to identify the goal that a human is working towards
in order to make its own plan to achieve the goal, and (?),
where the robot observes the human carrying out actions in
its domain and learns the outcomes of its own actions from
these observations.

Little of this work is concerned with multiple robots.
There is a long history of multi-robot learning, for exam-
ple (?; 2; 2; ?), but this is learning from trial and error, not
learning from a human teacher.



Figure 1: The robots’ physical environment.

In earlier related work, we trained neural networks as
controllers for emulator agents that play video and educa-
tional games, based on human moves collected during game
play (Sklar 2000; Sklar, Blair, and Pollack 2001). The
aim was not to produce the best player, but rather to de-
rive a population of players that represent different char-
acteristics of play. Sklar has trained agents to learn from
self-play (Blair and Sklar 1999), from play against peo-
ple (Funes et al. 1988; Sklar, Blair, and Pollack 2001;
Sklar 2000) and from play against other agents (Blair, Sklar,
and Funes 1998). More recently, she has extended the
same technique beyond gaming to generate populations of
agents that emulate students performing at different skill
levels on an educational assessment (Sklar and Icke 2009;
Sklar et al. 2007).

Our Approach

The work we report here involved a single human operator
interacting with a team of three robots. In this section we
describe the physical setup of the environment in which the
experiments were conducted and the way the experiments
themselves were conducted.

Physical setup

Our experimental testbed models the interior of a building,
with a large space including six rooms and a “hallway”,
which the robots explore, as described below. The physical
testbed is shown in Figure 1. The full space is approximately
20 ft square.

The robots that we used for these experiments are Sur-
veyor SRV-1 Blackfins. The Blackfin! is a small tracked
platform equipped with a webcam and 802.11 wireless. The
Blackfin is pictured in Figure 2(a). Localization is provided
by a network of overhead cameras (Sklar et al. 2011), and to
help these cameras identify the identical robots, each robot
is provided with a unique “hat”. A Blackfin wearing a hat
is shown in Figure 2(b). (The hats each carry a letter from
the Braille alphabet, chosen so that each letter used has no
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(a) unmodified

(b) with hat

Figure 2: The Surveyor SRV-1 Blackfin.

rotational symmetry so that the hat provides orientation as
well as position.)

Because the Blackfin has limited on-board processing, the
controller for these robots runs off-board, communicating
with the robot over 802.11. Naturally this results in some
lag. The controller for all the robots on the team, plus soft-
ware to allocate tasks to robots (described in (Sklar et al.
2012)), and the software that extracts robot positions from
the overhead cameras, runs on a group of machines that
make up the “control station” for the experiments, located
next to the arena. The control station is pictured in Figure 3.

Motivation

As explained above, exploration of the physical space is a
key component of the tasks that we are interested in having
our human/robot team perform. As a result, we have been
running experiments in which robots are allocated particular
“interest points” that they have to move to. As described in
(Sklar et al. 2012), there is a central component that allo-
cates these points to the robots on a team. The robot con-
trollers then plot a path that covers all the points that their
robots have been allocated, with no knowledge of what other
robots are planning to do, and the robots then simulatneously
manoeuvre to those points.

Figure 3: The control station.



Figure 4: Three robots exploring the arena.

Given that the robots are in a restricted space, that in some
experimental cofigurations the robots all start in the same
part of the space (modelling situations in which the robots
have all entered the space from the same point), and that
robots have no knowledge of what other robots are planning
to do, the robots naturally get in each other’s way. This can
be seen in Figure 4 which shows the motion of three robots
in one experimental run. Because of this interference, the
robot controller is programmed to prevent collisions, and it
does this in a very conservative way — it halts one of a pair
of robots that get too close to one another. (The second robot
then replans its route to avoid the stationary robot, moves
around it, and then the stopped robot is restarted).

Since the mechanism for preventing collisions is rather
crude, it seems natural to ask if a human operator can teach
the robot to do a better job of preventing collisions.

Experimental setup

The robot team was setup in the same configuration as in
Figure 4. That is three robots were placed in one room in
the arena (the same room as in Figure 4) and the team was
allocated 5 interest points. Task allocation was carried out as
described in (Sklar et al. 2012), and the robots then started to
follow the paths that they had planned. The conservative col-
lision avoidance mechanism described above was disabled.
Instead, collision avoidance was in the hands of the hu-
man teacher. This individual sat at an “operator station”
that was physically remote from the control station and the
arena. Indeed, for the experiments analyzed here the oper-
ator station was in a different room (a separate room in the
lab complex). The teacher could not see the arena or the
control station, and could not hear anything from the arena
either. The only information that the teacher had about the
robots was that depicted on a user interface such as that in
Figure 5. This displays the current positions of the robots on
a plan view of the arena along with the next point of interest
that the robot is attempting to visit. The robot positions are
those derived by the overhead cameras and hence are subject

to error and to lag.

The teacher was given two commands that could be sent
to the robots from the keyboard of their computer. The
robots could be told to wait, and the robots could be told
to resume movement. Each command could either be sent
simulaneously to all robots, or it could be sent to a single
robot. To send a command to a single robot, the teacher had
to first select the robot by clicking on the icon for that robot.

Each experiment consisted of a single run of the sys-
tem. The robots were positioned, points of interest were
allocated, and the robots then manoeuvered to those points
while being monitored for collisions by the human teacher.
In each run, the teacher would make the robots wait when
she thought that to be necessary to avoid a collision and then
estart them when the danger of collision was paost. The run
concluded either when the robots all reached their final point
of interest or when robots were involved in a collision (ei-
ther a collision between two robots, or a collision between
a robot and a wall). These collisions were detected by op-
erators at the control station who were also responsible for
setting up the robots and running the task allocation mecha-
nism.

Experiments and Results

The results reported here were obtained from five human
teachers, each of whom was responsible for five runs. All the
teachers had previously participated in similar experiments,
so did not need any training runs. In order to make sure we
obtained data that was relevant to learning to avoid collisions
between robots, we did not use runs that ended with a robot
colliding with a wall. That is, when such runs occurred, we
started over, and did not count the run as one of the five for
each human teacher. (As a result, some teachers were in-
volved in more than five runs, but each only contributed five
runs to the results analyzed here, those runs that ended either
with the robots successfully completing their task or with a
collision between robots.)

bkl 15

Figure 5: The user interface presented to the human teacher.
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