
Learning Algorithm Portfolios for Parallel Execution

Xi Yun1 and Susan L. Epstein1, 2

1 Department of Computer Science, The Graduate School of The City University of New

York, New York, NY 10016, USA
2 Department of Computer Science, Hunter College of The City University of New York,

New York, NY 10065, USA
xyun@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract. Portfolio-based solvers are both effective and robust, but their prom-
ise for parallel execution with constraint satisfaction solvers has received rela-
tively little attention. This paper proposes an approach that constructs algorithm
portfolios intended for parallel execution based on a combination of case-based
reasoning, a greedy algorithm, and three heuristics. Empirical results show that
this method is efficient, and can significantly improve performance with only a
few additional processors. On problems from solver competitions, the resultant
algorithm portfolios perform nearly as well as an oracle.

Keywords: constraint satisfaction, algorithm portfolio, parallel processing, ma-
chine learning.

1 Introduction

Given a set of solvers and a set of constraint satisfaction problems (CSPs), no one
solver may consistently outperform all the others on every problem (e.g., [1-5]). In-
formally, an algorithm portfolio is a set of algorithms that run according to some
schedule on a set of problems. The thesis of this work is that learning and parallelism
can improve the efficiency and effectiveness of algorithm portfolios, so that they out-
perform each of their constituents. This paper explores offline learning to construct
such portfolios for CSPs. Given the performance of several algorithms on a training
set, we seek an algorithm portfolio that executes on multiple processors to solve the
most problems within some time limit. The principal result reported here is that, given
several additional processors, our method can construct algorithm portfolios whose
performance is competitive with that of an oracle, a solver that always chooses the
best available algorithm for each problem.

For parallel execution, a portfolio could simply schedule the same CSP on many
processors, each of which would execute a different solver on it, and then race until
some algorithm found a solution. Given the number of plausible solver configura-
tions, this approach is not realistic. It is, however, possible to learn to schedule a set
of solvers on a set of processors. Our approach combines case-based reasoning (CBR),
a greedy algorithm, and a set of heuristics. Although CBR [6] and greedy algorithms
[7] have been applied to construct portfolios for CSPs before, this work is, to the best
of our knowledge, the first to combine them in a single framework. Given a CSP, our

method uses CBR to identify a small set of similar training problems, and then greedi-
ly generates an effective portfolio without the complete search necessary to find an
optimal one. In addition, we introduce three heuristics that transform algorithm port-
folios intended for a single processor into ones intended for parallel execution. Exten-
sive experiments show that portfolios produced by our method would solve more
problems, not only when they are designed for one processor, but also consistently
improve performance when they are designed for as many as 16 processors.

The next two sections provide background on CSPs and algorithm portfolios. Sec-
tion 4 formulates algorithm portfolio construction as a machine learning task and re-
views related work. Section 5 discusses a general framework that combines CBR with
a greedy algorithm to construct algorithm portfolios, and Section 6 generalizes that
framework to parallel algorithms. Subsequent sections detail and discuss the experi-
mental design and results, and offer some conclusions.

2 Constraint Satisfaction Problems

A CSP here is a triple <X, D, C>, where X is a set of variables, D is a set of finite do-
mains associated with those variables, and C is a set of constraints that those variables
must satisfy. A constraint defined on two variables is binary, and one defined on n > 2
variables is n-ary. An extensional constraint explicitly represents a set of tuples; an
intensional constraint implicitly describes tuples with a predicate.

An instantiation of a CSP assigns values to its variables from their respective do-
mains. A consistent instantiation violates no constraint. An instantiation of all the var-
iables is a complete instantiation, and a complete and consistent instantiation is a solu-
tion. A CSP is solvable if it has at least one solution; otherwise it is unsolvable.

Many constraint solvers search for a solution to a CSP with systematic backtrack-
ing, which assigns values to variables one at a time and checks consistency after each
assignment. After an assignment, any inconsistent value for an as-yet-unassigned var-
iable is temporarily removed from that variable’s domain. A wipeout occurs when a
domain becomes empty. At that point, search backtracks to an earlier variable with an
alternative value, restores removed values along the way, and assigns another value to
the earlier variable. Search returns a solution when one is found, or halts when the
domain of the variable at the root of the search tree becomes empty.

 A CSP solver is typically a complex combination of fundamental search algo-
rithms, along with a set of techniques, heuristics, and policies to realize and support
them. To improve overall search performance, preprocessing techniques manipulate
the problem before a full search, variable-ordering heuristics choose the next variable
to be assigned a value, and value-ordering heuristics choose a value for it. Once a
heuristic orders the possible variables or values, randomization chooses one at ran-
dom, usually from a small set of the top-ranked candidates [8]. A restart policy is a
sequence of termination conditions that trigger the re-initiation of the search. Com-
bined with randomization, a restart policy may improve search performance. Alt-
hough the many ways to assemble a solver’s components and then set their parame-
ters yield a broad spectrum of search performance, they also provide fertile raw mate-
rial for effective algorithm portfolio construction.

3 Algorithm Portfolios

An algorithm portfolio for CSP solution was originally defined as a method that com-
bined different algorithms to improve search performance while it lowered search
risk, the standard deviation of a performance metric (e.g., expected CPU time or
number of backtracks to solve a problem) [9, 10]. In other words, an algorithm portfo-
lio searched for a Pareto frontier in the two-dimensional space defined by a given per-
formance metric and its standard deviation. Later, an algorithm portfolio was general-
ized to denote a combination of different algorithms intended to outperform the
search performance of any of its constituent algorithms [3, 6, 11-14]. Here we extend
that formulation, so that an algorithm portfolio schedules its constituent algorithms to
run concurrently on a set of processors.

Let an algorithm be any CSP solver, as described in the previous section. Given a
set A = {a1, a2, …, am} of m algorithms, a set P = {x1, x2, …, xn} of n problems, and a
set of B consecutive time intervals T = {t1, t2, …, tB}, a simple schedule Sk for a prob-
lem on a single processor specifies which algorithm addresses the problem in each
time interval, that is, Sk: T ! A. (At most one algorithm executes in any time interval
in a simple schedule.) A schedule for K processors is a set of K simple schedules, one
for each processor. (Here, a schedule addresses only one problem at a time.) An algo-
rithm portfolio is then a quintuple <P, A, K, S, B> where S is a set of schedules that
deploy algorithms A on K processors to solve problems from P within B. Note that
our definition includes both simple (K = 1) and parallel (K > 1) algorithm portfolios.
Without loss of generality, we also simplify T to {1, 2, …, B}. Of course, neither a
simple nor a parallel schedule can outperform an oracle’s perfect algorithm selection.

Clearly, on one processor at most B time can be allotted to any algorithm on any
problem. Thus the performance of A on P can be represented as an n " m performance
matrix !. If the entry !ij # {1, 2, …, B} then aj solves xi in time !ij; otherwise xi goes
unsolved by aj in time B. A deterministic algorithm consistently produces the same
output given the same problem and time cutoff; that is, for a deterministic algorithm
each !ij is fixed. In contrast, the output of a randomized algorithm may change from
one run to the next (i.e., !ij is a random number).

Given a problem, a sequential algorithm portfolio executes algorithms on it in a
specific order, but does not preserve any intermediate search data for an algorithm
when the portfolio leaves it. Thus, a sequential portfolio must restart on the problem if
it later reapplies a previous algorithm to it. In contrast, a switching algorithm portfolio
interleaves algorithms, and preserves intermediate search data, so that search can con-
tinue from a previous state when it returns to an earlier algorithm. Algorithm selection
is an algorithm portfolio that schedules only one algorithm [13, 15].

The schedule for a static algorithm portfolio is constructed in advance, and goes un-
changed during search. In contrast, a dynamic algorithm portfolio can profit from
feedback as it executes, and adjust its schedule accordingly. For example, the dynam-
ic algorithm portfolios in [2, 16] iteratively share a (possibly varying-length) time
slice among all available algorithms, but modify the algorithms’ relative priorities
based on their progress. Adjustments for a dynamic portfolio can be triggered by un-
satisfactory performance during execution [17, 18]. Most of the work referenced thus
far is for simple schedules, which interleave algorithms on a single processor.

There are other ways to exploit parallel processing beyond the scope of this paper.
These include search space splitting to partition the search space of a CSP into sub-
spaces and uses different processors to explore difference subspaces [19], and struc-
tural decomposition to separate a CSP into simpler, smaller-size subproblems based
on the structure of its constraint hypergraph [20, 21]. Moreover, a parallel SAT solver
can share clauses learnt on different processors, where each processor executes a
manually pre-determined algorithm [22].

The current algorithm portfolio performance metric is runtime, which may be used
to optimize different objective functions. For example, a portfolio may be required to
minimize its expected runtime on a problem generated at random from some problem
distribution. (Alternatives are introduced in [14].) Recent CSP solver competitions
evaluated solvers on how many problems they solved under a fixed, per-problem time
limit, and broke ties on average solution time across solved problems [23, 24]. We
compare algorithm portfolio construction methods (henceforward, constructors) with
the same standard. (In contrast, SAT solver competitions have compared solvers with
a complex scoring function that includes the performance of all competitors [25].)

As formulated here, the differences between two solvers may be simply in their
choice of even a single technique, heuristic, or policy that sustains performance diver-
sity. Thus an algorithm portfolio can be thought of as a mixture of experts [26], in-
cluding variable-ordering and value-ordering heuristics, restart policies, and nogood
learning methods. In particular, even if only one heuristic is available, the portfolio
could consist of the heuristic and its opposite, or the heuristic and random selection.

4 Learning an Effective Algorithm Portfolio

Algorithm portfolio constructors that learn are classified as online or offline based on
the way they use their training problems. An offline constructor observes the perfor-
mance of algorithms on a set of training problems and then builds a portfolio of those
algorithms to optimize its performance on an entire testing set [3, 6, 13]. An online
constructor solves one problem at a time, and the knowledge it relies on for that prob-
lem comes only from the problems that preceded it [2, 7, 16]. This paper focuses on
offline algorithm constructors.
 Our case-based approach to algorithm portfolio construction relies on feature ex-
traction. Figure 1 represents offline algorithm portfolio construction with feature ex-

Fig.1. Algorithm portfolio construction as offline learning.

traction as a machine-learning task. Given a set Ptrain of training problems, a set Ptest of
testing problems, and a performance matrix !(a,x) that stores the time required by
each algorithm a # A to solve each problem x # Ptrain, the constructor’s task is to find
a schedule S with optimal performance that uses A to solve Ptest. Here, all entries in !
are discrete, fixed positive integers, that is, all algorithms are assumed to be determin-
istic. P*(y) is a set of CSPs similar to testing problem y. (Portfolios of randomized al-
gorithms are discussed in [3, 27].)

The two portfolio constructors most relevant here are CPHYDRA [6] and GASS [7].
Let P(aj, S) be the problems in P solved by aj under schedule S. CPHYDRA defines the
optimal schedule as one that maximizes the number of problems solved within B:

argmax
S
!
j
P(aj,S) such that length(S) ! B

Because it uses relatively few algorithms in competition, CPHYDRA can address opti-
mality with exhaustive search, in time O(2m) where m is the number of algorithms.
CPHYDRA had two entries in the 2008 competition, both with m = 3: CPHYDRA_k_10
used 10 similar training examples (i.e., |P*(y)| = 10), and CPHYDRA_k_40 used 40.
Among 24 competitiors, both versions finished in the top two solvers, except in the
category for global constraints. CPHYDRA also weights training problems by their Eu-
clidean distance from the testing problem. Its approach was later exploited and tai-
lored for SAT problems [28] as well.

GASS’ greedy algorithm bases its optimal schedule on ci(S), the expected time to
solve xi under schedule S. Its optimal schedule minimizes the overall runtime (equiva-
lent to the average runtime under fixed n) to solve all problems in Ptrain:

argmax
S

ci (S)
i=1

n

!
 At each step, GASS greedily maximizes the number of problems solved per unit of

time, and counts only problems solved for the first time during the current time step.
In time O(nm log n $ min{n, Bm}), GASS returns an approximate schedule that is at
most four times worse (a 4-approximation) than the optimal switching schedule. The
computation of any better approximation is NP-hard [7].

5 WG, a New Constructor for Switching Algorithm Portfolios

Our Weighted Greedy (WG) algorithm is a new constructor for switching algorithm
portfolios that exploits the perspectives of both GASS and CPHYDRA. For a single
processor, CPHYDRA uses CBR to select a small set of similar training problems for
each testing problem. It then does a complete search, exponential in the number of al-
gorithms m, to find an optimal schedule for the new problem. In contrast, the impact
of m on GASS is at worst quadratic; GASS’ greedy approach is heavily dependent on
the number of training problems n instead. WG exploits the fact that some problems
are far more similar to a given testing problem than others, so that a properly selected
subset of problems can estimate the runtime of the testing problem more precisely.

On one processor, to schedule within time limit B algorithms from A for a problem
y given prior experience on a set of problems P, WG combines GASS and CPHYDRA
into a single framework for switching scheduling. (See Figure 2.) WG is similar to
GASS, except that it represents problems by numeric feature vectors, and restricts its
attention to similar problems (i.e., reasons based only on similar cases). WG initially
selects a neighbor set P* that is the 100r% of the most similar training problems (i.e.,
have feature vectors closest in Euclidean distance to that of y), 0 < r ! 1. The influ-
ence of these problems in the selection of an algorithm may be uniform, or be
weighted in proportion to their distance di from y. The weight functions investigated
here are shown in Table 1, where dmin denotes the smallest distance from a neighbor
set problem to y, and dmax denotes the largest distance.

During each new interval %z, WG counts (from the performance matrix !) and
weights how many training problems in the current neighbor set P* it could solve
within time t + %z if it assigned problem xi to algorithm aj during that interval:

N j
z (t) = wi! ij

xi!P*
" (t) where ! ij (t) =

1 if " ij # t
0 otherwise

$
%
&

'&

(1)

WG then greedily maximizes (1) per unit of time expended, that is, it calculates

argmax
aj ,!z

N j
z (t + ! z)
! z

and removes those now-solved similar problems from P*. The time complexity of
WG is O(rnm log rn $ min{rn, Bm}) because it considers every algorithm aj with eve-
ry interval length %z.

Input: training set P = {x1, x2, …, xn}, algorithms A = {a1, a2, …, am}, time limit B,
 testing problem y, weight function w: &d!&d, neighbor set ratio r
Output: schedule S for a non-parallel switching algorithm portfolio
For i = 1 to n, compute Euclidean distance between xi and y
P* ' {100r% of problems in P closest to y}
For each xi in P*, compute weight wi = w(xi)
Initialize time step z ' 1, overall time T ' 0, and time spent tj ' 0 for algorithm aj
While P* (Ø and T < B
 Select aj with execution time %z to maximize Nj

z(tj + %z)/ %z
Remove from P* problems solved by aj during step z
Schedule aj with execution time %z in S

 Update times: tj ' tj + %z, T ' T + %z, and z ' z + 1
Return S

Fig. 2. High-level pseudocode for WG, a weighted greedy constructor for one processor.

Table 1. Three weight functions that measure problem similarity, where di denotes the Euclide-
an distance of problem y from the ith neighbor set problem xi. Here, " = 0.001.

 Reciprocal weighting Normalized weighting Normalized-fixed weighting

wi =

1
1+ di

wi =1!
(n !1)(di ! dmin)
n(dmax ! dmin)

wi =1!
(1! !)(di ! dmin)
dmax ! dmin

6 Creation of Portfolios for Parallel Processing

An intuitive way to parallelize WG for K identical processors #1, #2, …, #K is to parti-
tion the similar training problems P* into K subsets P1, P2, …, PK at random, and then
use WG to construct a schedule for processor #k based its corresponding subset Pk. We
call this RPWG (randomized parallel WG). With uniform weights wi = 1, RPWG is a
naïve parallel version of GASS. (To reduce the impact of randomness, RPWG could
construct such a partition v times, although to conserve time v = 1 here.) Thus the
overall complexity of RPWG is O(vrnm log(rn/K)$min{rn/K,Bm}). Similarly, RP-
CPHYDRA, the naïve parallel version of CPHYDRA, randomly partitions the similar
training problems into K subsets and then uses CPHYDRA on each subset to construct
a schedule for each processor. Section 7 investigates both these naïve parallel con-
structors as baselines. (Other recent work relevant to parallel algorithm portfolios in-
cludes online learning [2, 16] and methods that split problems [29, 30].)

Effectively, the construction of a parallel algorithm portfolio to solve as many
training problems as possible on K processors is an integer-programming (IP) prob-
lem. The goal is to find the schedule S that specifies the time allotments to all algo-
rithms on all processors, such that no problem can receive more than B time from all
the processors together, and the total number of problems solved is a maximum. The
expression (1 -)ij(tkj)) is 1 if problem xi is unsolved by algorithm aj after time tkj allo-
cated to it on #k, and 0 otherwise. The product of (1 -)ij(tkj)) over all j and k is 1 if
problem xi is not solved by any algorithm on any processor in schedule Sk, and 0 oth-
erwise. Thus the best schedule is

(2)

Intuitively, when two schedules solve the same number of training problems, we
would prefer the one that consumes less total time. Thus (2) becomes:

(3)

Expression (3) seeks to minimize the cost of schedule S, as measured by a penalty for
unsolved problems (counted in the first sum) and the resources tkj allocated to all pro-
cessors. Each unsolved problem incurs cost KB + 1, which is greater than all available
time on all processors. This guarantees that any benefit introduced by reduction in
overall runtime will be overshadowed by the penalty for solving one less problem.
The optimization in (3) is NP-hard; others have proposed the use of column genera-
tion to solve a simpler IP problem for algorithm scheduling for non-parallel algorithm
portfolios [28]. Instead here we adopt heuristics to generalize WG for this IP problem.

We argue that the optimal solution to (3) can occur only when there exists at most
one processor k for each algorithm aj such that tkj > 0. For example, consider a sched-
ule that allocates time t1j and t2j (0 < t1j < t2j) to the same algorithm on processors 1
and 2, respectively. These times are resources only, and are not directed to any partic-
ular problem or algorithm. Any problem solved by some algorithm on processor 1 in
t1j can be solved by the same algorithm on processor 2 in t2j. Removing the algorithm
from processor 1 does not increase the number of unsolved training problems because

!

argmax
S={S1 ,...,SK }

[1" (1"#ij (tkj))
j=1

m

$
k=1

K

$]
i=1

n

% such that tkj
j=1

m

% & B and tkj ' 0

!

argmin
S={S1 ,...,SK }

(KB +1) (1"#ij (tkj))
j=1

m

$
k=1

K

$
i=1

n

% + tkj
j=1

m

%
k=1

K

%
&
'
(

) (

*
+
(

, (
 such that tkj

j=1

m

% - B and tkj . 0

the same problems will be solved on processor 2, but it does reduce the total runtime,
and produces a better schedule.

Inspired by this argument, Figure 3 introduces RSR-WG for parallel algorithm port-
folios, where RSR stands for three heuristics: Retain, Spread, and Return. Like WG,
RSR-WG selects an initial set of similar training problems and tries to schedule
greedily, but with modifications from our three heuristics. Retain (line 6) places algo-
rithm aj on processor # u if that placement will maximize equation (1) per unit of ex-
pended time and # u still has time available (Tu < B). Among such processors, Retain
prefers one that has already hosted y before (tuj ! 0), and otherwise selects one that
has thus far been used the least (i.e., has minimum Tu). If a parallel schedule S solves
all training problems without making full use of all the processors, Spread (line 11)
places the algorithm aj that solves the most problems in P but does not appear in S on
a processor that was idle throughout S (if one exists), breaking ties at random. (The
rationale here is that aj may be generally effective but not outstanding on y.) Finally,
if a processor is not fully used in S (i.e., Tu

 < B), Return (line 14) places the first algo-
rithm it executed on that processor until the time limit. Obviously, RSR-WG achieves
the performance of an oracle when K = m, but it is also effective when K is relatively
small compared to m, as demonstrated in the next section.

Input: training set P = {x1, x2, …, xn}, algorithms A = {a1, a2, …, am}, time limit B,
 testing problem y, weight function w: &d!&d, neighbor set ratio r,
 processors {#1, # 2, …, # K}
Output: schedule S = {S1, S2, …, SK} for a parallel switching algorithm portfolio
1 For i = 1 to n, compute Euclidean distance between xi and y
2 P* ' {100r% of problems in P closest to y}
3 Compute weight wi for each xi in P* with w
4 Initialize time step z ' 1, overall time Tu ' 0 on processor # u,

time tuj ' 0 for aj on # u
5 While P* (Ø and Tu < B for at least one u
6 Select aj on # u with time %z to maximize Nj

z(tj + %z)/ %z ** Retain **
7 Remove from P* problems solved by aj during step z
8 Schedule aj with execution time %z on # u
9 Update times: tuj ' tuj + %z, Tu ' Tu + %z, and z ' z + 1
10 For each # u where Tu < B
11 If Tu = 0 ** Spread **
12 then assign a j to # u for B, where a j solves the most problems in P and a j * S
13 update times: tuj ' B, Tu ' B, and z ' z + 1
14 else # u executes the first algorithm placed on # u until B ** Return **
15 update times: tuj ' tuj + (B – Tu), Tu ' B, and z ' z + 1
16 Return S

Fig. 3. High-level pseudocode for RSR-WG, a weighted greedy algorithm that constructs a par-
allel switching schedule with heuristics Retain, Spread, and Return.

7 Experimental Design and Results

We compared the performance of parallel algorithm portfolios from three constructors
to that of four non-parallel solvers on problems from the Third International CSP
solver competition (CPAI’08). To extract the 36 features values (e.g., number of vari-
ables, maximum domain size) used by CPHYDRA and RSR-WG, we ran the CSP solv-
er Mistral 1.550 ([31]). For feature extraction we allotted 1 second on an 8 GB Mac
Pro with a 2.93 GHz Quad-Core Intel Xeon processor.

CPAI’08 included 3307 problems in 5 categories. Some solvers could not address
problems in every category; we merged the 2-ARY-INT and N-ARY-INT (N > 2) cat-
egories because the same solvers addressed both. Because our experiments count
solved problems (those where a solver finds a solution or proves that none exists), we
excluded any problem that was not solved by any solver within the CPAI’08 time lim-
it of 1800 seconds. If CPHYDRA does not extract features quickly enough, it simply
splits its schedule evenly among its three algorithms. Rather than test portfolios’ luck
with an algorithm this way (and penalize a portfolio with more algorithms at its dis-
posal), we chose to exclude such problems. Table 2 summarizes the remaining 2865
problems in 4 categories.

Stratified partitioning was used in all runs, to maintain the proportions of problems
from different categories in each subset. Table 3 reports the performance, in number
of problems solved within 1800 seconds each, of an oracle and three non-parallel al-
gorithm portfolio constructors as baselines: CPHYDRA_k_10, CPHYDRA_k_40, and
GASS. The data for GASS was obtained by 10-fold cross-validation with stratified
partitioning on the 2865 problems.

All portfolio construction experiments ran under 10-fold cross-validation on a Dell
PowerEdge 1850 cluster with one head node and 86 compute nodes, each with four
Intel 2.80 GHz Woodcrest dual-core processors. RSR-WG results reported here are
for portfolio construction (i.e., scheduling) time plus runtime. The runtimes of RPWG
and RP-CPHYDRA did not include portfolio construction time, which gave them a
slight advantage. In extensive testing, uniform weighting and the three weight func-
tions in Table 1 produced slightly different performance improvements in RSR-WG,
but no one statistically significantly outperformed the others consistently. Thus this
paper reports only on the normalized-fixed weight function.

In CPAI’08, CPHYDRA chose 10 or 40 similar problems from which to learn, so
here RP-CPHYDRA selects 10*K neighbors, randomly distributes them to K processors,
and executes a complete search for the optimal schedule on each processor. RP-
CPHYDRA’s portfolio construction time was limited to 180 seconds. If it did not pro-
duce the optimal schedule in that time, the best schedule found so far was used. To

Table 2. Competition problems by category. Experiment problems were those for which at
least one solver found a solution or showed that none existed, and also had features extractable

within one second. Solvable problems had at least one solution.

Applicable
solvers

Category Competition
problems

Experiment
problems

Experiment
solvable problems

17 GLOBAL 556 493 256
22 k-ARY-INT (k"2) 1412 1303 739
23 2-ARY-EXT 635 620 301
24 N-ARY-EXT (N>2) 704 449 156

reduce search time, any algorithm dominated by another algorithm (i.e., always out-
performed by it on all 2865 problems) was also eliminated from RP-CPHYDRA’s con-
sideration. RP-CPHYDRA also scaled all schedules (as discussed in Section 8) to ex-
ploit the full time limit B.

Table 4 compares the performance of parallel portfolios from three constructors:
RP-CPHYDRA (the parallel version of CPHYDRA), RPWG (the naïve parallel version
of GASS), and RSR-WG. It lists the total number of problems (out of 2865) solved by
each constructor’s portfolios, and flags experiments where RSR-WG portfolios were
statistically significantly better (p < 0.005) than those of a naïve parallel constructor.

For RSR-WG we simulated all 24 solvers from the original competition [23]. For
RSR-WG only, we tested as many as K = 16 processors. Both K = 8 and K = 16 pro-
duced near-oracle performance; indeed, 2 out of 10 runs for K = 16 were perfect. Exe-
cution of RSR-WG on K = 16 processors is a reasonable approach for modern com-
puters, where it would produce portfolios able to solve only one fewer problem than
an oracle. (Execution of RSR-WG on one computer with multiple cores could degrade
performance, for example, due to overhead introduced by memory sharing.)

One important question is the number of training problems to use for CBR, as
measured by the neighbor set ratio (# problems / # training problems). For K from 1
to 16 we tested neighbor set ratios of 0.005 to 0.16, which yield neighbor sets that
range in size from 14 to 458, respectively. Table 5 reports on how many problems
(out of 2865) RSR-WG solved, and shows how the neighbor set ratio impacts perfor-
mance under different numbers of processors K. Boldface entries in Tables 4 and 5
indicate the best performance for each K. Clearly RSR-WG efficiently generates ef-
fective algorithm portfolios, and does best with small neighbor set ratios for K > 1. On
K = 1, RSR-WG outperforms GASS, CPHYDRA_k_10, and CPHYDRA_k_40.

Table 3. Benchmark results for the 3rd International CSP solver competition.

Solver Oracle GASS CPHYDRA_k_10 CPHYDRA_k_40
Number solved 2865 2773 2577 2573

% solved 100% 96.79% 89.95% 89.81%

Table 4. Performance of 3 parallel portfolio constructors on 2865 problems, with best value for
K processors in boldface. * means RSR-WG outperformed RPWG; † means RSR-WG outper-
formed RP-CPHYDRA.

 K RP-

CPHYDRA

Neighbor set ratio
0.005 0.01 0.02

RPWG RSR-WG RPWG RSR-WG RPWG RSR-WG
1 2779 2771 2773 2778 2779 2787 2786†
2 2807 2801 2826* 2799 2821* 2802 2823*†
3 2817 2808 2841*† 2810 2836*† 2808 2839*†
4 2827 2810 2850*† 2812 2847*† 2811 2847*†
5 2830 2817 2855*† 2819 2851*† 2816 2852*†
6 2831 2821 2857*† 2818 2855*† 2819 2856*†
7 2834 2823 2858*† 2823 2858*† 2824 2857*†
8 2834 2825 2859*† 2825 2860*† 2825 2858*†

Finally, Figure 4 compares the runtimes of an oracle solver and RSR-WG in one
run with neighbor set ratio 0.005 and weight function normalized-fixed. (Again, RSR-
WG’s time includes both portfolio construction and search.) As in [23], each plus sign
represents one of the 2865 problems. Those at the far right correspond to problems
that went unsolved by RSR-WG in 1800 seconds. Those on the diagonal correspond
to problems that were solved by RSR-WG as quickly as an oracle would have solved
them. Clearly, more processors reduced the number of unsolved problems (from 90 to
6 in this particular run) and solved more problems as quickly as an oracle.

8 Discussion

As indicated above, the 1800-second runtime per problem for RSR-WG in these ex-
periments includes the time to extract features, construct the schedule, and to execute
it. RSR-WG adopts a greedy approach that dramatically reduces its scheduling time
but still generates effective portfolios. For example, over 10 runs the average schedul-
ing time of RSR-WG for K = 8 processors ranged from 14.56 to 14.96 seconds (+ in
[6.05, 6.35]) with normalized-fixed weights and a neighbor set ratio of 0.16. For K =
1 processor under the same conditions, average scheduling time ranged from 14.30 to
14.80 seconds (+ in [5.75, 6.15]). These are small but statistically significant differ-
ences. In contrast, RP-CPHYDRA sometimes failed to compute an optimal schedule
within 180 seconds. When K = 1, CPHYDRA failed to compute an optimal schedule
4.81% of the time. When K > 1, CPHYDRA must construct a schedule for each proces-
sor, on training sets that may be considerably more diverse. This can increase the
search effort; indeed, for K = 8, CPHYDRA failed to compute an optimal schedule
14.39% of the time. As for GASS, because it learns on all the training problems, it re-
quired more than 5 days of execution time for its single entry in Table 2.

Instead of Spread, one might scale S to extend it to the entire time limit B, that is, al-
locate B to algorithms proportionally to their runtimes in S. CPHYDRA adopted scal-
ing, and so did RP-CPHYDRA in our experiments. Scaling, however, would be unwise
in RSR-WG because the earliest designated algorithms might be both most promising

Table 5. Mean and standard deviation for the number of problems solved by RSR-WG out of
2865, with normalized-fixed weight function over 10 runs with K processors. Best value for K
processors is in boldface

K

Neighbor set ratio
0.005 0.01 0.02 0.04 0.08 0.16

1 2773 3.65 2779 3.20 2786 2.30 2789 3.17 2788 3.09 2789 2.51
2 2826 3.51 2821 2.49 2823 3.16 2816 2.97 2810 2.99 2809 2.87
3 2841 2.12 2836 1.93 2839 2.56 2832 2.07 2827 2.27 2819 2.07
4 2850 2.15 2847 1.57 2847 2.63 2843 2.06 2838 2.22 2832 2.50
5 2855 1.37 2851 2.35 2852 0.88 2850 1.78 2845 2.72 2843 3.26
6 2857 0.95 2855 1.07 2856 1.26 2853 1.64 2851 1.03 2850 1.07
7 2858 0.79 2858 0.57 2857 0.82 2855 1.83 2854 2.35 2854 1.14
8 2859 1.18 2860 1.34 2858 1.06 2858 1.18 2856 0.74 2855 1.43

16 2864 0.42 2864 0.00 2864 0.00 2863 0.00 2861 0.42 2861 0.47

and quick, in which case they would only be allotted relatively short time intervals %z.
Whether or not scaling is appropriate, we believe, is probably determined by the prob-
lem set. The Return heuristic succeeds, we suspect, because as K approaches m it is
better to allot larger time intervals to an algorithm on a single processor.

We temper the results on K = 16 with the observation that it is very nearly a race,
when the problems in the neighbor set are sufficiently descriptive to eliminate the
poorest performers on y. We prefer to consider the near-optimal performance for K =

Fig. 4. Comparison of (ideal) oracle runtime (y-axis) to RSR-WG’s time (x-axis) for 1 run with
weight function normalized-fixed and neighbor set ratio 0.005. Each + denotes a result on one of the
2865 problems. Number of processors K ranges from 1 to 6.

8, and even K = 4, and to remember that RSR-WG was charged for scheduling time,
while its competitor constructors were not.

Coarser granularity (indicated by a smaller B, which allocates longer intervals) im-
pacts the scheduling efficiency of RSR-WG, but the effectiveness of the resultant
portfolio depends on the performance matrix entries for the neighbors of the testing
problem. A smaller B does not necessarily reduce the effectiveness of the resultant al-
gorithm portfolio; if that were the case, a switching (or scheduling) portfolio would
always be superior to algorithm selection. In addition to Table 5, where B = 1800, we
tested RSR-WG with B = 20, 10, 5, 4, 3, 2, and 1. (This is equivalent to time alloca-
tions that, instead of 1 second on a processor, are 90, 180, 360, 450, 600, 900, or 1800
seconds. Note that B = 1 is equivalent to racing one algorithm on each processor to
address a problem.) In these granularity experiments, for K = 1 the number of solved
problems peaked at B = 10. For 1 < K ! 8, no coarser granularity ever showed a sig-
nificant improvement; indeed, performance degraded slightly as B decreased. Both
improvement on K = 1 and failure to improve when K > 1 were consistent across all
neighbor set ratios reported here, with peaks at either B = 5 or B =10 when K = 1.
 The success of RSR-WG algorithm portfolios relies heavily on the diversity of the
performance of its constituent algorithms and the relevance of the extracted features.
Typically, algorithm portfolio constructors select their algorithms and features based
upon domain-specific knowledge. The reader may, for example, wonder how RSR-
WG would perform if it relied on the three solvers CPHYDRA used in CPAI’08. The
difficulty here is that CPHYDRA included solvers from the 2006 competition, solvers
that did not enter CPAI’08, and whose performance was therefore unavailable on the
2008 problems. Although algorithm choice based on domain knowledge and feature
selection can further enhance a portfolio’s performance, it could also make it vulnera-
ble to overfitting. When the number of features is larger, feature selection can be of
considerable benefit to an algorithm portfolio constructor [13, 14], and we intend to
explore it in future work.
 Current work is proceeding in several directions. In practice, many algorithms may
perform differently on the same problem in different runs, but still exhibit a certain
level of consistency [3]. Indeed, in (sequential) CSP solver competitions, solvers typi-
cally fix their parameter values and introduce relatively little randomness to achieve
stable performance. In that case, with coarse granularity (e.g., B = 10), a solver’s per-
formance is nearly deterministic. Greater randomness, however, could change solvers’
performance dramatically, and thereby potentially benefit parallel constraint solving.
A generalization of RSR-WG is in process to handle such behavior. On the other hand,
automatic parameter tuning could introduce much diversity, and should fare well in
algorithm portfolios [32]. Specifically, one may view different configurations of an
algorithm as different algorithms, and thereby combine parameter tuning and an algo-
rithm portfolio in the same framework. We are pursuing this avenue as well.

The performance of any algorithm portfolio is, of course, bounded by that of an or-
acle. The combination of algorithms as black boxes eliminates any opportunity to im-
prove an individual algorithm. In contrast, parallelism can be achieved by a variety of
problem decomposition methods (e.g., search space splitting), as discussed in Section
3. Although the results of recent SAT solver competitions suggest that a well-
designed algorithm portfolio outperforms decomposition methods on a small number

of processors [22], decomposition methods have shown their potential on many more
processors (e.g., 64 cores or more in [19]). We will explore this in future work.

9 Conclusions

This paper presents WG, a constructor for non-parallel algorithm portfolios based on
case-based reasoning and a greedy algorithm. It formulates parallel algorithm portfo-
lio construction as an integer-programming problem, and generalizes WG to RSR-
WG, a constructor for parallel algorithm portfolios based on a property of the optimal
solution to the inherent integer-programming problem. To address a set of problems
one at a time, RSR-WG creates portfolios of deterministic algorithms offline. Exper-
iments show that the parallel algorithm portfolios produced by RSR-WG are statisti-
cally significantly better than those produced by naïve parallel versions of popular
portfolio constructors. Moreover, with only a few additional processors, RSR-WG
portfolios are competitive with an oracle solver on a single processor.

Acknowledgements. This research was supported in part by the National Science
Foundation under grants IIS-0811437, CNS-0958379 and CNS-0855217, and the City
University of New York High Performance Computing Center.

References

1. Gebruers, C., Hnich, B., Bridge, D. Freuder, E.: Using CBR to Select Solution Strategies in
Constraint Programming. In: Third International Conference on Case-based Reasoning, pp.
222-236. (2005)

2. Gagliolo, M. Schmidhuber, J.: Learning Dynamic Algorithm Portfolios. Annals of
Mathematics and Artificial Intelligence. 47(3), 295-328 (2006)

3. Silverthorn, B. Miikkulainen, R.: Latent Class Models for Algorithm Portfolio Methods. In:
Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 167-172. (2010)

4. Stern, D., Herbrich, R., Graepel, T., Samulowitz, H., Pulina, L. Tacchella, A.: Collaborative
Expert Portfolio Management. In: Twenty-Fourth AAAI Conference on Artificial
Intelligence, pp. 179-184. (2010)

5. Xu, L., Hutter, F., Hoos, H.H. Leyton-Brown, K.: The Design and Analysis of an Algorithm
Portfolio for SAT. In: 13th International Conference on Principles and Practice of Constraint
Programming, LNCS 4741, pp. 712-727. Springer. (2007)

6. O'Mahony, E., Hebrard, E., Holland, A., Nugent, C. O'Sullivan, B.: Using Case-Based
Reasoning in an Algorithm Portfolio for Constraint Solving. In: Nineteenth Irish Conference
on Artificial Intelligence and Cognitive Science. (2008)

7. Streeter, M., Golovin, D. Smith, S.F.: Combing Multiple Heuristics Online. In: the
Twentysecond National Conference on Artificial Intelligence, pp. 1197-1203. (2007)

8. Gomes, C., Selman, B. Crato, N.: Heavy-Tail Distributions in Combinatorial Search. In:
Third International Conference on Principles and Practice of Constraint Programming,
LNCS 1330, pp. 121-135. Springer. (1997)

9. Huberman, B., Lukose, R. Hogg, T.: An Economics Approach to Hard Computational
Problems. Science. 256, 51-54 (1997)

10. Gomes, C. Selman, B.: Algorithm Portfolio Design: Theory vs. Practice. In: Thirteenth
Conference On Uncertainty in Artificial Intelligence, pp. 190-197. Morgan Kaufmann.
(1997)

11. Guerri, A. Milano, M.: Learning Techniques for Automatic Algorithm Portfolio Selection.
In: Sixteenth European Conference on Artificial Intelligence, pp. 475-479. (2004)

12. Xu, L., Hoos, H.H. Leyton-Brown, K.: Hydra: Automatically Configuring Algorithms for
Portfolio-Based Selection. In: Twenty-Fourth AAAI Conference on Artificial Intelligence,
pp. 179-184. (2010)

13. Xu, L., Hutter, F., Hoos, H.H. Leyton-Brown, K.: SATzilla: Portfolio-Based Algorithm
Selection for SAT. Journal of Artificial Intelligence Research. 32, 565-606 (2008)

14. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B. Chickering, D.M.: A Bayesian
Approach to Tackling Hard Computational Problems. In: Seventeenth Conference in
Uncertainty in Artificial Intelligence, pp. 235-244. Morgan Kaufmann Publishers Inc.,
720234 (2001)

15. Rice, J.R.: The Algorithm Selection Algorithm. Advances in Computers. 15, 65-118 (1976)
16. Gagliolo, M. Schmidhuber, J.: Towards Distributed Algorithm Portoflios. In: International

Symposium on Distributed Computing and Artificial Intelligence, pp. 634-643. (2008)
17. Carchrae, T. Beck, J.C.: Low-Knowledge Algorithm Control. In: Nineteenth National

Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of
Artificial Intelligence, pp. 49-54. AAAI Press / The MIT Press, 1597158 (2004)

18. Carchrae, T. Beck, J.C.: Applying Machine Learning to Low-Knowledge Control of
Optimization Algorithms. Computational Intelligence. 21(4), 372-387 (2005)

19. Bordeaux, L., Hamadi, Y. Samulowitz, H.: Experiments with Massively Parallel Constraint
Solving. In: Twenty-First International Joint Conference on Artificial Intelligence, pp. 443-
448. Morgan Kaufmann Publishers Inc., 1661516 (2009)

20. Singer, D. Monnet, A.: Jack-SAT: A New Parallel Scheme to Solve the Satisfiability
Problem (SAT) Based on Join-and-Check. In: Seventh International Conference on Parallel
Processing and Applied Mathematics (PPAM), pp. 249-258. Springer-Verlag. (2007)

21. Li, W. van Beek, P.: Guiding Real-World SAT Solving with Dynamic Hypergraph
Separator Decomposition. In: Sixteenth IEEE International Conference on Tools with
Artificial Intelligence, pp. 542-548. (2004)

22. Hamadi, Y. Sais, L.: ManySAT: A Parallel SAT Solver. Journal on Satisfiability, Boolean
Modeling and Computation. 6, 245-262 (2009)

23. CPAI'08, http://www.cril.univ-artois.fr/CPAI08/
24. Fourth International CSP Solver Competition: http://www.cril.univ-artois.fr/CSC09/
25. The SAT 2007 Competition: satcompetition.org/2007/rules07.html.
26. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: the First International

Workshop on Multiple Classifier Systems, pp. 1-15. (2000)
27. Streeter, M., Golovin, D. Smith, S.F.: Restart Schedules for Ensembles of Problem

Instances. In: the Twentysecond National Conference on Artificial Intelligence, pp. 1204-
1210. (2007)

28. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H. Sellmann, M.: Algorithm
Selection and Scheduling. In: 17th International Conference on Principles and Practice of
Constraint Programming, LNCS 6876, pp. 454-469. (2011)

29. Segre, A.M., Forman, S., Resta, G. Wildenberg, A.: Nagging: A Scalable Fault-Tolerant
Paradigm for Distributed Search. Artificial Intelligence. 140, 71-106 (2002)

30. Vander-Swalmen, P., Dequen, G. Krajecki, M.: A Collaborative Approach for Multi-
Threaded SAT Solving. International Journal of Parallel Programming. 37, 324-342 (2009)

31. Mistral. 4c.ucc.ie/~ehebrard/Software.html.
32. Hutter, F., Hoos, H.H., Leyton-Brown, K. Stützle, T.: Paramils: An Automatic Algorithm

Configuration Framework. Journal of Artificial Intelligence Research. 36, 267–306 (2009)

