
Capitalizing on Conflict: The FORR Architecture

Susan L. Epstein
Department of Computer Science

Hunter College and The Graduate School of The City University of New York
695 Park Avenue, New York, NY 10021

Abstract

FORR is a general architecture for learning and
problem solving. Its design harnesses multiple,
disagreeing perspectives on a domain and learns
to make intelligent choices from their conflicting
advice. FORR has been implemented in Hoyle, a
program that learns to play two-person, perfect
information board games. A FORR-based
program is modular, robust in the face of error or
lack of information, degrades gracefully, and
should improve gradually with problem solving
experience. This paper describes a theory for
skill acquisition, the knowledge base FORR
requires, and the way FORR’s design affects
learning.

1. INTRODUCTION

Human experts incorporate many diverse considerations
and constraints in their behavior. Rarely do these
individual components produce a neat partition of the
desired expertise. Instead they may overlap, may conflict,
may fail to account for certain portions of the behavior;
some, in their compiled form, may elude the notice of
even the most astute observer. For example, a vehicle
driver has fundamental considerations, like safety, speed,
and fuel economy, that are always operative and influence
most driving decisions. To rely on any one of these
rationales would be naive and probably ineffective, but
people do solve problems while integrating such
knowledge, and even attribute their success to them.

When AI programs simulate human expertise, they
typically represent expert constraints and considerations
as rules or procedures (behavior proposers) each of which
recommends a specific action. These behavior proposers
are accompanied by prespecified strategies designed to
prevent conflict among them. FORR (FOr the Right
Reasons) is an architecture for learning and problem
solving in a broad domain of related problem classes.
Rather than forestall conflict among behavior proposers,
FORR actively encourages conflict and capitalizes on it.
FORR’s behavior proposers, called Advisors, typify the
right reasons for making decisions in a domain. A FORR-
based program makes each decision by resolving conflicts

among the opinions of its Advisors. Such a program
learns task-specific useful knowledge that both supports
conflict and refines its resolution.

FORR has been applied to game playing in Hoyle, a
program that learns to play two-person, perfect
information board games (Epstein, 1992b). To date,
Hoyle has become an expert at 12 such games. The ability
to acquire expertise for an entire class of problems
requires a theory of skill acquisition, presented in the next
section. The remainder of this paper focuses upon how
FORR shapes what Hoyle learns.

In reference to Hoyle, it is important to distinguish among
a game, a contest, and a tournament. A game is an activity
with a board, playing pieces, and rules. A contest is an
experience playing a game, beginning at an initial
situation specified by the rules and ending when the rules
declare a winner or a draw. A tournament is a sequence of
contests at a specific game in which the participants
alternately go first or second. Thus chess is a game at
which two people might play a tournament of 16 contests.

2. A THEORY OF SKILL ACQUISITION

Absolute expertise is when one performs perfectly, i.e.,
from any state in the problem space one makes the best
possible decision. Absolute expertise can be derived
either from exhaustive search in the problem space or
from a complete and correct mathematical theory for the
problem space, such as those developed by for some
games (Berlekamp et al., 1982) . When exhaustive search
is prohibitive and there is no complete and correct theory
for the domain, absolute expertise is computationally
intractable. The human heuristic alternative is relative
expertise, performance better than that of most people,
here called simply “expert.” A human’s expertise is
usually judged only on relative ability to perform, without
any standards for the description and sharing of expert
knowledge. This may certify as expert one who can
perform in the problem class but cannot explain that
behavior to others, a state of affairs with which expert
systems developers are all too well acquainted. For a
program to be accepted as an expert, however, it must not
only perform well but also make explicit the knowledge
that supports its performance.
Expertise in one problem class is often linked to expertise



in another. A skill is a behavior which satisfies the
following criteria:

• Varied domain: Its domain encompasses a broad but
related set of problem classes.

• Dual representation: It relies upon both fundamental
declarative knowledge about the domain and a set of
general procedures (Anderson, 1986; Sussman, 1975)
that generate actions.

• Collective evaluation: The collective, cumulative
outcome of these actions is measured against some
performance standard for expertise.

• Learning requirement: It is initially taught and then
repeatedly modified with experience to minimize
deviation from the performance standard.

• Robustness: It functions acceptably when confronted
with related problems.

• Ill-defined accountability: In a trace of the behavior,
there may be no obvious single action, or even set of
actions, to credit or blame for the collective outcome.

Examples of a skill include driving vehicles, playing
keyboard instruments, delivering goods, designing VLSI
chips, and playing games. This definition incorporates
Michalski’s description of a process learned by repeated
practice and correction of deviations from some desired
behavior, but does not restrict it to non-symbolic
information, subconscious processes, or motor skills
(1983).

In this context it is important to distinguish between two
kinds of learning. Learning a skill means acquiring the
general knowledge applicable to all the problem classes in
the skill domain. Learning in a skill domain means
acquiring the knowledge specific to a problem class in the
skill domain. Both of these entail the collection,
validation, and refinement of knowledge for the specified
behavior.

People begin with rudimentary abilities that support their
learning, such as vision, balance, and synopses of
experience labeled “commonsense.” A program to learn
in a skill domain should have such fundamental general

knowledge too. Just as people apprentice to an expert, a
program to learn in a skill domain can be provided with
the kind of instruction (initial data and procedures) that an
apprentice receives (e.g., Mitchell, 1985; Steinberg,
1987). Finally, just as people acquire expertise partly
from observation of expert performance and partly from
their own attempts, a program to learn in a skill domain
can observe an expert and attempt to solve problems
itself. Thus a machine should learn a skill from a
combination of:

• Expert information: identifiable general problem-
solving knowledge for a broad skill domain and a set of
possibly conflicting expert principles

• Observation of an expert: a human or programmed
model of performance, one that is expert, detailed,
varied, and external

• Attempted performance: repeated attempts whose
overall behavioral outcome is compared with that of the
expert model

FORR is an architecture for learning in a skill domain
from those three sources.

Just as an expert system shell postulates fundamental
principles for knowledge-based decision, a weak theory
contains general knowledge theoretically relevant to
behavior in all the problem classes in its skill domain.
Thus a weak theory for a skill domain is a kind of meta-
expert. Weak theories lie between general problem-
solving and implementations dedicated to a specific
problem class. (See Figure 1.) Because it is more specific
than commonsense or an expert system shell, a weak
theory offers more power; because it is more general than
rules directed to a specific problem or problem class, it
applies to a broader domain. Although a weak theory
derives its structure and fundamental principles from
general problem-solving knowledge, it offers an
intermediate range of specialization that partially bridges
the gap to the task-specific implementation. Thus a weak
theory may be seen as a collection of commonalities for a
skill. The more commonalities identified in the domain,
and the better they are understood and conveyed to a
program, the more the weak theory can contribute to
learning there.
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Figure 1. The intermediate role of the weak theory.

By definition, a weak theory for a skill domain must
support both problem-solving and learning. Initially a
program can work on any problem in its domain simply
by applying its weak theory. At this point it will probably
solve problems inadequately, but it will behave within the
domain’s bounds of acceptability. For example, a
program with a weak theory for driving vehicles might
make erroneous suggestions but it will not attempt to
disassemble a vehicle if that is forbidden by the weak
theory. For a given problem class in the skill domain,
learning is the gradual instantiation of the weak theory
with problem-specific data derived from experience.

A weak theory must specify:

• Start-up knowledge: what is already known about the
domain

• Problem solving knowledge: how to proceed when
solving any problem in the domain

• Discovery knowledge: what to learn about individual
problem classes

• Discovery procedures: how to learn about individual
problem classes

The start-up knowledge in a weak theory is either
applicable to all problem classes or limited to problem
definitions. For example, it might define an object class
called “vehicle class” and might also instantiate it with
data. Start-up knowledge does not, however, provide
statistics on how reliably the vehicle class performs under
certain conditions; that is to be learned with experience.

Insistence on general knowledge about the domain
requires a breadth of focus more familiar to those who
construct expert system shells than those who build expert
systems. Our experience has been that the effort required
to specify general knowledge pays off handsomely as the
problem classes encountered within the domain become
more difficult and less well known to the user. There is no
requirement that the weak theory itself be correct or
complete, nor that it perform well on problems
immediately. A weak theory is intended to evolve into a
set of experts, not begin as one. This evolution is
envisioned as a realistic partnership among skilled
humans, the system designer, the end user, and the
program. A program based upon a weak theory both
modifies itself by learning and supports its modification
by others. In our experience, such a program’s failures are
the impetus for human refinement of the theory. If, in
some problem space, the program eventually outperforms
its human guides, it can still continue to improve and
evolve, with or without guidance.

3. FORR, THE ARCHITECTURE

The FORR architecture embodies the theory of skill

acquisition detailed in the previous section. A FORR-
based program is intended to learn to simulate a skill. Its
goal is open-ended learning; there is no internal
representation to judge when learning should halt. In
theory, there is always more to learn.

A schematic of the FORR architecture appears in Figure
2. FORR uses the three sources predicated for skill
learning in the previous section: expert information,
expert observation, and attempted performance. FORR’s
expert information is a domain-dependent but task-
independent initial knowledge base consisting of a
problem class definition, a behavioral script, a set of
Advisors, a useful knowledge frame, and a Learner.
FORR’s behavioral script observes an external expert
model and drives its attempts at expert performance.

FORR also specifies all the segments of a weak theory.
Start-up knowledge in FORR is the problem definition
and an expert model, human or programmed, of the
behavior to be simulated. Problem solving knowledge in
FORR consists of a behavioral script and a set of behavior
proposers intended to minimize or eliminate search.
Discovery knowledge in FORR is called useful
knowledge; it is a frame-based representation of what to
learn about individual problem classes. Discovery
procedures stipulate how to learn about individual
problem classes; there is one for each useful knowledge
slot.

FORR assumes the intrinsic correctness of its weak theory
for a domain. Every problem class must be definable
within the definition frame, and must have some model of
expert behavior, although the model need not be flawless.
The actions dictated by the behavioral script must be
appropriate to every problem class. The Advisors and the
discovery procedures must be theoretically applicable to
every problem class.

FORR’s frame-based problem class definition has fixed
slots that determine the kind of tasks the system can
address. For example, Hoyle’s problem class definition
identifies the rules and material used in a game. A task in
FORR is an instantiation of the problem class definition;
for example, one of Hoyle’s tasks is tic-tac-toe. The
behavioral script uniformly controls, observes, and
describes all of the program’s problem-solving
experiences. It produces appropriate, but not necessarily
intelligent, behavior in the domain. For example, Hoyle’s
behavioral script controls, moderates, and referees all
contests. The behavioral script also provides observation-
only access to an external expert model at the task to be
learned.

Each of the Advisors epitomizes a specialized perspective
on the decision process, one found generally applicable
by an expert in the skill domain. The rationale behind an
Advisor may be thought of as a generalization for a set of
answers to the question “Why is this a good/bad choice?”
For example, an Advisor called Victory might



recommend a move to Hoyle because it achieves a win.
All of Victory’s advice has the same reason behind it,

regardless of the game or the current game state. An
Advisor need
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Figure 2. The FORR architecture.

not always be correct; it is only expected to capture a
good reason for taking, or not taking, actions. An Advisor
may be thought of as a meta-rule that is instantiated both
by the task it addresses and by the useful knowledge
available to it. Resource bounds may be part of an
Advisor’s heuristic nature. No uniformity of
representation or process among Advisors is required.
Diversity is considered an asset, and conflicting Advisor
perspectives are encouraged by the architecture.

Useful knowledge is potentially applicable and probably
correct. It is stored in a frame with a fixed set of slots that
focus the program’s attention. Useful knowledge is
assembled for each task selectively, heuristically, from
traces of problem-solving experience. The Advisors
access whatever useful knowledge has been acquired
when they propose behavior. Before learning, only the
useful knowledge slot names are known. Hoyle, for
example, has an initially empty slot for whether or not it
is an advantage to go first in a game. The Learner is a set
of heuristic algorithms to discover entries for the useful
knowledge slots. For example, Hoyle’s Learner runs
tournaments of contests at a game and processes the
resulting data to extract slot values.

An Advisor remarks on possible behavior in a comment, a
permissible action with a strength that describes a
spectrum from adamant opposition (low value) to
insistent support (high value). At any decision point, each
Advisor may make any number of comments about any
number of actions. For example, when it is Hoyle’s turn

to move, the comments recommend or advise against
legal moves from the current game state. The decision-
making algorithm decides what to do based on the
frequency and weight of the comments for and against
each behavior. There is a default decision-making
algorithm and a set of useful knowledge slots whose
values can modify it.

Conflict in FORR arises from the differing opinions
presented in the Advisors’ comments, and is resolved by
tabulating the information they contain. As part of the
start-up and problem-solving knowledge, the Advisors are
partitioned into priority classes called tiers. When the
program must decide among a set of actions, it consults
the tiers in turn. If any tier produces an absolute
recommendation or reduces the possible legal behaviors
to a single one, none of the subsequent tiers is consulted.
The first tiers are reserved for Advisors that are absolutely
correct in their opinions. Control in the first tiers is hard-
coded to reflect domain-wide commonsense knowledge
there, and typically consults Advisors in a fixed order.
Not every Advisor may be consulted on every decision.
Some Advisors may have absolute authority (full decision
making power) or veto power (ability to reject an action).
If the filter of the first tiers fails to make a decision, one is
heuristically constructed from the collective opinions of
the Advisors in the last tier. Although the last tier has a
default control procedure, the relative importance of the
Advisors may depend upon the problem class, i.e., some
perspectives may be more significant than others in



particular problem classes. Such control knowledge can
be acquired through experimentation and experience.

What FORR learns is slot values for useful knowledge.
As observed above, some of this is control knowledge for
the decision-making algorithm; the rest is analysis of prior
experience that influences the formation of the comments
from which decisions are made. How FORR learns a slot
value depends upon the learning algorithm associated
with the slot. Any blend of valid machine learning
approaches is acceptable. The accuracy of the information
extracted from experience is determined by the
implemented learning algorithms. The subsequent
appropriate application of the learned knowledge is the
responsibility of the Advisors.

4. HOYLE, THE PROGRAM

Hoyle is a FORR-based program with 15 Advisors. Thus
far Hoyle has learned to play 12 games as well or better
than its human mentors, by playing against an external
(usually programmed) expert and analyzing traces of
those contests. The games in HOYLE’s testbed are
culturally diverse and quite varied (Zaslavsky, 1982; Bell,
1969). They were chosen because they span a variety of
cultures, and therefore probably capture some aspects of
game playing that people find particularly intriguing.
Their game graphs lack the complexity of chess or Go,
but some of them offer the challenge of cycles and stage
transitions, and one of the game graphs has over a billion
nodes.

Each move decision in Hoyle may be based on the
conflict among tens, or even hundreds, of comments.
Hoyle’s default conflict resolution is a decision-making
algorithm that simply tallies the comment strengths and
selects the move with the greatest associated strength.
Ties are broken by random selection. Hoyle also tests
alternative conflict resolution algorithms in play, ones that
smooth comment strengths and/or limit each Advisor to a
single strongest comment. Hoyle also tabulates how often
each Advisor comments for a particular game, and how
often those comments appear to support expert behavior.
From all this useful knowledge, Hoyle can tailor a conflict
resolution algorithm for each game, one that is more
resource-efficient as well as more adept at move
selection.

Hoyle learns from contest traces, move-by-move
descriptions of play from start to finish. These traces
serve as input to the Learner’s algorithms. They focus
search on fragments of the game tree, provide examples
of expert behavior (the external model’s moves), and
provide data for analysis. Examples of Hoyle’s slot values
are whether or not it is an advantage to move first in a
contest, applicable two-dimensional symmetries, and
average contest length.

5. LEVERAGE AND LIMITATIONS

FORR’s principal strengths are its modularity, its ability
to learn many ways, its tolerance for human and machine
error, its graceful degradation, and its transparency. The
organization of the Advisors into a subsumption hierarchy
accounts for FORR’s modularity. One can specify a new
Advisor, i.e., an entire class of rules, with very minimal
consideration of its impact on the control structure. A new
Advisor need only be established in an appropriate tier.
For example, in its first capture game (where the number
of markers one participant has on the board in the next
state may be reduced by the other participant’s move
selection), Hoyle saw no reason to prefer a move that
captured its opponent’s markers. A new Advisor with that
perspective now encourages Hoyle to minimize the
material held by the other participant. In non-capture
games, this Advisor makes no comments, and Hoyle
learns to ignore it.

Like THEO, FORR can acquire useful knowledge with
any kind of learning algorithm (Mitchell et al., 1990). For
example, Hoyle can learn useful knowledge by EBL, by
induction, by deduction, and by neural net. Unrestricted to
a single learning method, FORR can specify the most
appropriate or most efficient algorithm for each slot.

Errors are not an issue in FORR. No behavior proposal is
considered an error, even though a comment may be
wrong from the omniscient perspective of the search
space. As useful knowledge is acquired, the collective
opinions of the Advisors should eventually outweigh a
misguided comment. If a heuristic should learn incorrect
useful knowledge, either because the opposition or the
learning heuristic errs, the Advisors, again with the
backing of more recent useful knowledge, can eventually
override it through their comments. Hoyle, for example,
has learned to imitate an expert’s incorrect move in a
particular situation, after much subsequent play deduced
that it was an error, and then refused to repeat it.

Through its specification of general domain knowledge,
FORR guarantees a minimal performance standard and
offers graceful degradation. Hoyle, for example, can play
any game in its domain correctly, if not expertly, given
the game definition and its game-playing behavioral
script. Even at a game it does not yet play well or at
newly-encountered stronger opposition, Hoyle’s moves
reflect sensible underlying premises, its Advisors.

Finally, the clear distinction between control knowledge
and declarative knowledge in FORR supports quick
debugging and user-friendly visibility. Hoyle, for
example, posts its comments on the screen as it plays,
providing a clear indication of why it makes its choices.

FORR’s principal limitations are reliance on human
intelligence, reliance on experience, lack of creativity, and
memory requirements. The construction of a FORR-based
program clearly relegates important tasks to the human
system designer: the correct description of an appropriate
behavioral script, the identification of the perspectives



that determine the Advisors, the assignment of Advisors
to tiers based upon knowledge about relations among their
perspectives, the specification of which Advisors access
which useful knowledge, and the description of how they
apply that knowledge. When carefully cast, these are
applicable to all tasks in the domain. The one-time effort
to construct them is well invested, and FORR’s
modularity ensures that modifications necessitated by
human oversight are quick and easy.

Reliance on experience driven by an external expert can
be limiting. Recent work has demonstrated the substantial
impact that the nature of the expert model has on what is
learned, how quickly it is learned, and how useful that
learned knowledge is (Epstein, 1992a). Hoyle’s solution
is to have the Learner deliberately provide alternative
experiences to what might be an imperfect or overly rigid
expert model. The rigidity of the useful knowledge slots
and the prespecification of their learning algorithms,
however, is more problematic. The long-range
performance of a FORR-based program is directly
dependent on the quality of the useful knowledge it
captures, because that knowledge serves as input to the
Advisors and affects the quality of their advice. Without a
uniform representation for useful knowledge, like those in
SOAR or PRODIGY, there is no obvious way to generate
new useful knowledge items (Laird et al., 1987; Minton,
1988). It is possible, however, to specify multiple ways to
learn the same useful knowledge, label the results
differently, and create distinct Advisors that propound the
various learning theories. Hoyle does this, quite
successfully, with whether or not it is an advantage to go
first. Finally, other than the Learner’s discovery
algorithms, there is currently no mechanism in FORR for
knowledge revision or forgetting. There could eventually
be too much useful knowledge if the learning algorithms
were not sufficiently selective. This has not yet been a
problem for Hoyle.

When apprenticed to the kind of non-deterministic model
Hoyle uses, learning is also non-deterministic. A program
that learns from such a model will acquire knowledge that
varies in quantity and content from one run to the next. In
experiments with Hoyle, neither learning time, nor
memory allocation for useful knowledge, nor consistent
expert performance, nor stability of the knowledge base
has proved a fool-proof indicator of competence. A
FORR-based program is intended to learn, but can offer
no clear and reliable signal of perfection achieved.

6. CONCLUSIONS

The right reasons for doing things, at least in the playing
of some games, turn out to be relatively clear; it is the
control structure for resolving conflict among those
reasons that is complex. Encouraging the Advisors to
make multiple comments and then balancing them against
each other by voting avoids a precise commitment as to
which perspective should take priority at which moment

in which task. The tier hierarchy provides a commonsense
foundation (for example, “if you remember this, do not
calculate it”) and then conflict resolution takes over.

There is no claim that FORR would be the best
architecture for every task. The ideal application is in a
skill domain, one with a set of related problems
susceptible to the same general problem-solving
knowledge. Each problem requires a finite number of
choices at a finite number of decision points. A set of
generally valid expert principles should be identifiable for
favoring or discouraging individual choices at decision
points. There should be access to a human or programmed
expert model, and a standard to evaluate the overall
outcome of decision making in the domain. Finally, since
FORR is predicated on gradual development of expertise,
the domain should be one that readily tolerates error, one
where failure lies within reasonable resource bounds.

In two years of exploration with Hoyle, FORR has
provided a surprisingly robust framework. Hoyle can
learn even when its expert model is fallible; it has often
learned to play better than a human-constructed expert
model for a given game. The result is a collaborative
development environment, a cycle where the expert
model represents the best human knowledge about a game
until Hoyle finds the flaws. For development in one
complex and ill-understood skill domain, FORR works
well. Other domains should now be explored.
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