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Abstract
HOYLE is a system under development to explore game-playing expertise.   Because
many games induce notoriously large and complex search spaces, programs to play
them have developed a broad spectrum of heuristics to curtail  search.   One aspect
of HOYLE's preliminary success at a broad class of games is its alternative to search
in  these  spaces:   mediation  among  (usually  disagreeing)  Advisors.   This  paper
describes  HOYLE's  metatheoretical  approach  to  game  playing  and  the  three-level
architecture  that  supports  that  metatheory.   Subsequent  sections  explain  how
HOYLE's  limited rationality  has  thus far  provided a  remarkably  robust  alternative to
traditional, computationally expensive solution methods.

Games and Complexity
Informally, a game consists of some materiel (e.g., a board, playing pieces), a roster
of  one  or  more  participants,  and  a  list  of  rules.   The  rules  describe  how  the
participants  are  to  take  turns  affecting  the  position  and/or  status  of  the  materiel
(e.g.,  removing  pieces  from  the  board  or  changing  their  location)  until  some  rule
terminates  the  process.   When  the  process  terminates,  the  rules  declare  either
which participant has won or  that the process was a draw.   If  all  information about
the game is disclosed and equally available to all the players (e.g., no closed hands,
no uncertain outcomes as with dice), it is said to be a perfect information game.  For
the games considered here, there are exactly two participants:  Player (the one who
moves  first)  and  Opponent.   Player  and  Opponent  are  the  roles  in  a  two-person
game.

Any  game  may  be  represented  as  a  finite,  directed  graph  (the  game  graph)  in
which a node (state) both identifies the participant whose turn it is (the mover) and
describes  a  possible  arrangement  of  the  materiel.   The  participant  who  is  not  the
mover in a state is referred to here as the non-mover.  An edge in the game graph
that  goes  from  one  (originating)  state  to  another  (resultant)  state  represents  a
move,  the  changes  that  occur  when  the  mover  in  the  originating  state  behaves
(takes  a  turn)  in  any  one  manner  permitted  by  the  rules.   Together,  the  materiel,
participants, and game graph are called the elements of a game. 

There  are  three  kinds  of  nodes  in  the  game  graph:   starts,  finishes,  and
intermediate states.  A start is an initial state of the materiel before any participant
has taken a turn, with Player as mover.  A finish is a node with no out edges, and is
labeled either win (Player wins and Opponent loses), loss (Player loses and Opponent
wins),  or  draw  (no  winner  or  loser).   In  the  game  graph,  a  path  is  a  sequence
n1e1n2e2....nkeknk+1  of  nodes  n1,n2,...,nk,nk+1  and  edges  e1,e2,…,ek,  such  that
ei is an edge in the game graph from ni to ni+1, for i = 1, 2, …, k.  If there is a path



n1e1n2e2....nkeknk+1 in a game graph, node nk+1 is said to be at depth k or k-ply
from  node  n1.   A  path  in  a  game  graph  from  a  start  to  a  finish  represents  one
complete experience of the game, and is called a contest.



Relatively brief paths beginning with a start are called openings ;   relatively brief
paths ending with a finish are called endgames.  A path from the end of an opening
to the beginning of an endgame is called a middlegame.  The stage of a node is the
path type (opening, middlegame, endgame) it is most likely to appear on.  (In more
complex games, such as chess, an endgame is distinguished by reduced materiel and
"no  reasonable  chances  to  mount  a  direct  mating  attack  on  either  King."   (Mednis
1978)  HOYLE has not yet attained this level of sophistication.)

During a contest, Player tries to arrive at a win and Opponent tries to arrive at a
loss.  Since from any state there are usually many legal moves, the challenge in play
is  for  the  mover  to  select  the  best  move,  i.e.,  one  that  will  maximize  the  mover's
opportunity  to  arrive  at  a  desired  state,  while  minimizing  the  non-mover's
opportunity  to  do  so.   A  theory  for  a  game  is  one  or  more  statements  about  the
properties  of  and  relations  among  its  elements.   For  example,  a  possible  theory
statement for tic-tac-toe is "the center square is the key position."  A heuristic for a
game is an explicit directive to the mover for selecting a move.  For example, "if the
center square is vacant, move there."  A heuristic is an operationalized version of a
theory  statement;   there  may  be  more  than  one  way  to  construct  such  an
operationalization.  Finally, a strategy is a set of heuristics for a specific game with a
control  method  for  choosing  among  them.   A  strategy  is  thus  a  procedure  that,
given any state,  returns  a  move for  the mover.   To learn  to play a  game well  is  to
produce and refine a strategy for it, constructing, testing, and revising theories.

It  is  possible  to  represent  a  two-person,  perfect-information  game  as  a  directed
graph  and  "solve"  the  problem  of  perfect  play  by  backing  up  the  data  from  an
exhaustive  search  of  all  possible  sequences  of  moves  (Nilsson  1980).   Even  for
simple games, however, the game graph is quite large (tic-tac-toe, for example, has
more  than  5000  reachable  nodes),  and  for  difficult  games  the  game  graph  is
computationally  intractable.   (It  has  been  estimated,  for  example,  that  there  are
1020 nodes in the game graph for checkers, and 1043 in that for chess.)   Although
a rational player, one with extensive memory and great speed, could play perfect tic-
tac-toe  through  exhaustive  search  of  the  game  graph  from  the  node  representing
the  current  state  of  the  contest,  more  difficult  games  will  not  succumb  to  this
approach.  

A  second  rational  approach  to  game  playing  is  to  consider  the  theoretical
mathematical  properties  of  a  two-person,  perfect-information  game  and  exploit
them.   Recent  mathematical  research  (Berlekamp,  Conway,  & Guy 1982),  however,
indicates that success in many of these games is determined by difficult, and often
intractable,  mathematical  calculations  involving  abstract  concepts  called  nimbers.
Not enough is yet known about computing with nimbers to program for them.  Thus
the  "rational"  approaches  to  game  playing,  omniscience  and  theoretical
computation, are really not open to computers.  



Games and AI
The  AI  approach  to  game  playing  has  thus  far  been  to  build  a  program  that  plays
only  a  single  game,  and  plays  it  very  well.   These  programs  play  checkers  (Samuel
1963,  Samuel  1967),  Othello  (Rosenbloom  1982,  Lee  &  Mahajan  1988),
backgammon  (Berliner  1980)  or  chess  (Ebeling  1986,  Anantharaman,  Campbell  &
Hsu  1988,  Schaeffer  1988).   The  Chess  4.5  paradigm  (Slate  &  Atkin  1977),  on
which many of  them are based,  advocates extensive forward search from the node
in  the  game  graph  representing  the  current  state  of  the  game  to  a  set  of
intermediate  nodes,  called  tip  nodes.   These  tip  nodes  are  then  heuristically
evaluated and their values are backed up (Nilsson 1980, Berliner 1979, Palay 1982,
Rivest  1987,  McAllester  1988)  to  estimate  the  best  move  from the  current  state.
Iterative deepening, selective extension (Anantharaman, Campbell, & Hsu 1988), and
the  null  move  heuristic  (Goetsch  &  Campbell  1988)  are  refinements  of  this  game
graph search that have proved effective in chess.  Such search is often supported by
very  large  historical  knowledge  bases  on  openings,  endgames,  and  other  play
experience (Schaeffer  1988,  Schultz & De Jong 1988).   Although people assuredly
lack the speed, accuracy, and retention of their machine opponents, the outstanding
human  players  at  these  games  are  still  able  to  defeat  the  best  of  these  one-game
programs.   There  are,  for  example,  hundreds  of  chess  players  who  can  still  defeat
the best of the chess-playing machines. 

During chess competitions, outstanding players often have a team of experts with
whom  they  discuss  a  contest.   The  hope  is  that  members  of  the  team  will  notice
different  aspects  of  the  current  game  state  hitherto  overlooked,  ones  that  will
strengthen the decision-making process.  In their consideration of alternative moves
from  the  current  state,  people  call  upon  their  knowledge  about  game  playing  and
problem  solving.   This  knowledge  can  be  contest-specific  (i.e.,  related  to  a  single
experience  of  a  game  from  a  start  to  a  finish),  game-specific  (a  strategy  for  a
particular game), or game-independent (metatheoretical).  Different people may well
have  different  viewpoints  on  alternative  moves.   HOYLE's  design  encourages  the
construction of different viewpoints as an alternative problem solving approach for a
broad class of two-person, perfect-information games.  

HOYLE's Architecture
Rather than explore deeply or recall perfectly, HOYLE approaches the many aspects
of effective decision-making during game playing with a three-level architecture.  On
the  first  level,  HOYLE  captures  and  exploits  the  commonalities  in  its  domain  with  a
panel of Advisors, each of which takes a narrow, but quite rational view, of the move
selection problem.  Each Advisor is permitted only limited resources before it offers
its  recommendations.   On  the  second  level,  HOYLE  mediates  among  its  Advisors,
weighing their  judgement against  what  it  knows about  the current  contest  and the
game  itself.   On  the  third  level,  HOYLE  learns  about  its  Advisors  and  their  general
application in play.



The Advisors
At any given state in a contest, there is usually a variety of possible moves, each of
which has something to recommend it (a positive comment) and/or advise against it
(a  negative  comment).   A  comment  is  attributable  to  some  particular  view  of  the
game state, possibly a very narrow one.  In HOYLE, each comment cites supporting
evidence and is advanced with some measure of strength.  

Consider,  for  example,  a  tic-tac-toe  game,  where  Player  marks  squares  with  X's
and Opponent uses O's.   In  Figure 1,  with Player  as mover,  one comment might be
"move  in  square  6,"  to  prevent  a  win  by  Opponent.   This  comment  could  cite  as
support the threat of the O's in squares 4 and 5, and would have maximum strength,
since a win by a reasonably observant Opponent across the second row on the next
turn is virtually certain.  A second comment, of a similar nature, might be "move in
square  8,"  since  Opponent  threatens  to  win  in  the  second  column  after  two  turns.
Such a comment must be weaker than the first, because it projects a longer contest.
A third comment might be "move in square 2," because Player will win immediately.  

Each Advisor in HOYLE epitomizes a different perspective on game playing.  Panic,
for example, looks to see whether the non-mover has a sure win on his next move.
In  Figure 1,  it  is  Panic  who insists  that  a  move in  square 6 is  the only  way to save
the day.  Victory is another Advisor;  it looks for a sure win for itself on the current
move.   In  Figure  1,  it  is  Victory  who  insists  that  a  move  in  square  2  is  the  best
choice.   At  any  state,  an  Advisor  may  make  any  number  of  comments,  each  with
supporting  evidence  and  a  strength  from  0  (adamant  opposition)  to  10  (insistent
support).

A State in a Tic-tac-toe Trial 
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Figure 1

Some  of  the  comments  reference  limited  libraries  constructed  during  the  post-
mortem  after  a  contest  is  played.   There  is  a  library  of  openings,  a  library  of
significant  states,  and  a  library  of  previous  contests.   After  HOYLE  completes  a
contest,  it  extracts  and  caches  the  opening  (the  first  10% of  the  moves)  and  any
significant  states.   A  state  is  deemed  significant  if  it  is  certain  to  lead  to  a  win  or
loss.  Consider the description in Figure 2 of a contest that Player wins on  the 25th
move, from state S-1 to state S.  The second-to-last state, S-1, is cached as "win in
1" with the final  move,  M-25.   HOYLE's  Advisors,  if  they ever  encounter  S-1 again,
will  recall  both the state and the winning M-25 move without search.  The third-to-
last  state,  S-2,  is  cached  as  "lose  in  2"  if  and  only  if,  under  a  limited  resource
allotment, exhaustive forward search from it fails to find a better alternative for the
mover  at  that  point.   If  the  third-to-last  state  is  cached,  then  the  fourth-to-last
state, S-3, is cached as "win in 3" with the winning M-23 move.  If Opponent is the
winner in state S, HOYLE caches S-1 as "lose in 1" with move M-25, and may, based
on a search like the one described,  cache S-2 as "win in  2" and S-3 as "lose in  3."
Theoretically,  this  cycle  of  caching  and  searching  significant  states,  analogous  to  a
human  post-mortem,  can  be  carried  back  as  far  as  the  opening.   Such  search  is
costly, however, and HOYLE devotes only a finite amount of resources to it.

With  access  to  these  limited  libraries,  Advisors  may  warn  against  previously
unsuccessful  lines  of  play,  and  recommend  those  that  were  successful  in  the  past.
Advisors may also recommend simple plans and defend against a primitive model of
the  opposing  player.   There  are  even  comments  recommending  psychological
gambits.   At  the  moment  there  are  12  Advisors,  in  various  stages  of
implementation,  descriptively  named  Victory,  Panic,  Sadder,  Wiser,  Open,  Candide,
Worried,  Knot,  Sneak,  Feinter,  Pitchfork,  and  Wild.   Thus,  HOYLE's  first  level
deliberately  chooses limited rationality  with  a  variety  of  resource-limited,  and often
discordant, reasoners.



Mover State before Move Move
Player S-3 M-23
Opponent S-2 M-24
Player S-1 M-25
Opponent S none

Calculating Significant States
Figure 2

Mediation
Based  upon  all  this  self-generated  advice,  HOYLE  has  to  determine  its  next  move.
On  the  second  level,  HOYLE  learns  to  mediate  effectively  among  its  (often
disagreeing) Advisors for a specific game.  HOYLE acquires and refines a strategy for
a  particular  game  from  its  experience  in  playing  that  game.   This  strategy  is  an
instantiation  of  HOYLE's  uniform  strategy  for  all  two-person,  perfect  information
games.

Figure  3  shows  HOYLE's  uniform  strategy  frame  and,  in  italics,  a  hypothetical
instantiation  for  tic-tac-toe.   (As  HOYLE  encounters  more  difficult  games  in  its
knowledge base, this frame will be modified.)  The items in Figure 3 become a focus
of  attention  simply  because  they  appear  in  the  frame,  i.e.,  HOYLE's  metatheory
asserts that they are significant factors in playing any game. 

It is an advantage to go first: true
List of best opening moves: ((center square))
Under optimal play taking the Player/Opponent advantage it is possible 
to win:  false 
Optimal play generalization:  (Player takes the center square.  Opponent 
takes …)
Most important territory to control: (center, corners)
Treatment of advice (equal or strength-based):  strength-based 
Weighted advice:  no
Advisor weights:  none

HOYLE's Uniform Strategy for Game Playing
Figure 3

When it is HOYLE's turn to move, it consults each of four tiers of Advisors in turn.
HOYLE collects and weighs evidence for and against possible moves, and selects the
move  with  the  highest  strength  based  on  its  current  strategy  for  the  game.   The
tiers capture the following commonsense rules :

• If you can move to a win now, do it.
• If you cannot win now and are about to lose at the next turn, block the 
move which threatens you. 
• The more contests of the same game you play, the more you should rely

on your previous experience.



• In long contests (longer, say, than the number of positions on the 
board) look for a safe cycle.
• When things look bad, play defensively.   

HOYLE continues on to the next tier only when unable to make a 
clearly-substantiated decision from the information at hand.  

Learning
Rather  than  calculate  an  ideal  strategy from search  of  all  possible  contests,  HOYLE
revises its strategy over a set of contests.  This enables HOYLE to learn from a kind
of spiral curriculum:  as HOYLE becomes more proficient at a game against a skilled
opponent,  the individual  contests usually force the opponent to marshall  more skill,
and the contests provide HOYLE with more advanced and detailed information.  It is
important  to  note  that  HOYLE  does  not  require  thousands,  or  even  hundreds,  of
practice  games  from  which  to  learn.   HOYLE's  theory  about  a  game  evolves  after
each  contest,  during  a  human-like  post-mortem.   No  game  is  ever  assumed  to  be
learned perfectly;  HOYLE is always willing to play another contest.  

Even from only a few contests at a particular game, HOYLE is able to extrapolate
valuable  knowledge.   For  now,  HOYLE learns  in  an unstructured environment,  i.e.,  it
learns in random encounters against one or more opponents, without developing and
testing  new  strategies  on  its  own.   Eventually,  HOYLE  will  explore  original  game-
specific  strategies  under  the  guidance  of  a  Theoretician,  an  Experimenter,  and  a
Critic.  The Theoretician will postulate likely theories about a game, the Experimenter
will  operationalize each theory and explore the success of  the resultant strategy in
an  experiment,  and  the  Critic  will  revise  the  theories  in  light  of  the  experimental
results.  This aspect is similar in spirit to LEX (Mitchell, Utgoff, & Banerji 1983) and
(Falkenhainer & Rajamoney 1988).

A HOYLE experiment will be an examination of past contests or a tournament 
whose contests contribute to HOYLE's knowledge base for the game.   For example, 
if the Theoretician suspects that the role of Player offers an advantage, the 
Experimenter could examine contests between two (human) experts and see which 
role wins most often.   Currently, the list of openings is compiled from contests 
where an expert took the role of Player.  (Eventually, the Theoretician might 
postulate good openings and have the Experimenter test them.)  Whether or not it 
is possible to win and any optimal play generalizations will also be extracted from 
the contest library.  In games involving territorial control, the library contests 
suggest the most important territory from expert openings (in games with 
uninvertible moves) and from unforced expert moves.  (HOYLE could also calculate 
those positions that Player occupies most often in win nodes and/or Opponent 
occupies most often in loss nodes.)  The Experimenter can evaluate the relative 
significance of the Advisors either by staging a tournament or by observing which 
Advisors gave/would have given the correct (winning or expert) advice in library 
contests.



Experimental design is part of HOYLE's metatheory.  A sophisticated Experimenter
should consider the number of different wins in the game graph, the nature of paths 
from starts (are they bushy? deep? cyclic?), the nature of the goals of the game (to
possess territory, for example), and whether or not moves are invertible.  

On the third level, HOYLE is intended to explore commonalities in game-playing.  It
is HOYLE's thesis that people have a metatheory for game-playing, an encapsulation 
of their experience that enables them to learn to play games many well.  HOYLE's 
metatheory is a general, game-independent strategy, a set of techniques for learning
and playing any two-person, perfect information game.  Currently, HOYLE's 
metatheory consists of:

• the Advisors
• the uniform strategy frame
• the 4-tier consultation system  

Eventually HOYLE is expected to learn its metatheory, just as it currently learns 
game-specific strategies.  

Work in Progress
HOYLE is a system under development.  It possesses a uniform declarative 
representation (an instantiable frame) for two-person, perfect-information games, 
and a uniform procedural representation whose application enables the correct play 
of any such game.  The efficacy of this representation is well-supported by HOYLE's 
current ability to play a broad spectrum of culturally diverse games correctly under 
the direction of its metatheory.  The games in the domain are tic-tac-toe, lose tic-
tac-toe, two versions of three-dimensional tic-tac-toe, tsoro yematatu (Zaslavsky 
1982), pong hau k'i, and achi (Bell 1969).  They were chosen because they are 
popular in a variety of cultures, and therefore probably capture some aspects of 
game playing that people find particularly intriguing.  Their game graphs certainly do 
not have the complexity of chess or Go, but they do offer the challenge of cycles 
and stage transitions, and at least one of the games has a game graph of billions of 
nodes.

Tic-tac-toe is well-understood, and HOYLE plays it optimally in either role, i.e., 
wins whenever possible and ties otherwise.  Lose tic-tac-toe (Cohen 1972) has been
solved mathematically, i.e., a strategy for both players has been clearly delineated 
and proved.  Against this strategy, HOYLE plays flawlessly after only two trials, as 
either the first or the second player.  In the rest of the games, HOYLE rarely loses 
after two trials, and regularly defeats most human opponents.  The Advisors, with 
very little memory or forward search, have proved surprisingly powerful.

Current efforts are focused on the implementation and relative significance of the
Advisors.   In particular, Pitchfork, the Advisor on forking, is so successful that it 
now dominates its tier and guarantees optimal play without forward search into the 
game tree (Epstein 1989).  From play, HOYLE should acquire and refine a reliable 
method of mediating among and applying its Advisors' recommendations to the 
particular game in question.  Although chess, checkers, and Go are theoretically 
within HOYLE's domain (i.e., given the rules, HOYLE could play them correctly), none 
of them has been attempted.  HOYLE's metatheory will continue to be developed as 
the games in its knowledge base become more difficult.   The power of its Advisors 
will be evaluated from the prowess HOYLE displays and the speed with which it 
learns.  In the meantime, HOYLE's mediation among its Advisors proves an effective,



if limitedly rational, approach to game playing.



References
Anantharaman, T., Campbell, M., and Hsu, F.  1988.  Singular Extensions: Adding 
Selectivity to Brute Force Searching.  In Proceedings of the AAAI 1988 Spring 
Symposium Series: Computer Game Playing, 8-13.  Stanford, California.
Bell, R.C.  1969.  Board and Table Games from Many Civilizations.  London:  Oxford 
University Press.
Berlekamp, E.R., Conway, J.H., and Guy, R.K.  1982.  Winning Ways for Your 
Mathematical Plays, Volumes 1 and 2.  London:  Academic Press.
Berliner, H.J.  1979.  The B*Tree Search Algorithm:  A Best-First Proof Procedure.  
Artificial Intelligence 12:  23-40.  
Berliner, H.J.  1980.  Backgammon Computer Program Beats World Champion.  
Artificial Intelligence 14:  205-220.  
Cohen, D.I.A.  1972.  The Solution of a Simple Game.  Mathematics Magazine 45:  
213-216. 
Ebeling, C.  1986.  All the Right Moves:  A VLSI Architecture for Chess.  Ph.D.  diss., 
Department of Computer Science, Carnegie Mellon University.
Epstein, S.L.  1989.  Deep Forks in Strategic Maps - Playing to Win.  Submitted to 
IJCAI 1989.
Falkenhainer, B., and Rajamoney, S.  1988.  The Interdependencies of Theory 
Formation, Revision, and Experimentation.  In Proceedings of the Fifth International 
Conference on Machine Learning, 353-366.  Ann Arbor, Michigan.
Goetsch, G., and Campbell, M.  1988.  Experiments with the Null Move Heuristic in 
Chess.  In  Proceedings of the AAAI 1988 Spring Symposium Series:  Computer 
Game Playing, 14-18.  Stanford, California.
Lee, K.-F., and Mahajan, S.  1988.  A Pattern Classification Approach to Evaluation 
Function Learning.  Artificial Intelligence 36:  1-26.
McAllester, D.A.  1988.  Conspiracy Numbers for Min-Max Search.  Artificial 
Intelligence 35:  287-310.
Mednis, E.  1978.  Practical Endgame Lessons.  New York:  David McKay Company.
Mitchell, T.M., Utgoff, P.E., and Banerji, R.  1983.  Learning by Experimentation:  
Acquiring and Refining Problem-Solving Heuristics.  In Machine Learning: An Artificial 
Intelligence Approach, ed.  R.S. 
Michalski, J.G. Carbonell, and T.M. Mitchell, 163-190.  Palo Alto, California:  Tioga 
Publishing.



Nilsson, N.J.  1980.  Principles of Artificial Intelligence.  Palo Alto, CA: Tioga 
Publishing.
Palay, A.J.  1982.  The B* Tree Search Algorithm - New Results.  Artificial 
Intelligence 19:  145-164.  
Rivest, R.L.  1987.  Game Tree Searching by Min/Max Approximation.  Artificial 
Intelligence 34:  77-96. 
Rosenbloom, P.S.  1982.  A World-Championship Level Othello Program.  Artificial 
Intelligence 19:  279-320.  
Samuel, A.L.  1963.  Some Studies in Machine Learning Using the Game of Checkers. 
In Computers and Thought, ed.  E.A.  Feigenbaum and J.  Feldman, 71-105.  New 
York:  McGraw-Hill.
Samuel, A.L.  1967.  Some Studies in Machine Learning Using the Game of Checkers. 
II - Recent Progress.  IBM Journal of Research and Development 11:  601-617.
Schaeffer, J.  1988.  Learning from (Other's) Experience.  Proceedings of the AAAI 
1988 Spring Symposium Series:  Computer Game Playing, 51-53.  Stanford, 
California.
Schultz, A.C., and De Jong, K.A.  1988.  Using Experience-Based Learning in Game 
Playing.  Proceedings of the Fifth International Conference on Machine Learning, 
284-290.  Ann Arbor, Michigan.
Slate, D.J., and Atkin, L.R.  1977.  Chess 4.5 - The Northwestern University Chess 
Program.  In Chess Skill in Man and Machine, ed.  P.W. Frey, 82-118.  New York:  
Springer-Verlag.
Zaslavsky, C.  1982.  Tic Tac Toe and Other Three-in-a-Row Games, from Ancient 
Egypt to the Modern Computer.   New York:  Crowell.


