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Abstract 

We describe the integration of pattern-based reasoning 
learned through experience into two decision-making sys-
tems.  The first is a hierarchical, multimodal game-playing 
program called Hoyle which integrates various approaches 
for deciding which move to make. The second is a dynamic 
programming assignment system which assigns trucking re-
sources to delivery tasks.  In this case, we utilize historic 
patterns of activity in the network generator to limit the 
candidate tour generation process for the assignment 
algorithm.  In each case, the new knowledge results in 
increased performance. 

1. Introduction 
When the initial statement of a task is not given in terms of 
an effective or efficient representation, the ability to learn 
new representations of the problem is essential to a high-
performance system. In many tasks people and machines 
optimize representation and sensory processing through 
their experience (Saitta, Neri, Bajo, Canas, Chaiklin, Es-
posito, et al. 1995). Knowledge about spatial and temporal 
patterns of activity may be of particular importance.  

This paper describes autonomous decision-making pro-
grams in two domains. Each of them gradually acquires 
pattern knowledge from its experience, and integrates this 
knowledge into its decision-making structure. Performance 
improves in both cases as they shift their reliance to these 
pattern-based representations. Although one could, in prin-
ciple, reason about a particular task and infer pattern 
knowledge about its domain, the inherent complexity of 
most decision-making domains makes it difficult to deduce 
pattern knowledge from first principles. The research re-
ported here seeks a mechanism that uses experience to fo-
cus attention on an application’s salient spatial knowledge, 
and then integrates that pattern knowledge with other fac-
tors in the decision-making process.  

2. A Multimodal Game Playing Architecture 
Hoyle plays games with a mixture of Advisors, procedural 
implementations of particular decision-making rationales. 
This approach is supported by evidence that people inte-
grate a variety of strategies in order to accomplish problem 

solving (Biswas, Goldman, Fisher, Bhuva, & Glewwe 
1995; Crowley & Siegler 1993; Ratterman & Epstein 
1995). Because all Advisors are not equally important or 
equally trustworthy, Hoyle is organized into the two-tier 
hierarchy shown in Figure 1.  

Advisors in tier 1 are guaranteed to be correct; they per-
form at most shallow search and do valid inference from 
perfect knowledge. For example, Victory does a simple, 1-
ply lookahead to see if any legal move immediately wins 
the contest. Its inference procedure is correct, and its opin-
ion is trustworthy. Wiser does a simple, 1-ply lookahead to 
see if any legal move leads to a state already known to be a 
win for its side (a significant  win state) and cached in a 
lookup table. The significant state cache is correct, so 
Wiser too is trustworthy.  

In contrast, the Advisors in tier 2 are heuristic, because 
either their reasoning method is not guaranteed valid or the 
data upon which they rely they is open to question. Tier-2 
Advisors are also restricted in their search depth. For ex-
ample, Vulnerable searches to see if it is threatened by a 
capture, but, since it only looks ahead 2-ply, Vulnerable’s 
reassurance is not completely trustworthy. 

As in Figure 1, the input to Hoyle at any decision point 

 
Figure 1: A schematic of decision making in Hoyle. 



 

is the current state of the world, a list of the legal actions 
possible, and a collection of useful knowledge. Useful 
knowledge is heuristic, learned from experience, and ex-
pected to enhance performance. Good openings are an ex-
ample of useful knowledge for game playing. The other 
kinds of useful knowledge for game playing include signif-
icant states, ones certain to result in a win for a particular 
contestant assuming perfect play on both sides. Each kind 
of useful knowledge has its own learning algorithm, trig-
gered at the end of a contest or after a move. 

 A full list of Hoyle’s Advisors, grouped by tier, ap-
pears in Table 1. Observe that individual Advisors employ 
a variety of reasoning methods. In particular, there are a 
number of model-based heuristics in tier 2. Coverage, for 
example, represents the board as a set of prespecified 
straight lines and reasons about their control. There is also 
an entire set of reasoners, including Pitchfork, for a bipar-
tite graph representation (Epstein 1990).  

Although every Hoyle Advisor is theoretically relevant 
to the games in its domain, the significance of any particu-
lar tier-2 Advisor will vary from one game to the next. Ma-
terial, for example, is important only in games where 
pieces can be captured, and thus is irrelevant in tic-tac-toe. 
FORR, the architecture on which Hoyle is based, provides 

a facility to learn appropriate a weight for each tier-2 Advi-
sor that reflects its significance in a particular game 
(Epstein 1994a). 

Decision making in Hoyle considers each tier in turn. 
The first tier sequentially attempts to compute a decision 
based upon perfect knowledge, no more than 2-ply search, 
and valid inference. If the game-independent tier-1 Advi-
sors can select a move, they do so, and the second tier is 
never consulted. Otherwise the Advisors in tier 2 collec-
tively make less reliable comments from individual, narrow 
heuristic viewpoints, such as Material’s “maximize the 
number of your playing pieces and minimize the number of 
your opponent’s.” When a decision must be made in tier 2, 
Hoyle selects the move with maximal support, summing 
the product of the strength from each comment about the 
move with the weight of the commenting Advisor. The 
weights of each Advisor’s vote are game specific and are 
learned by playing against a perfect player. 

One of our current research interests is learning new tier-
2 pattern-oriented Advisors, as described below. The chal-
lenge comes in incorporating these new reasoners so that 
the system improves, without degrading its performance as 
the learned Advisors join the ranks of the other tier-2 Advi-
sors.

Table 1: Hoyle’s Advisors for game playing. Tier 1 is in its prespecified order. Advisors with a * apply useful knowledge. 
Name Description Reasoning Method 

Tier 1   
Victory Makes winning move from current state if there is one. Search 
Wiser* Makes correct move if current state is remembered as certain win. Lookup 
Sadder* Resigns if current state is remembered as certain loss. Lookup 
Panic* Blocks winning move non-mover would have if it were its turn now. Search and lookup 
Don’t Lose* Eliminates any move that results in immediate loss. Search and lookup 
Shortsight* Advises for or against moves based on two-ply lookahead. Search and lookup 
Enough Rope* Avoids blocking losing move non-mover would have if it were its turn. Search and lookup 
Tier 2   
Anthropomorph* Moves as winning or drawing non-Hoyle expert did. Lookup 
Candide Formulates and advances naive offensive plans. Model-based 
Challenge Moves to maximize its number of winning lines or minimize non-mover’s. Model-based 
Coverage  Maximizes mover’s influence on predrawn board lines or minimizes non-

mover’s. 
Model-based 

Cyber* Moves as winning or drawing Hoyle did. Lookup 
Freedom  Moves to maximize number of its immediate next moves or minimize non-

mover’s. 
Model-based 

Greedy Moves to advance more than one winning line. Model-based 
Leery* Avoids moves to state from which loss occurred, but where limited search 

proved no certain failure. 
Lookup 

Material Moves to increase number of its pieces or decrease those of non-mover. Model-based 
Not Again* Avoids moving as losing Hoyle did. Lookup 
Open* Recommends previously-observed expert openings. Lookup 
Patsy* Supports or opposes moves based on their patterns’ associated outcomes Lookup 
Pitchfork * Advances offensive forks or destroys defensive ones. Model-based 
Vulnerable Reduces non-mover’s capture moves on two-ply lookahead. Search 
Worried Observes and destroys naive offensive plans of non-mover. Model-based 
Learned spatial 
Advisors 

 

Supports or opposes moves based on their creation or destruction of a single 
pattern. 

 

Lookup 



2.1 Incorporating new reasoners 
Spatially-oriented representations are useful for two-di-
mensional board games. Initial directions and rules given 
to novices, however, are typically statements of 
relationsamong a few playing pieces. As game players 
become more expert, they rely on pattern knowledge and 
spatial heuristics to direct play. Indeed, much advice from 
experts on how to analyze and play board games is con-
veyed through spatially-oriented concepts. Chess and 
checkers are discussed in terms of controlling the center of 
the board (Gelfer 1991) and concepts such as shape and 
thickness are fundamental to the game of Go (Ishida 1991; 
Otake 1992). Our approach to learning spatially-oriented 
heuristics for game playing is based upon learning this 
information through experience while playing the game. 
For a system to learn through experience, it must be able to 
perform at some low level of competence that supports the 
kind of experience required to achieve a higher level of 
performance through practice. The approach described here 
employs multiple expert decision modules some of which 
have general game playing knowledge and others which 
acquire new game-specific knowledge while playing. 

For Hoyle, a pattern is a visually-perceived regularity, 
represented as a small geometric arrangement of playing 
pieces (e.g., black or X) and blanks (unoccupied positions) 
in a particular geographic location. A move can create a 
pattern by providing some missing piece or blank, or, in 
games where pieces are not permanently placed, destroy a 
pattern by removing one.  

When it first learns a new game, Hoyle constructs a set 
of board-dependent templates as a filter for its perceived 
patterns: straight lines, L’s, triangles, squares, and diago-
nals of a limited size composed of legal piece positions. 
When a template is instantiated with some combination of 
pieces, it becomes a pattern. The associative pattern store 
links patterns with contest outcome (win, loss, or draw). 
Patterns in the cache are proceduralized such that if an in-
dividual pattern is created by a legal move, the pattern Ad-
visor, Patsy, votes accordingly.  

Periodic sweeps through the pattern cache also attempt 
to generalize sets of patterns into spatial concepts. Each 
concept is proceduralized as an individual, game-specific, 
learned spatial Advisor. Each new Advisor is placed in tier 
2, and a weight is learned for it. Despite the care with 
which patterns are filtered, some of these new Advisors are 
useless (silent) or simply wrong. Weight learning eventu-
ally detects that; their weights sink to zero, effectively re-
moving them from decision making. Their introduction, 
however, could cause an intermediate reduction in Hoyle’s 
prowess, until their weights drop low enough. Therefore 
Hoyle phases in these new, learned spatial Advisors, artifi-
cially suppressing their weights until they have shown 
themselves repeatedly reliable. 

2.2 Results 
Hoyle now learns pattern associations and game-specific 

spatial Advisors while it plays. The games we used were 
tic-tac-toe and lose tic-tac-toe (played like tic-tac-toe but 
whoever gets three in a row, column, or diagonal first 
loses). Both are draw games, that is, play between two 
perfect contestants must, by the nature of the game graph, 
end in a draw. Because tic-tac-toe and lose tic-tac-toe have 
the same board, they begin with the same templates. Tic-
tac-toe is extremely easy for Hoyle to learn well, and we 
expected no improvement; it was present only to demon-
strate that weights, patterns, and learned spatial Advisors 
were game-board independent. Lose tic-tac-toe is a far 
more difficult game to learn to play well, both for people 
and for machines. It has been solved mathematically and 
the correct strategies for the two contestants are different 
(Cohen 1972). Thus it forces the program to distinguish be-
tween patterns and concepts good for one contestant and 
those good for both.  

Hoyle learns to value pattern-oriented play (i.e., Patsy 
and the learned spatial Advisors) highly. After learning in 
200 tic-tac-toe contests, 32.6% of all weight is assigned to 
Advisors that are pattern-oriented, and Patsy and the best 
learned spatial Advisor always have the top two weights. In 
lose tic-tac-toe 29.3% of all weight is assigned to Advisors 
that are pattern-oriented, and Patsy ranks second on all but 
one run, where it ranks third. On 80% of the runs, Hoyle 
learned at least one spatial Advisor for lose tic-tac-toe with 
weight at least one, and that Advisor ranked fifth on aver-
age. Learning new spatially-oriented heuristics also 
reduces the number of contests Hoyle requires to develop 
consistent expert performance. With patterns and the 
learned spatial Advisors, the program never lost at lose tic-
tac-toe during learning after contest 29.0, versus contest 
56.0 without patterns and the learned spatial Advisors.  

Two manifestations of Hoyle’s learned spatial orienta-
tion are its performance against different opponents and its 
response in novel situations. Recall that Hoyle trains 
against a perfect player, which should result in stereotyped 
movement in the game tree (Epstein 1994b). During test-
ing, however, the challengers with varying degrees of ran-
domness in their responses introduce states in the game 
tree provably never experienced by Hoyle during learning. 
Hoyle with patterns is better able to win and draw in most 
of the categories, despite the differences between its trainer 
and its challengers.  

3. Historical Patterns of Activity in Motor 
Carrier Assignment Systems 

Motor carrier companies carry freight in trucks from point 
to point as either a full truckload dedicated to a single 
destination or fractional truckloads that make stops and 
discharge freight at many destinations. In either case an 
optimization problem exists for large truckload carriers 
who operate thousands of trucks and can dispatch hundreds 
of drivers per hour. Dispatchers must assign individual 



 

drivers to loads while minimizing deadhead miles (empty 
miles from a driver's location to a pickup point) and 
maximizing truck usage within schedule limitations. At 
present, this task is handled by human dispatchers. 
Dynamic programming assignment systems have been 
installed in many trucking firms to augment the decision-

making strategies of the human dispatchers (Bertsekas & 
Tsitsiklis 1996; Powell & Shapiro 1997) . Though these 
automated systems are provably optimal at an instant in 
time, dispatchers agree with their assignments from only 
40% to as high as 80% of the time.  

 

 
 

Figure 3: A map of one day’s motor carrier activity at Yellow Freight.
In a significant percentage of the cases where the human 

dispatchers disagree with the automated system they do so 
with good reason. This is because, though the algorithms 
are provably optimal, they sometimes lack complete input 
knowledge of the state of the system and accurate forecasts 
of future trends. There are also important constraints that 
are not always explicitly expressed and entered as input. 
Because of the spatial and temporal nature of the task, this 
lack of knowledge and the errors in suggested assignments 
tend to be expressible in a pattern-based representation. 
Also, because the location of the shippers, destinations and 
trucking company terminals tend to remain somewhat 
constant, regular patterns of spatial or temporal activity 
tend to occur over time. Most importantly, many patterns 
of activity do not tend to occur for reasons that, as stated 
above, are not entered as input. These historical patterns 
can be used as a way to narrow down the choices of 
possible routes to be considered for truck assignments by 
the algorithm. 

3.1 Integrating Historical Patterns of Activity into 
the Decision Process  
The dynamic programming assignment algorithm uses a 
network generator which generates candidate tours for 
truck deliveries. These multi-leg tours are constructed 
incrementally by linking together single arcs. This process 
must be restricted in some way because it will result in a 
combinatorial explosion if all possible combinations of 

arcs are allowed. In the integrated system, a memory of 
previous patterns of activity is used to augment the tour 
generation process. This process results in some 
momentum because of the use of historical patterns. If 
there is any change in the factors that enter into an 
assignment decision, such as changes in union rules or 
other constraints, this will result in changes of the optimal 
patterns of activity. However the rest of the dynamic 
programming algorithm and network generator remain 
intact and reasonable assignments will be made As time 
goes on, the pattern assignments which result from the new 
conditions will change and the pattern data base will again 
use these new patterns as candidate tours. 

3.2 Results 
The pattern-based system has been installed at the 
operations headquarters of the Yellow Freight System in 
Kansas City, KS. This freight system handles 
approximately 6000 dispatches each day to 400 delivery 
points. The system described here is in daily use at Yellow 
Freight and supplies suggestions of optimal truck 
assignments to the human dispatchers. The operation of the 
system was checked by using the dynamic programming 
algorithm with and without the historical pattern memory 
in the network generator module. A useful measure of the 
performance of the system is the number of deadhead miles 
expressed as a percentage of total miles traveled. When the 
patterns are not used, the algorithm suggests assignments 
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in which the deadhead miles are 8% - 9% of the total. If the 
historical pattern database is used this figure drops to 5.5% 
- 6.0 %. 
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