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Abstract 

Although people rely heavily on visual cues 
during problem solving, it is non-trivial to in-
tegrate them into machine learning. This paper 
reports on three general methods that 
smoothly and naturally incorporate visual cues 
into a hierarchical decision algorithm for 
game playing: two that interpret predrawn 
straight lines on the board, and a third that 
uses an associative, hierarchical pattern 
database for pattern recognition. They have 
been integrated into Hoyle, a game learning 
program that makes decisions with a hierarchy 
of modules representing individual rational 
and heuristic agents.  

Key words: machine learning, game play-
ing, hierarchical decision algorithms, visual 
cues, pattern recognition 

1. Introduction  

Since the early work of Chase and Simon, re-
searchers have noted that expert chess players 

retain thousands of patterns (Holding, 1985).  
There has been substantial additional work on 
having a program learn specific patterns for 
chess (Berliner, 1992; Campbell, 1988; Flann, 
1992; Levinson and Snyder, 1991). There is 
conflicting evidence as to whether or not ex-
pert game players learn to play solely by as-
sociating appropriate moves with key patterns 
detected on the board, but it is believed that 
pattern recognition is an important part of a 
number of different strategies exercised in ex-
pert play (Holding, 1985). In AI, visual cues 
have previously demonstrated their power as 
explicit search control directives and as hand-
selected terms in an evaluation function 
(Gelernter, 1963; Samuel, 1963). Learned vi-
sual cues have also been derived from goal 
states with a predicate calculus representation 
(Fawcett and Utgoff, 1991; Yee, et al., 1990).  

This paper integrates the pattern recognition 
and the explanatory heuristics that experts use 
into a program called Hoyle that learns to play 
two-person, perfect information, finite board 
games against an external expert. As in the 



 

schematic of Figure 1, whenever it is Hoyle’s 
turn to move, a hierarchy of resource-limited 
procedures called Advisors is provided with 
the current game state, the legal moves, and 
any useful knowledge (described below) 
already acquired about the game. There are 22 
heuristic Advisors in two tiers. The first tier 
sequentially attempts to compute a decision 
based upon correct knowledge, shallow 
search, and simple inference, such as 
Victory’s “make a move that wins the contest 
immediately.” If no single decision is forth-
coming, then the second tier collectively 
makes many less reliable recommendations 
based upon narrow viewpoints, like Material’s 
“maximize the number of your markers and 
minimize the number of your opponent’s.” 
Based on the Advisors’ responses, a simple 
arithmetic vote selects a move that is for-
warded to the game-playing algorithm for ex-
ecution.  
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Figure 1: How Hoyle makes decisions. 

The program learns from its experience to 
make better decisions based on acquired 
useful knowledge. Useful knowledge is ex-
pected to be relevant to future play and may 

be correct in the full context of the game tree. 
Examples of useful knowledge include rec-
ommended openings and states from which a 
win is always achievable. Each item of useful 
knowledge is associated with at least one 
learning algorithm. The learning methods for 
useful knowledge vary, and include explana-
tion-based learning, induction, and deduction. 
The learning algorithms are highly selective 
about what they retain, may generalize, and 
may choose to discard previously acquired 
knowledge. When individual Advisors apply 
current useful knowledge to construct their 
recommendations, they integrate these learn-
ing strategies. Full details on Hoyle are avail-
able in (Epstein, 1992).  

Visual cues are integrated into Hoyle’s deci-
sion-making process as new Advisors in the 
second tier. These Advisors react to lines and 
clusters of markers without reasoning. This is 
prompted by our observation that people guide 
their play with frequently-observed patterns of 
pieces before they understand their signifi-
cance. The distinction drawn here between 
thinking and seeing in game playing is an im-
portant one. By “thinking” we mean the ma-
nipulation of symbolic data, such as “often-
used opening gambit;” by “seeing” we mean 
inference-free, explanation-free reaction to vi-
sual stimuli. The three Advisors described 
here are directed toward the construction of a 
system that both uses and learns visual cues. 
They provide powerful performance gains and 
promise a natural integration with learning. 
This paper indicates how Hoyle, already a 
multistrategy learning program, can integrate 
knowledge about visual cues, and methods to 
learn them.  

2. Using Predrawn Lines 

Morris games have been played for centuries 



 

throughout the world on boards similar to 
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Figure 2: Some five men’s morris states with white to move: (a) in the placing or the sliding 
stage, (b) and (c) in the sliding stage. 

 
those in Figure 2. For clarity, we distinguish 
carefully here between a game (a board, mark-
ers, and a set of rules) and a contest (one 
complete experience at a game, from an 
initially empty board to some state where the 
rules terminate play). We refer to the 
predrawn straight lines visible in Figure 2 
simply as lines. The intersection of two or 
more lines is a position. A position without a 
marker on it is said to be empty. Although the 
program draws pictures like those in Figure 2 
for output, the internal, computational 
representation of any game board is a linear 
list of position values (e.g., black or white or 
blank) along with the identity of the mover 
and whether the contest is in the placing or 
sliding stage. The program also makes 
obvious representational transformations to 
and from a two-dimensional array to 
normalize computations for symmetry, but the 
array has no meaningful role in move se-
lection. The game definition includes a list of 
predrawn lines and the positions on them. 

A morris game has two contestants, black and 
white, each with an equal number of markers. 
A morris contest has two stages: a placing 
stage, where initially the board is empty, and 
the contestants alternate placing one of their 

markers on any empty position, and a sliding 
stage, where a turn consists of sliding one’s 
marker along any line drawn on the game 
board to an immediately adjacent empty posi-
tion. A marker may not jump over another 
marker or be lifted from the board during a 
slide. Three markers of the same color on im-
mediately adjacent positions on a line form a 
mill. Each time a contestant constructs a mill, 
she captures (removes) one of the other con-
testant’s markers that is not in a mill. Only if 
the other contestant’s markers are all in mills, 
does she capture one from a mill. (There are 
local variations that permit capture only dur-
ing the sliding stage, permit hopping rather 
than sliding when a contestant is reduced to 
three near a contest’s end, and so on.) The first 
contestant reduced to two markers, or unable 
to move, loses.  

2.1 The Coverage algorithm 

When a marker is placed on any position on a 
line, it is said to affect all the positions on that 
line, including its own. The coverage of a po-
sition is the multiset of all distinct positions 
that it affects. A marker positioned where two 
lines meet, induces two copies of its position. 
Thus the coverage of 3 in Figure 2(a) is {1, 2, 



 

2⋅3, 10, 16}. A set of markers belonging to a 
single contestant P produces a cover, a multi-
set denoted CP = {c1⋅v1, c2⋅v2,…, cn⋅vn} that 
lists the affected positions v1, v2,…, vn and 
the number of lines ci on which vi lies that are 
affected by one of P’s markers. In Figure 2(a), 
the white cover is CW ={2⋅1, 2, 3, 2⋅4, 5, 2⋅6, 
2⋅7, 2⋅8, 9, 11, 13, 14}. The cover difference 
C~D for C={c1⋅v1, c2⋅v2,… , cn⋅vn} and D= 
{d1⋅w1, d2⋅w2,… , dm⋅wm}, is defined to be 
the multiset C~D = {x⋅ y | y = vi for some i = 
1, 2,…, n; x⋅y ∈ C; y ≠ wj for any j = 1, 2,…, 
m}. In Figure 2(a), CB~CW = {10, 12, 15, 
2⋅16} and CW~CB = ∅. We take the standard 
definitions from graph theory for adjacency, 
path, and path length.  

A marker offensively offers the potential to 
group others along lines it lies on 
(juxtaposition) and to facilitate movement 
there (mobility), while it defensively obstructs 
the opposition’s ability to do the same. The 
Coverage algorithm attempts to spread its 
markers over as many lines as possible, par-
ticularly lines already covered by the other 
contestant, and tries to do so on positions with 
maximal coverage. Assume, without loss of 
generality, that it is white’s turn to move. In 
the placing stage, Coverage recommends a 
move to every empty position ci⋅vi∈CB~CW 
where ci >1. If there are no such positions, it 
recommends a move to every position in 
CB~CW with maximal coverage. If there are 
no such positions of either kind, it recom-
mends a move to every empty position with 
maximal coverage. In Figure 2(a) with White 
to move in the placing stage, CB~CW = {10, 
12, 15, 2⋅16} so Coverage recommends a 
move to 16.  

In the sliding stage, Coverage recommends 
each legal move that increases |vi|, the number 
of the mover’s distinct covered positions. Let 

(p,q) denote a sliding move from position p to 
position q. In Figure 2(b) the legal moves 
(1,7), (9,6), (9,13), (10,3), (10,16), (14,7) 
change |vi| by -1, +2, 0, 0, 0, -1, respectively, 
so Coverage recommends (9,6). In the sliding 
stage, however, one’s cover can also decrease. 
Therefore, Coverage also recommends each 
legal slide to a position ci⋅vi∈CB where ci >1 
but for which ci ≤1 in CW. In Figure 2(c), 
where CB = {2⋅1, 2⋅2, 2⋅3, 2⋅4, 2⋅5, 6, 7, 8, 10, 
3⋅11, 3⋅12, 2⋅13, 2⋅14, 2⋅15, 2⋅16}, CW = {2⋅1, 
2⋅2, 2⋅3, 2⋅4, 2⋅5, 2⋅6, 2⋅7, 2⋅8, 2⋅9, 2⋅10, 11, 
13, 2⋅14, 15, 2⋅16}, and the legal moves are 
(2,3), (6,9), (8,4), (8,7), (10,3), (10,9), (14,7), 
(14,15), those vertices are 11, 12, 13, 15, so 
Coverage can only recommend (14,15).  

 
1 2 3

4 65

14 15

16

11 1312

7 8 9

10

19

1817

22

2120

2423  

Figure 3: A placing state in nine men’s 
morris, white to move. 

2.2 The Shortcut algorithm 

The Shortcut algorithm addresses long-range 
ability to move, and does so without forward 
search into the game graph. The algorithm for 
Shortcut begins by calculating the non-zero 
path lengths between pairs of same-color 
markers, including that from a marker to itself. 
For example, in Figure 3 the shortest paths 
between the white markers on 2 and 20 are [2, 
5, 6, 14, 21, 20], [2, 3, 15, 14, 21, 20], and [2, 
5, 4, 11, 19, 20]. Next, the algorithm selects 
those pairs for which the shortest non-zero 



 

length path between them is a minimum. It 
then retains only those shortest paths that meet 
the following criteria: every empty position 
lies on some line without a marker of the op-
posite color, and at least one position on the 
path lies at the intersection of two such lines. 
All three paths identified for Figure 3 are re-
tained because of positions 5, 14, and 5, re-
spectively. Shortcut recommends a placing or 
sliding move to the middlemost point(s) of 
each such path. In Figure 3, Shortcut therefore 
recommends moves to the midpoints 6 and 14, 
15 and 14, and 4 and 11. Computation for this 
algorithm, styled as spreading activation, is 
very fast. 

2.3 Results with Coverage and Shortcut 

Prior to Coverage, Hoyle never played five 
men’s morris very well. There are approxi-
mately 9 million possible board positions in 
five men’s morris, with an average branch 
factor of about 6. After 500 learning contests 
Hoyle was still losing roughly 85% of the 
time. Once Coverage was added, however, 
Hoyle’s decisions improved markedly. 
(Shortcut was not part of this experiment; data 
averages results across five runs.) With Cov-
erage, Hoyle played better faster; after 32.75 
contests it had learned well enough to draw 10 
in a row. The contests averaged 33 moves, so 
that the program was exposed during learning 
to at most 1070.5 different states, about .012% 
of the search space. From that experience, the 
program was judged to simulate expert play 
while explicitly retaining data on only about 
.006% of the states in the game graph.  

In post-learning testing, Hoyle proved to be a 
reliable, if imperfect, expert at five men’s 
morris. When the program played 20 addi-
tional contests against the model with learning 
turned off, it lost 2.25 of them. Thus Hoyle 

after learning is 88.75% reliable at five men’s 
morris, still a strong performance after such 
limited experience and with such limited re-
tention in so large a search space. Additional 
testing displayed increasing prowess against 
decreasingly skilled opposition, an argument 
that expertise is indeed being simulated.  

With a search space about 16,000 times larger 
than that of five men’s, nine men’s morris is a 
more strenuous test of Hoyle’s ability to learn 
to play well. Because there is no definition of 
expert outcome for this game, we chose sim-
ply to let the program play 50 contests against 
the model. Without Coverage and Shortcut, 
Hoyle lost every contest. With them both, 
however, there was a dramatic improvement. 
Inspection showed that the program played as 
well as a human expert in the placing stage of 
the last 10 contests. During those 50 contests, 
which averaged 60 moves each, it lost 24 
times, drew 17 times, and won nine times. 
(Some minor corrections to the model are now 
underway.) The first of those wins was on the 
27th contest, and four of them were in the last 
six contests, suggesting that Hoyle was 
learning to play better. With the addition of 
less than 200 lines of game-independent code 
for the two new visually-cued Advisors, Hoyle 
was able to learn to outperform expert system 
code that was more than 11 times its length 
and restricted to a single game. The morris 
family includes versions for 6, 9, 11, and 12 
men, with different predrawn lines. At this 
writing, Hoyle is learning them all quickly. 

It should be noted that neither of these Advi-
sors applies useful knowledge; instead, they 
direct the learning program’s experience to the 
parts of the game graph where the key infor-
mation lies, highly-selective knowledge that 
distinguishes an expert from a novice 

(



 

Ericsson and Smith, 1991). If this knowledge 
is concisely located, as it appears to be in the 
morris games, and the learner can harness it, 
as Hoyle’s learning algorithms do, the pro-
gram learns to play quickly and well. As de-
tailed here, this general improvement comes at 
a mere fraction of the development time for a 
traditional game-specific expert system. 

 
3. Learning Patterns 

Hoyle is a limitedly rational system that delib-
erately avoids exhaustive search and complete 
storage of its experience. Consistent with this 
approach, the work described here retains only 
a small number of the patterns encountered 
during play, ones with strong empirical evi-
dence of their significance. The program uses 
a heuristically-organized database to associate 
small geometrical arrangements of markers on 
the board with winning and losing. The asso-
ciative, hierarchical pattern database is a new 
item of useful knowledge. The first level of 
the database contains states; the second level 
contains patterns.  

The pattern database is constructed by the 
pattern classifier, an associated learning al-
gorithm, as follows. At the end of each 
contest, every state that occurred during the 
contest is cached in a fixed-size hash table, 
noting the sequence number of the most recent 
contest in which it appeared and whether 
Hoyle won, lost, or drew there. Each new state 
in the pattern database is now matched against 
nine templates for a 3×3 grid, adjusted for 
symmetry and shown in Figure 4. A “?” in a 
template represents an X, an O, or an empty 
space; “#” is the don’t care symbol. A 
subpattern is an instantiation of a template, 
e.g., X’s in the corners of a diagonal. 
(Preliminary empirical tests showed this to be 
the smallest set of effective templates.) 

The second level of the pattern database con-
sists of those subpatterns which appear in at 
least two states of the first level. Most states 
match several ways and therefore make multi-
ple contributions to counting on the second 
level. Each subpattern also records the number 
of contests in which it participated in a win, a 
loss, and a draw. Thus a subpattern is a gener-
alization over a class of states: those that have 
recently occurred with some frequency and 
contain simple configurations of pieces. Each 
subpattern is categorized as winning, drawing 
or losing based upon which kind of contest it 
appeared in most frequently. 
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Figure 4. The set of templates used by the 

pattern classifier.  

It is important to forget in the pattern 
database, primarily to discount novice-like 
play during the early learning of a game. 
There will be winning contests, and patterns 
associated with them, that were due to the 
learner’s early errors. We have therefore im-
plemented two ways to forget in the pattern 
database. First, when a hash table for either 
states or patterns is full, and a new entry 
should be made, the least recently used entry 
is eliminated, based on its most recent contest 
number. Second, at the end of every contest, 
the number of times each state was encoun-
tered is multiplied by 0.9. 

Patsy is an Advisor that ranks legal next 
moves based on their fit with the pattern 
database. Patsy looks at the set of possible 



 

next states resulting from the current legal 
moves. Each next state is compared with the 
subpattern level of the database. A matched 
winning subpattern awards the state a +2, a 
matched drawing subpattern a +1, and a 
matched losing subpattern a -2. A state’s score 
is the total of its subpattern values divided by 
the number of subpatterns in the cache. Patsy 
recommends the move whose next state has 
the highest such score. Ties are broken by 
random selection among the best moves.  

 

Victory + Panic + Patsy

Victory + Panic

Number of Contests

50

45

40

35

30

25

15

20

10

5

0
0 5 10 15 20 25 30 35 40 45 50

 

Figure 5. The performance of Hoylite with 
and without Patsy. 

Patsy was tested within a severely pared-down 
version of Hoyle, called Hoylite here. Hoylite 
has only two of Hoyle’s original Advisors, 
plus Patsy. The pattern classifier forms cate-
gories based on observed game states and as-
sociates responses to the observed states by 
learning during play. The hash table sizes 
were limited to 50 game states and 30 subpat-
terns. Three tournaments between Hoylite and 
a perfect tic-tac-toe player were run to assess 
the performance of Hoylite. The perfect player 
was a look-up table of correct moves. Each 
tournament was continued for 50 contests. The 
average cumulative number of Hoylite’s wins 
and draws is plotted against contest number in 
Figure 5. The graph compares Hoylite’s aver-

age performance against the perfect contestant 
with and without Patsy. Clearly Hoylite per-
forms consistently better with Patsy.  
There are many games that are played on a 
3×3 grid. At this writing we are testing 
whether the same pattern templates in Figure 4 
apply to several other games. We are also 
gradually adding Hoyle’s Advisors to Hoylite, 
to see what conflicts, if any, arise. Finally, we 
are experimenting with more sophisticated 
pattern classifiers, ones that model the re-
sponse of the human eye to arrangements such 
as lines of pieces and lines of open spaces. 

4. Discussion  

Predrawn game board lines are shown here to 
be important, readily accessible regularities 
that support better playing decisions. Histori-
cal data on patterns attractive to the human 
eye are demonstrably helpful in distinguishing 
good middlegame positions from mediocre 
ones. The brevity of the code required to capi-
talize on these visual cues for a variety of 
problems argues for the limitedly rational per-
spective of the architecture. The improvement 
the new Advisors have on play argues for the 
significance of visual representations as an 
integral part of decision making. When 
predrawn board lines are taken as visual cues 
for juxtaposition and mobility, Hoyle learns to 
play challenging games faster and better. Cov-
erage and Shortcut in no way diminish the 
program’s ability to learn and play the broad 
variety of games at which it had previously 
excelled (Epstein, 1992).  

Our preliminary examination of the impact of 
a recognition-association competitive learning 
pattern classifier on several other expert 
knowledge sources and learning methods via a 
blackboard architecture is promising. The 
game played was a simple one, and only two 



 

of the 22 preexisting Advisors were included. 
A simple game was chosen to facilitate de-
bugging the pattern classifier and measuring 
performance against an absolute standard. 
More than two Advisors would have obscured 
the contribution of the pattern-associative 
component. Hoylite’s pattern classifier is quite 
simple and does not learn new templates; it 
only learns which game states are important 
for the given set of templates. It can be seen 
from these preliminary results that a pattern 
recognition component can be smoothly inte-
grated into a game playing system that in-
volves reasoning and limited search. 

Heuristic Advisors are needed most in the 
middlegame, where the large number of pos-
sible moves precludes search. It has been our 
experience with more complex games, where 
one would have many Advisors, that openings 
are typically memorized, and that the endgame 
can be well-played with Advisors that reason 
about known losing and winning positions. In-
spection reveals that Shortcut and Coverage 
contribute to decisions only in the mid-
dlegame, while Patsy works on the opening 
and middlegame. In the full version of Hoyle, 
other Advisors cover the opening, and an ex-
perience-driven partial retrograde analysis 
learns enough useful knowledge to tune the 
endgame. In Hoylite, the other two Advisors, 
Victory and Panic, address the endgame, 
leaving Patsy to consider patterns important at 
the earlier stages. All three new Advisors 
prove to filter the middlegame alternatives to a 
few likely moves, ones that might then benefit 
from limited search. 
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