
Constraint Solving by Composition

Student: Zhijun Zhang
Supervisor: Susan L. Epstein

The Graduate Center of the City University of New York,
Computer Science Department

365 Fifth Avenue, New York, NY 10016-4309, USA
zzhang@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract. A structure-based approach to the solution of constraint problems
(e.g., tree-based decomposition) typically assumes that knowledge about the
problem remains static, and demands extensive resources to pursue the solution.
This may explain why such an approach is sometimes infeasible on large-scale,
real-world problems. This paper proposes a new approach, called composition
that partitions a problem into a disjoint set of star-like subproblems. By design,
search for solution on each subproblem is tractable. Composition identifies,
solves, and then propagates the result one subproblem at a time. This
reformulation makes the original problem model both denser and tighter, and
often facilitates search. Initial tests have proved promising.

1 Introduction and related work

A structure-based constraint solver usually decomposes a problem into possibly
overlapping subproblems with an acyclic structure [1-7]. The premise is that the sub-
problems will be easier to solve individually than the original problem, and that the
acyclic structure assembled from the solved subproblems admits a tractable solution
to the entire problem. In contrast, the thesis of this work is that a large-scale, real-
world problem may be better addressed by composing an equivalent problem from a
set of disjoint, readily solvable subproblems that present a denser and tighter struc-
ture.

Formally, a CSP P is represented by a triple <X, D, C>, where X is a finite set of
variables {X1, X2, …, Xn}, D is a set of domains {D1, D2, …, Dn} in which Di is a set
of values for variable Xi ∈ X, and C is a set of constraints {C1, C2, …, Cm}. A con-
straint Cj is defined by a scope scope(Cj) ⊆ X and a relation relation(Cj) that defines
all consistent instantiations of variables in the scope. The problem model is currently
limited to binary constraint problems, which have scopes of size at most 2. A sub-
problem PS = < XS, DS, CS> of P is formed by a subset XS of X, where DS = {Di ∈ D |
Xi ∈ S} and CS = {Ci ∈ C | scope(Ci) ⊆ XS}. The meta-constraint CTU between sub-
problems PT =< XT, DT, CT> and PU = < XU, DU, CU> of P is formed from the con-
straints in P: CTU = {C’ ∈ C | for Xi, Xj ∈ X, Xi ∈ XT, Xj ∈ XU, scope(C’) = [Xi, Xj]}.

The constraint graph formed with nodes representing subproblems and edges repre-
senting meta-constraints is called a meta-structure.

Tree-based decomposition is an example of structure-based constraint solving. In
decomposition, a pair of adjacent meta-variables may share a set of original variables,
which is called a separator. An acyclic meta-structure guarantees a tractable final so-
lution [6, 7]. Thus, the solution complexity of the entire problem is dominated by the
solution complexity of all meta-variables. For large-scale, real-world problems, how-
ever, tree-based decomposition may not be a good choice [1, 8] for several reasons.
First, detecting special structures (e.g., a maximal independent variable set [3]) to
construct an acyclic meta-structure can be costly, yet an approximation may not have
the same impact on performance. Second, space complexity is potentially exponential
in the maximum size of its separators [1]. Finally, addressing decomposition meta-
variables first may mislead search. For example, if the cause of over-constrainedness
is the meta-constraints, rather than the individual constraints, solving every meta-
variable first is not productive. If a problem has few solutions, each meta-variable
may still have many solutions, which ultimately prove invalid under the meta-
constraints. In this case, the meta-constraints should be addressed early, because
solving all the meta-variables may be NP-hard. We believe the last two of these con-
ditions make some real world problems (e.g., RLFAP-11) particularly difficult to
solve.

A novel approach to hard problems in combinatorial design studied the patterns
embedded in the solutions of low-order problems, and abstracted the patterns into a
streamlined constraint that partitioned the original problem P into P1 and P2 [11]. P1
is small and polynomially solvable; it holds the variables subject to the streamlined
constraints, P2, which does not cover patterns, is larger and possibly NP-hard. The
method solves P1 first and then recursively partitions P2 with streamlined constraints
until it constructively solves the entire problem. Although this method solves higher
order problems, there is no obvious way to apply it to real world problems because it
relies on small-sized sample problems to estimate patterns first. Nonetheless, this
work confirms that the properties of a problem’s solutions provide the key to solving
it. We conjecture, however, that comparatively easy subproblems play an important
role in finding solutions to large scale, real world problems.

The remainder of this paper explains how composition detects structure inexpen-
sively to form the meta-structure, avoids expensive separators, can update the prob-
lem model dynamically if necessary, and pursues an effective distribution of search
and propagation within a cyclic meta-structure.

2 Composition, a new constraint solver

A CSP P = <X, D, C> can be represented by a constraint graph G = <V, E>, where
each Vi in V corresponds to a unique Xi in X, and each edge in E joins two vertices in
V if and only if their corresponding variables have a common constraint in C. A trac-
table meta-variable of a CSP P is represented by an induced graph G[Vi, Ei] where
Vi ⊆ V and Ei = {Ej ∈ E | scope(Ej) ⊆ V i} that can be solved in polynomial time.
Given a CSP P = <X, D, C>, composition transforms P into a CSP P' = <X', D', C'>

without loss of any solution. Pseudocode for composition appears in Figure 1, where
problem P has constraint graph G. The partition loop in lines 4 – 9 repeatedly identi-
fies and removes a tractable meta-variable from P. Each time composition identifies a
new meta-variable G[Vi], the solver may search and/or perform inference on it to
some degree. Once the partition is completed, composition (line 10) combines all the
meta-variables into a new model P' with constraint graph G'. If a problem changes
gradually over time, line 10 could incrementally adapt meta-variables and meta-
constraints and/or create new ones. Composition (unlike decomposition) forms a true
partition that makes update much easier because there is no need to synchronize on
shared variables in the separators. The conjecture is that P' will be easier to solve than
P, because P' is much denser and

Fig. 1. Pseudocode for composition constructs a partition on P and composes a new P′,

Fig. 2. One implementation of a neighbor rule: (a) Select center S and identify G[S] with the
algorithm of Figure 2. (b) Calculate spanning tree ST over G[S] depth-first, selecting vertices
in ascending order of their degree in G[S]. (c, d, e) Starting from the center, incorporate one
neighbor at a time along the longest path in ST. The neighbor rule shown here specifies that
any vertex whose degree in the corresponding induced graph is no larger than 3 can be in-
cluded in the meta-variable. (e) Construction stops at the first vertex that violates the neighbor
rule in the longest path in ST. (f) All the selected vertices constitute now the tractable meta-
variable. After that, any dangling tree incident on the meta-variable can be included as a part
of the meta-variable since the center removal still makes the remainder acyclic.

tighter, due both to the nature of the partition and to any search and propagation exe-
cuted in lines 7 and 8.

Unlike decomposition, which permits overlap among meta-variables, a partition of
a CSP forms a set of meta-variables that are mutually exclusive and collectively ex-
haustive. I have explored several partition methods for the loop from line 4 to 9 in
Figure 1. During partition, one important question is how to construct a meta-variable
that has a tractable solution. It is guaranteed by the neighbor rule. Figure 2 gives an
example of a neighbor rule that constructs a tractable meta-variable. Figure 3 is an ex-
ample of an implementation for the partition loop in Figure 1.

3 Implementation and initial testing

A first version of composition, static composition, is now implemented, with pseu-
docode in Figure 4. During partition, static composition enforces singleton arc con-
sistency [10] over each meta-variable for every possible instantiation of its center
only, and stores the resulting domains for the neighbors in a dedicated data structure.
Thus, line 10 becomes a simple lookup that assigns values to the centers and corre-
sponding domains to neighbors in a meta-variable. Line 11 solves the remainder of
the problem by backtrack search. Currently, the algorithm makes a single partition
cycle (i.e., i = 1) because the constraint graph of P' is usually almost complete after
one cycle.

Static composition has been tested on RLFAP scenes 1, 2, 3, 10, and 11, and com-
pared to one traditional solver that uses MAC and another that uses FC. Each solver
used a variable-ordering heuristic that minimized dynamic domain size divided by
dynamic degree and selected values lexically. On scenes 1, 2, and 3, the static-
composition algorithm required search time comparable to both the other solvers, but

Fig. 3. (a) The pseudocode for one simple partition and the tractable meta-variable; (b) The
meta-variable G[S]. (c) The tractable meta-variable after applying the neighbor rule at line 6 to
G[S]. Note that the center removal from the meta-variable makes the remainder acyclic, which
guarantees that the meta-variable has a tractable solution [6, 7].

devoted extra time to partitioning. On scene 10, however, static composition is sig-
nificantly slower than both of the others. Scene 11 is well-known to be the difficult
one in this suite. Here, despite a somewhat inefficient current implementation, static
composition solved the problem in about 10% of the time required by the other
solvers, including its preparation time to partition the variables.

4 Discussion and current work

To understand composition, let P(m,d) be the meta-graph generated by a composition
algorithm on CSP P, where m is the maximum meta-variable size and d is the maxi-
mum degree of any meta-variable in the resulting meta-graph. Thus, P(n,0) treats the
original problem as a single meta-variable with degree zero. P(1,d) is equivalent to the
original constraint graph on n nodes with maximum degree d. Effectively, P(1, d) treats
every variable as a single meta-variable and every constraint as a meta-constraint.

P(1, d) shows that any constraint graph can be partitioned into meta-variables that
can be solved tractably and composed into a meta-structure equivalent to the original
graph. We conjecture that the parameters m and d dominate the space and time com-
plexity of composition, and that composition can strike a balance in performance by
finding an appropriate P(x, y) between P(1, d) and P(n, 0). This is analogous to the param-
eterized decomposition algorithm achieved in [1], which finds the optimal separator
size for the tradeoff between time and space complexity of decomposition.

Current work focuses on a dynamic version of Figure 1, a composition algorithm
that solves the entire problem one meta-variable at a time during partition. Under dy-
namic composition, center selection plays a critical role, since each meta-variable is
constructed based on the experience and consequences of solving the previous meta-
variables. Center selection could be governed by new variable ordering heuristics. We
also intend to explore the role of value ordering in center instantiation, meta-variable
size control, and level of propagation, and how to propagate meta-variable solutions,

Fig. 4. Static-composition, one possible implementation of composition in Figure 1. Centers
and their neighbors in the tractable meta-variable are predefined by the partition. The method
in Figure 2 is applied at line 6. Singleton arc consistency is enforced over G[Vi] at line 7. Lines
10 and 11 define a static variable ordering for the solution on the new model P′.

backjumping from one meta-variable to another during dynamic composition. We will
also explore hybrid approaches that combine local search with systematic search.

References

1. Rina Dechter and Yousri El Fattah, Topological Parameters for time-space tradeoff. Artifi-
cial Intelligence, 2001. 125: p. 93-118.

2. Rina Dechter and Judea Pearl, Tree Clustering for constraint net-works. Artificial Intelli-
gence, 1989. 38: p. 353-366.

3. Joel Gompert and Berthe Y. Choueiry, A decomposition techniques for CSPs using maximal
independent sets and its integration with local search. in Proceedings of the International
FLAIRS Conference (FLAIRS'05). 2005.

4. Rainer Weigel and Boi Faltings, Compiling Constraint Satisfaction Problems. Artificial In-
telligence, 1999. 115: p. 257-287.

5. Yaling Zheng and Berthe Y. Choueiry, New structural decomposition techniques for con-
straint satisfaction problems. Lecture Notes in Artificial Intelligence, 2005. 3419: p. 113-
127.

6. Eugene C. Freuder, A sufficient condition for backtrack-free search. JACM, 1982. 29(1): p.
24-32.

7. Eugene C. Freuder, A sufficient condition for backtrack-bounded search. JACM, 1985.
32(4): p. 755-761.

8. Philippe Jegou and Cyril Terrioux, Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence, 2003. 146: p. 43-75.

9. Georg Gottlob, Nicola Leone, and Francesco, Scarcello, Hypertree decompositions: a sur-
vey. Lecture Notes in Computer Science, 2001. 2136: p. 37-57.

10. Romual Debruyne and Christian Bessière, Some practicable filtering techniques for the
constraint satisfaction problem. in Proceedings of IJCAI'97. 1997. Nagoya, Japan.

11. Carla Gomes and Meinolf Sellmann, Streamlined Constraint Reasoning. in Principles and
Practice of Constraint Programming. 2004. Toronto, Canada: Springer.

Fig. 5. Understanding composition with a CSP on 30 variables whose maximum degree is 12.
The CSP on the left is a meta-graph identical to the original constraint graph; it consists of 30
“meta-variables” of size 1 with maximum degree 12. The CSP on the right re-represents the
problem with a single meta-variable of degree 0 that contains all 30 of the original variables.
The CSP in the center re-represents the problem with 6 tractable meta-variables of size 5,
whose maximum degree is the meta-graph is 5. Composition constructs and works on a repre-
sentation of the problem like that in the center, which offers an efficient solution under compo-
sition. Different thicknesses of the meta-edges represent the number of original constraints im-
posed by the problem.

