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Naturalistic Dialogue Management for Noisy
Speech Recognition

Rebecca J. Passonneau, Susan L. Epstein, Tiziana Ligorio

Abstract—With naturalistic dialogue management, a spoken
dialogue system will behave as a human would under similar
conditions. This paper reports on an experiment to develop more
naturalistic clarification strategies for noisy speech recognition in
the context of spoken dialogue systems. We collected a wizard-
of-Oz corpus in which human wizards with access to a rich set
of clarification actions made clarification decisions online, based
on human-readable versions of system data. The experiment
compares an evaluation of calls to a baseline system in a library
domain with calls to an enhanced version of the system. The
new system has a clarification module that consists of a suite
of three machine-learned models organized in a decision tree.
The enhanced system has a significantly higher rate of task
completion, greater task success and improved efficiency, and
relies on naturalistic dialogue management to achieve this.

Index Terms—Human Computer Interaction, Robustness,
Speech, System Performance, Machine Learning

I. INTRODUCTION

Despite the increasing prevalence of speech-enabled de-
vices, human-machine dialogue remains far less fluent than
human-human dialogue. There is a vast disparity between
human facility with speech and the brittle language skills
of spoken dialogue systems. Automated speech recognition
performs very well for non-interactive applications, such as
search or transcription of broadcast news. It is particularly
challenged, however, by spoken language characteristics as-
sociated with spontaneous dialogue and turn taking, such as
disfluencies and overlapping turns [1]. In response, much
work on dialogue strategy for automated systems has modeled
decision making as a stochastic optimization problem for a
specific range of conditions, such as recognizer performance
for a given target population on a particular dialogue task [2]–
[7]. This approach requires pre-specification of dialogue acts
and relevant features of the dialogue state, both of which
become increasingly difficult as dialogue tasks become more
complex. The thesis of this paper is that deeper investiga-
tion of how humans rely on context, interaction skills, and
linguistic knowledge is necessary to develop more flexible
dialogue systems. In particular, identification of the specific
strategies that people adopt for interpretation of noisy speech
recognition is useful for stochastic, knowledge-based or hybrid
approaches. This paper recounts experiments that elicited and
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(a) Baseline CheckItOut

(b) Embedded Wizard

Fig. 1. Information pipelines for the baseline and wizarded systems

applied humans’ natural problem-solving abilities in the face
of speech recognition errors. There are two principal results.
First, people drew upon many clarification strategies rarely
used in dialogue with other people, and unavailable in existing
systems. Second, when augmented with only a few of these
strategies, a dialogue system significantly improved its task
performance and reduced its dialogue costs.

To investigate the impact of human strategies, we began
with a baseline spoken dialogue system with consistently poor
speech recognition, shown schematically in Figure 1(a). Users
followed scenarios to order library books from the baseline
system. Then, to investigate how a human would respond
to the same quality of recognition strings processed by the
system, we inserted a wizard module to operate side-by-side
with the dialogue manager, as shown in Figure 1(b). With
the new module, a human wizard could interpret the user’s
intentions based on the transcription output of an automatic
speech recognizer (ASR), and select the next dialogue action
or system action. Because we intended to model human
choices, the large set of clarification actions available to the
wizards were derived from an earlier experiment with human
subjects. Because we intended to apply models of wizard
behavior in an automated system, we collected a host of system
features to represent the system dialogue states concurrent with
the wizard’s runtime decisions.

Two of our wizards performed much better than the others,
and their strategies were quite distinct. Figure 2 (an excerpt
of Figure 5), illustrates how one of them avoided misunder-
standings and non-understandings through constant grounding
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16 S: Did you ask for an author?
17 U: YES
18 S: What is the author’s name?
19 U: .OF. .NOPE. .NO. .YOU. .GO. SAY THAT
20 S: Did you ask for a title?
21 U: NO
22 S: I’m still having trouble. Let’s try the next book . . .

Fig. 2. Abbreviated example of wizards’ dialogue strategies

of partial information. The user has already responded to a
prompt for the next book, but the wizard cannot interpret
the ASR output. The wizard prompts the user to find out
if the utterance specified an author (line 16), which the user
confirms. When the wizard prompts for the author’s name and
cannot interpret the response, she tries another attribute (title),
and when that fails, the wizard suggests they temporarily move
on to another book. Expressing a failure to understand, or re-
prompting for the same information, are common behaviors
in dialogue systems. Our wizards had these options, but
rarely used them. Instead, this wizard typically sought new
information that would move the dialogue closer to resolution
of the user’s goal. Our other high-performing wizard more
often resorted to the dialogue action shown at line 22: to
temporarily suspend the current goal for another one.

The work presented here seeks to learn how a spoken
dialogue system could address poor speech recognition well
enough to nip misunderstandings in the bud, and achieve
respectable task success. We enhanced the baseline system
with strategies learned from the data provided by the two best
wizards. The learned strategies apply in situations where the
baseline system does not produce a semantic interpretation of
the user’s speech. We refer to the resulting dialogue strategies
as naturalistic because the system’s behavior is derived from
people who made decisions under similar conditions of noise
in the communication channel. The learned strategies are not
natural, in the sense that it is not natural for one dialogue
participant to have access only to ASR transcriptions of the
other’s speech. They are, however, naturalistic in that they have
been learned from people who apply their natural ability to
handle a noisy channel through reliance on context, linguistic
knowledge, and problem solving skills.

The remainder of the paper has the following structure.
Section III presents related work. Sections IV-VII provide an
overview of our experimental design and describe the baseline
dialogue system, the wizard version, and the enhanced one.
Section VIII compares the enhanced system to the baseline,
and shows that the improved system is more effective and
efficient. Section IX discusses the results, and the benefits of
dialogue management that acknowledges the key differences
between human and machine language capabilities at the same
time that it relies on human adaptability to the communication
constraints faced by a a spoken dialogue system.

II. MOTIVATION

A. Aptness of an Embedded WOz Corpus

The dialogue manager chooses the communicative and task
actions for a spoken dialogue system to execute. Dialogue
management design is typically informed by one of several

classes of corpora: human-human, human-wizard, or simulated
human-machine. Machine learning has been applied to such
corpora with various goals, for example, to learn dialogue acts
from human-human corpora [8], to learn error-handling pa-
rameters for frame-based dialogue management from wizard-
of-Oz (WOz) corpora [9], or to learn an optimal policy for
a predefined set of dialogue actions through reinforcement
learning with simulated users [2] or real ones [10]. We
collected a corpus of dialogues between users and wizards
embedded in our dialogue system. This provided data on actual
recognition errors across a wide range of speakers, and on
a wide range of system features from all phases of spoken
language understanding. Our corpus permits offline learning
of what actions to take and in what dialogue states.

Spontaneous human-human dialogues produced in a natural
setting illustrate how conversational participants address a
range of conversational and real-world goals through language.
This exemplification function is important for dialogue man-
agement design, because the mapping between utterances and
intentions is indirect, and depends on inference and contextual
knowledge. The design of our baseline system is informed
by a human-human corpus we illustrate below. However,
human-human dialogue is not an ideal model for what a
spoken dialogue system should do when there are speech
recognition errors. Misunderstandings and non-understandings
are much less frequent in human-human dialogue than in
human-machine dialogue [11]. When they do occur, it is
less often because a dialogue participant has misheard an
utterance and more often that she has confusions about her
conversational partner’s underlying intent [12].

B. Intentions, Grounding Actions, and Domain Knowledge

Under ordinary conditions, human-human dialogue exhibits
few speech channel confusions, yet it is well known that
people can interpret a noisy signal or incomplete acoustic
channel. For example, the cost of telephone service is lowered
by transmitting less than the full frequency bandwidth of
human speech; people are largely unaware of the missing
frequencies. Here we consider an example of a human clarifi-
cation strategy pertaining to the speech channel that illustrates
two communicative skills relied on by our human wizards:
to infer the speaker’s intentions, and to continuously ground
one’s understanding of the speaker.

The first skill we consider, the ability to identify and respond
to a speaker’s intention, is part of but distinct from the
interpretation of a speaker’s current utterance. An utterance
within an ongoing dialogue can introduce an entirely new
intention, but the majority of intra-dialogue utterances address
an existing intention. For example, if a library patron speaks
with a librarian to borrow a particular book, the intended
book must be identified, and this might take several utterances.
We assume that each dialogue participant has her own com-
municative intentions, that the intentions of both participants
evolve in coordination with each other, and that a particular
intention continues to evolve until addressed or abandoned. A
speaker infers the other’s intentions by considering how her
words relate to the current context. We assume that a dialogue
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1.0 L okay
2.0 L do you have the title
3.0 P I not really
4.1 P [ no ]
4.2 L [ author ]
5.0 P excuse me
6.0 L wh- wha- do you have the author
7.0 P Cesar Millan
8.0 L -M- -I- -L- -A- -N-
9.0 P yes

Fig. 3. Excerpt from a transcript of a phone call placed by a patron to
a librarian representing a single intentional segment. The patron mistakenly
confirms the spelling of an author name at line 9.0.

system should behave as if it can understand the evolving
intentional context, whether it has an explicit representation of
user intention, as in agenda-based systems [9], or an implicit
one, as in stochastic approaches that track belief state [13].

The second dialogue skill we consider is collaboration to
establish the common ground [14]. The listener collaborates
with her conversational partner to indicate how confident she is
that she understands the speaker’s utterance and its relation to
the inferred intentional context. This conversational grounding
covers a broad range of verbal and non-verbal behaviors.
Through backchannel actions, for example, a conversational
participant indicates to her partner that she is attending to the
discourse [15]. Manifestations of continued attention include
physical orientation (e.g., eye contact), gestures (e.g., head
nods), and vocalizations (e.g., uh huh or okay). Most dialogue
systems neither engage in nor monitor backchannels, but they
do rely on grounding actions such as requests for clarification,
and implicit and explicit confirmations. Our wizards had a
large number of clarification actions to support continuous
grounding in a manner inspired by the example in Figure 3,
and derived from an earlier study [16].

Figure 3 shows a sequence of turns from a phone con-
versation between a library patron (P) and a librarian (L)
taken from calls we recorded at the Andrew Heiskell Braille
and Talking Book Library of New York City. This library
provides materials in a proprietary audio format and in braille
to qualified patrons.1 Most library transactions are handled
by phone. The excerpt in Figure 3 illustrates a rare case of
confusion about the speech channel. The first field of the
line number indicates sequence in time (e.g., 2.0 follows
1.0). A non-zero in the second field is an arbitrary number
to distinguish simultaneous speech, thus 4.1 represents the
patron reiterating a previous negative response (no) at the same
time in 4.2 that the librarian prompts for the author (with
question intonation). When the librarian takes the turn at 6.0,
she produces two false starts followed by a self-repair. Such
disfluencies are particularly difficult for speech recognizers.

The sequence of utterances shown in Figure 3 constitutes a
single dialogue segment. A dialogue segment is the observable
reflection of single intention. This segment was identified in
the corpus through a reliable manual annotation procedure
described in [17], [18]. The librarian initiates the segment

1Calls were transcribed and aligned utterance-by-utterance with the speech
signal; the corpus of 82 transcripts and corresponding audio files will be
released at the end of the project.

with the intention of helping the patron identify the book she
wants. Because the librarian asks a sequence of questions at
2.0, 4.2, 6.0 and 8.0, and the patron responds in turn, the
librarian maintains the dialogue initiative (i.e., control of turn
sequencing) throughout the segment, except where the patron
prompts for a clarification at turn 5.0. The patron’s cooperative
responses reflect her intention to coordinate with the librarian
on this task. Note that the segment begins with the discourse
cue word okay [19], a frequent marker of a new discourse
segment, in combination with other features [20].

Figure 3 illustrates several types of conversational ground-
ing. The librarian implicitly confirms her understanding that
the patron wants a book when she requests values of book
attributes at lines 2.0, 4.2 and 6.0. There are three clarification
requests: one from the patron at 5.0 after the librarian’s
elliptical question, one from the librarian at 6.0 where she
poses her question in a more explicit form, and another from
the librarian at 8.0 where she spells out the author surname
with a question intonation. The patron confirms the spelling at
9.0, which turns out to be a mistake that leads to a sequence
of 40 speaker turns (80 utterances, 13 discourse segments;
cf. [17]) before the librarian finally corrects the error. We have
no way of knowing the cause for the incorrect confirmation of
the spelling in 9.0. The patron possibly thought she heard -L-
-L- , or may not have known the correct spelling, or perhaps
did not perceive the difference between one or two Ls as
consequential. In any case, the patron exhibited no irritation.
If we could determine exactly when humans can tolerate such
high dialogue costs from each other, we could get them to
tolerate them from systems as well.

The noisy channel model of human language accounts
for the observation that uncertainty of individual linguistic
units, such as phonemes or words, varies from high to low.
Units with relatively higher probability can be omitted from
a message without severe loss in the information transmitted,
independent of the intentional context. When a relevant context
is provided, still higher degrees of signal degradation can be
tolerated. Voice search exploits this fact. Voice search involves
fuzzy matches of imperfect automated speech recognition
(ASR) transcriptions against relevant database fields, with
similarity metrics to rank candidate matches. The assumed
intentional context determines which database fields to query.
If the librarian in Figure 3 had searched the catalog for books
by Cesar Milan using a voice search query, she would have
found Cesar Millan.

III. RELATED WORK

This section first situates our study in the context of current
research on stochastic learning of dialogue strategies. It then
reviews previous work on voice search for spoken dialogue
systems, grounding actions to avoid and recover from misun-
derstandings, ablated wizard studies that address noisy speech
recognition, and features to represent the status of spoken
language understanding in dialogue management.

An important class of dialogue managers model dialogue as
a Markov Decision Process (MDP) [2], a Partially Observable
MDP (POMDP) [21], or a Hidden Information State POMDP
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(HIS-POMDP) [13]. These approaches specify a set of actions
aj ∈ A to perform, depending on the current state si ∈ S,
and each state-action pair (si, aj) has a transition probability
Tij . A reinforcement signal is associated with transitions.
Reinforcement learning seeks an optimal policy to map states
to actions that maximizes a global reward function. The
reward function can be based on user satisfaction [22], a
combination of task success and efficiency [23], or a model of
user satisfaction as a linear combination of task success and
efficiency [3]. The learned policy is sensitive to the reward
function [3].

Typically, only a partial policy can be learned from a
human-human corpus, because the corpus will not represent
all possible states. More often a policy is learned through
interaction with users [10], or with simulated users [4], [5],
[23]. With simulation it is possible in principle to explore
the full state space, but simulation becomes impractical as
the state space grows larger. It has been shown early on
that reinforcement learning can learn an optimal ordering of
information requests [24]. Work that produces ASR errors
and confidence levels as part of the user simulation learns a
strategy that orders requests earlier in the dialogue for attribute
values that have better ASR results (e.g., numbers) [6].

In POMDP, where the partially observable states include
the users’ intentions, more robust strategies have been learned
than with MDP [4]. In this work, eligibility traces boosted the
relevance of state-action pairs that were visited more recently.
More recent work to extend MDP approaches includes belief-
state tracking, where a learned strategy is based on a stochastic
representation of the dialogue state at each turn [25], or
on a partition over states where each subset consists of
similar states representing a single belief [13], [26]. Our work
addresses two types of prior knowledge that MDP approaches
depend on: specification of appropriate dialogue actions, and
identification of relevant features of the state representation.

Voice search is particularly suited to applications in which
users of a dialogue system seek information from large
databases, especially where the values are unstructured text.
Voice search has been used for personal names in direc-
tory assistance [27], [28], technical paper titles in confer-
ence information systems [29], recordings for automobile
music systems [30], businesses and product reviews [31] and
ebooks [32]. Voice-rate [31] provides ratings for more than a
million products, 200,000 restaurants, and 3,000 businesses.
Let’s Buy Books [32] provides access to 15,000 ebooks. No
information is provided on the sizes of the databases for
the systems in the other systems we have referred to here.
Our library database has nearly 72,000 holdings by more
than 28,000 authors. In contrast to the directory assistance
applications, our book titles and authors make use of a large
vocabulary (> 54,000 words), and exhibit great variation in
length ([1,40], µ = 4.89, σ = 3.22) and syntactic structure.

Spoken dialogue system strategies include dialogue actions
to implicitly or explicitly confirm understandings, to avoid
non-understandings, and to correct misunderstandings. How-
ever, corrections made to systems tend to be more poorly
recognized than non-correction utterances [33]. When a system
has no understanding, it often re-prompts the user for the

same information, which can lead to hyperarticulation and
concomitant degradation in recognizer performance. Users
seem to prefer systems that minimize non-understandings and
misunderstandings, even at the expense of dialogue efficiency.
Users of the TOOT train information system preferred system-
initiative to mixed- or user-initiative, and preferred explicit
confirmation to implicit confirmation or none at all [34]. This
was true even though a mixed-initiative, implicit confirmation
strategy led to fewer turns for the same task.

Ablated WOz studies in which wizards interpret real or
simulated ASR explore the strategies humans produce to
handle misunderstandings or non-understandings due to ASR
errors. Such studies include the use of real [35], [36] or
simulated ASR errors [37]–[39]. Word Error Rate (WER)
for speech recognition compares the output string with a
reference transcription, and normalizes the number of inser-
tions, deletions and substitutions by the total length. Sim-
ulation makes it possible to control for WER to observe
how wizards’ strategies change as WER increases [39]. In a
study where simulation yielded low, medium or high WER,
wizards followed a non-understanding or misunderstanding
more often with a task related question than a clarification
under low or medium WER [39]. Under high WER, however,
misunderstandings significantly increased when wizards fol-
lowed non-understandings or misunderstandings with a task
related question instead of a clarification. In another study
with simulated ASR, wizards simulated a multimodal MP3
player application with access to a database of 150K music
albums [38]. In the noisy transcription condition, wizards
made clarification requests about twice as often as people
did in similar human-human dialogue. In a study with real
ASR at 30% WER, wizard utterances indicated a failure to
understand in only 35% of cases with incorrect ASR [36].
Wizards relied on phonetic similarities of ASR words to words
salient in the domain. A large study with 43% WER also found
that wizards signaled misunderstanding very rarely (5% of all
their turns) [40]. For example, for 20% of non-understandings,
wizards continued a route description, asked a task related
question, or requested a clarification. Our study uses real ASR
for two reasons. Our goal was to present wizards with the
types of transcription errors systems actually make, including
any trends from utterance to utterance arising from changes
in speaker state that would be difficult to simulate (e.g., drop
in intensity). This makes it possible for wizards to rely on
similarities of the ASR output string to domain words (through
voice search results) in a way that extends the finding that
wizards can infer user intent by paying attention to the relation
of the transcription to the domain under discussion [36]. We
therefore provided wizards with a large range of clarification
actions that include questions about the ASR output string.

MDP approaches to learn dialogue strategy make use of
disparate features, and sometimes learn the state representation
offline [4]. In other approaches to dialogue management, such
as frame-based or agenda-based, early work that addressed
confidence annotation of input to the dialogue manager illus-
trates how low level ASR features interact with features from
natural language understanding and dialogue management.
Confidence annotation has been done through linear regression
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models whose predictors include parse and dialogue state,
relying on at most a dozen features to learn a binary thresh-
old [41], [42]. When learning was done over multiple days for
nine recovery strategies, system performance improved [42].
Confidence scores can also be continuous. They can be based
on a normalized sum of confidence over components of the se-
mantic representation of user utterances [43], or a probabilistic
combination of acoustic, semantic and discourse features [44].

In our experiments, we learn a suite of strategies for a
specific choice point: cases where the baseline system fails
to arrive at a semantic interpretation. Previous work has also
focused on specific strategies [10] or choice points [45] in
the context of a larger system. For the dialogue actions of
whether to use a directive versus an open-ended prompt, and
whether to explicitly confirm understanding, a training corpus
was simulated using a random policy in [10]. Their learned
policies depended on seven features: dialogue state, history,
a semantic confidence score combining acoustic model (AM)
score with whether the user confirmed an attribute’s value, and
the use of a restricted versus unrestricted grammar. System
performance improved for some objective measures (e.g., task
completion), but not task success. A much larger set of 53
features from all phases of understanding was used in [45].
They learned to identify problematic dialogues within a few
utterances. Most dialogues were 5 exchanges or less, compared
with 25 to 30 in our data.

IV. EXPERIMENTAL DESIGN

The application investigated here is to identify books to
check out from the Andrew Heiskell Braille and Talking Book
Library. Heiskell patrons request library books by telephone,
and receive and return books by mail. Patrons receive monthly
newsletters listing new holdings, and typically know the full
title, author or call number of books they request. Librarians
take turns at the telephone help desk throughout the day, and
often answer multiple calls at once. To study the domain and
the characteristics typical of patron-librarian calls, we recorded
and transcribed eighty-two calls. In these calls, patrons made
375 distinct book requests, sometimes for the same book, 320
(85%) of which were for specific books. Of the requests for
specific books, 57.5% were by call number, 21.6% by title
alone, 19.1% by author alone or in combination with title,
and 1.9% by other means. The overwhelming majority of
requests by title were a full title or subtitle. Thus we did not
address here the problem of inferring the intended book given
an approximate version of the title (but cf. [32]).

This work addresses the choice point where the initial
dialogue system, CheckItOut, has no sufficiently confident se-
mantic interpretation to send to its dialogue manager. Machine
learning applied to data from our embedded WOz corpus
learned dialogue strategies for this choice point. To focus
specifically on the issue of how the dialogue manager can infer
user intentions when ASR is very poor, the dialogue strategy
here is limited to system initiative, apart from an initial open-
ended prompt to get the user started. We implemented a
clarification module with the learned strategies to produce an
enhanced version: CheckItOut+. Otherwise, CheckItOut and
CheckItOut+ had identical functionality.

There were three data collections: a baseline corpus of calls
to CheckItOut, calls to the wizard version, and calls to Check-
ItOut+. For each data collection, we randomly selected 3,000
books to support author and title data for the recognizer’s
language model, the semantic grammar rules, and on-demand
generation of book-borrowing scenarios. From experiments
with the ASR framework, we determined that a language
model and a semantic grammar constructed from a random
selection of 3,000 titles yielded the target WER of approx-
imately 50%. Language data for everything but book titles
and authors was identical across data collections. Backend
queries accessed a table containing the library book data for
50,000 books. To avoid issues of information presentation, we
included at most three books per author, and eliminated books
with one-word titles, which had relatively few ASR errors.

Identical data collection protocols were used to evaluate
CheckItOut and CheckItOut+. Five female and five male users
were asked to make at least 50 calls each to CheckItOut; 562
calls were completed in July, 2010. A different set of 10 users
(apart from one), again balanced for gender, performed the
same task 8 months later with CheckItOut+, and 502 calls
were collected. All subjects were recruited from the student
bodies of New York City colleges and universities.

Prior to each call, the user accessed a website that generated
a scenario on demand, including three attributes (the author,
title, and call number) for each of four books. Dialogues
averaged 24 turn exchanges for CheckItOut and 31 for Check-
ItOut+ (Table V). Users were told to use a single attribute
each time they requested a book, and to use each attribute in
at least one request per call. The books for each scenario were
randomly selected from the 3,000 titles used for the language
model and Phoenix grammar. In summary, all conditions
for both data collections were held constant, other than the
dialogue management for cases where the baseline system
would have a non-understanding of a user utterance. Therefore,
any differences in performance between the two systems must
be attributed to the learned strategies.

V. CHECKITOUT BASELINE

CheckItOut is an Olympus/RavenClaw system with an in-
formation pipeline [9], as illustrated in Figure 1a). An audio
manager performs an initial segmentation of the audio stream.
To a limited degree, the initial segmentation can be modified
by an interaction manager [46] that considers the pipeline
from the speech recognizer through the RavenClaw dialogue
manager [47]. RavenClaw controls queries to the backend
database and formulates prompts that are mapped to text, sent
to the Kalliope text-to-speech synthesizer, and ultimately back
to the user. Interaction with users uses VOIP telephony.

The PocketSphinx recognizer passes its output (orthographic
transcription of user speech, plus various ASR scores) to
Phoenix, a robust semantic parser [48]. A Phoenix parse con-
sists of one or more semantic frames (e.g., BookRequest)
with slots (e.g., Title) and fillers (e.g., Bully: A True Story
of High School Revenge). Phoenix achieves robustness by
allowing the parse to skip tokens in the input string either
between slots within a frame, or between frames. In most
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ASR .BODIE. A TRUE STORY OF HIGH SCHOOL
Parse [[Title] ([NN phr] ([DT] (A) [JJ] (TRUE) [NN] (STORY)

([IN phr] [IN] (OF) [JJ] (HIGH) [NN] (SCHOOL))))]
Term A TRUE STORY OF HIGH SCHOOL

Mod VS A TRUE STORY OF HIGH SCHOOL
R/O Candidate in Modified VS return
0.78 bully: a true story of high school revenge
0.72 true story of the novel
0.71 the true history of chocolate

Full VS .BODIE. A TRUE STORY OF HIGH SCHOOL
R/O Candidate in Full VS return
0.77 bully: a true story of high school revenge
0.72 the new rules of high school
0.68 the true history of chocolate

Fig. 4. Recognized title (ASR), parse, terminals from the parse (Term), and
voice search (VS) return from CheckItOut

Olympus/RavenClaw applications, Phoenix grammars are of-
ten hand-generated, and productions typically map slots to
combinations of strings, pointers to strings, and wild cards.
To construct a Phoenix grammar rich enough for book ti-
tles, we automatically transduced Phoenix productions from
dependency parses of the book titles in our database. This
preserved robustness while adding recursive syntactic structure
and ordering constraints.

Figure 4 shows a sample parse. Parses that consume more
words with fewer slots, and fewer semantic frames per ut-
terance, have higher scores. The parser can return multiple
parses with tied scores, but ties are rare. The parse is passed
to the Helios confidence annotator, along with features such
as number of tokens not consumed by the parse, and the
utterance-level ASR confidence.

In turn, Helios passes the parse and a binary confidence
score to the dialogue manager [41]. Based on the Helios
confidence score and the semantic parse, the dialogue man-
ager determines what level of understanding to convey. For
example, the dialogue manager can confirm a concept value
explicitly (Did you say ‘John Grisham’), confirm one im-
plicitly (‘An Accidental Woman’ is available), or confirm a
misunderstanding (I’m sorry, I must have misunderstood you)
or a lack of understanding (Sorry, I didn’t understand you).

In a previous offline pilot study [16], we explored the
utility of voice search. Subjects found correct items quite
successfully when given a large text file of book titles, noisy
ASR transcriptions of user requests, and unlimited time. In
a subsequent online task to resolve a single book request by
title, embedded wizards who read noisy ASR transcriptions
to handle user requests were provided with a voice search
query that returned a short list of likely matches (without
the numeric scores shown in Figure 4) [49]. Wizards could
identify a correct match even if it was not the most highly
ranked candidate. Only the most expert wizards were able to
tell when a voice search return did not contain a match.

In an Olympus/RavenClaw system, only the dialogue man-
ager can query the backend, and only when it has a confident
semantic parse. For CheckItOut, we incorporated a modified
voice search for the backend query, based on the parsed
portions of the ASR output string. Returns were ranked by

Ratcliff/Obershelp (R/O) similarity, the ratio of the number of
characters two strings have in common to the total number
of characters in both strings [50]. Figure 4 illustrates how
voice search against known domain entities can resolve the
literal content of an utterance. It shows an actual ASR output
string, where periods delimit a low confidence word that
goes unparsed (.BODIE.), the parse, and the terminal words
extracted from the parse (Term). The modified voice search
(MOD VS) used in CheckItOut queries with the Term string,
because the unconfident ASR word BODIE does not appear in
the parse. Here the highest scoring return is correct, despite the
omission of words from the parse string. Figure 4 also shows
the voice search used in CheckItOut+ (FULL VS), which
uses the full ASR; note the difference in the three top-ranked
candidates and their R/O scores. Here, the top ranked title by
R/O score is the correct title, but this is not always the case.
For example, in our earlier study where wizards addressed a
single book request without a full dialogue, the top ranked
return from full voice search was correct for 65.24% out of
4,172 book requests by title, and was missing from the top
nine candidates 28.43% of the time.

VI. CHECKITOUT WITH EMBEDDED WIZARDS

Olympus/RavenClaw systems rely on the Galaxy message
passing architecture, which permits arbitrary modules to be
inserted in the hub [51]. We inserted a wizard module to
allow wizards to interact with users without the ability to hear
them or speak to them. The pipeline information flow in the
architecture is illustrated in Figure 1b): ASR transcriptions
go directly to wizards, and they select all response prompts.
Prompts are then mapped to words (natural language gener-
ation), sent to the speech synthesizer, and finally to the user.
Through a graphical user interface (GUI), wizards saw the
transcriptions in real time, and selected actions from a finite
set described below. The natural language understanding and
dialogue manager modules in Figure 1b) produced output in
parallel with the wizard. This allowed us to collect run-time
features from the recognizer, the Phoenix parser, the Helios
confidence annotator, the dialogue manager, and voice search,
along with features from the wizard GUI to represent the
wizards’ dialogue states and their actions.

Nine wizard candidates were trained in use of the GUI,
including use of voice search. Three males and three females
were selected. Each of ten users, evenly balanced for gender,
made at least fifteen calls to each of the wizards, for a
total of 913 calls. Wizards had up to six minutes per call,
compared with an average of 3.5 minutes per call to the
baseline CheckItOut.

A. Automated speech recognition quality

Given the expense and overhead of human transcription, we
do not have an exact WER for the full corpus. We estimate
WER to be about 50%, based on an actual measure of average
WER for 315 utterances collected during the experiment from
a similar range of speakers, and on the WER measured for an
earlier experiment with similar recognition settings [49]. While
quite poor, WER this high is not unheard of for a research
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1 S: OK, let’s order some books. You can ask for a
title, author or book number. And if I get some-
thing wrong you can say ’That’s not what I said’

2 U: .VAN. .LOON. WELL
3 S: Did you ask for an author?
4 U: NOPE
5 S: Did you ask for a title?
6 U: YES
7 S: Can you repeat the book request please?
8 U: FOUR FOUR FOUR FOUR EIGHT
9 S: Is the title the blue wall?

10 U: YES
11 S: Next book?
12 U: .CATHERINE. AIRD
13 S: Did you ask for an author?
14 U: YES
15 S: What is the author’s name?
16 U: .OF. .NOPE. .NO. .YOU. .GO. SAY THAT
17 S: Did you ask for a title?
18 U: NO
19 S: I’m still having trouble. Let’s try the next book

and come back to this later
20 U: .CATHLEEN. .MAGNETIC.
21 S: Did you ask for an author?
22 U: YES
23 S: Is the book by Cathleen Medwick?
24 U: YES
25 S: Is the title ’Teresa of Avila, the Progress of a Soul’?
26 U: YES

Fig. 5. Example of poor ASR performance and WA’s strategy

spoken dialogue system handling calls in real-world conditions
(cf. [52]). WER varies widely across speakers and calls.

Because words differ in semantic importance, WER is a
coarse measure of understanding. Previous work has used
concept accuracy [33]. Here we use task success to illustrate
the challenges presented by poor ASR, and the wide variation
across speakers. Average task success in ordering four books
ranged from a low of 25% to a high of 82% for the ten
users (µ = 0.57, sd = 0.18). The high performance for the
most successful user is doubtless due to the superior ASR
performance for this speaker, evident from the readability of
the transcripts.

Figure 5 illustrates how clues about content can be inferred
from very poor ASR. In lines 2 through 10, wizard WA
addressed the unintelligible transcription at line 2 by asking
what attribute value was provided (title or author). Note that
when WA ultimately identified the book (by call number) the
last title word was phonetically similar to the last word in line
2 (wall versus WELL). In the same dialogue, WA was able
to identify the intended author at line 23; first she confirmed
that the utterance provided an author value, then she noticed
the similarity to the top ranked voice search return (Cath-
leen Medwick versus .CATHLEEN. MAGNETIC). A dialogue
system with strategies to build on partial information in this
way would have a greater variety of clarification strategies
relevant for poor ASR. Incorporating only a few of these leads
to significant performance improvements for our system.

B. Wizard GUI and Dialogue Actions

Embedded wizards made all decisions through their GUI.
Figure 6 is a screenshot of the GUI for book request subdia-

Fig. 6. Graphical User Interface for Embedded Wizards

logues. Scrollable ASR output appears at the upper left, with
low confidence words delimited by periods. Wizards could
make any number of queries before selecting a prompt, and
could continue to prompt the user before performing a query.
Voice search results appear at the upper right as a simple
ranked list (without R/O scores). Wizard decisions and actions
were achieved by mouse clicks on dialogue action buttons on
the middle right and at the bottom of the GUI.

For book request subdialogues, the middle right frame of the
GUI provided wizards with five prompts for basic actions and
six for auxiliary actions. The basic actions were to prompt for
a book, to explicitly confirm a requested book combined with
a prompt for the next book, to offer to summarize the book
order, to provide such a summary, and to thank the user. The
auxiliary actions were to ask if the user were still on the line,
to ask whether the user wanted to hang up, to indicate that the
requested book had been ordered, to have the system hang up,
to ask the user to call back later, and to re-prompt for the next
book. Of these 11 actions, librarians in 82 calls we recorded
and transcribed used variants of all 5 basic actions, and none
of the auxiliary actions. A librarian might ask if a user was
still on the line; this never occurred in the calls we transcribed,
but it occurred 34 times in the 913 wizard dialogues. None
of the other auxiliary prompts would be likely to occur in
human-human dialogue.

The bottom of the GUI provided additional wizard actions,
categorized as non-understandings, or as clarification requests
about the ASR, the user’s request, or the voice search results.
The GUI offered three non-understanding prompts to elicit a
repetition or rephrasing from the user, and a fourth to suggest
moving on to the next book. The remaining actions consisted
of 25 clarification questions. These were informed by our
previous embedded wizard study of a single turn exchange in
which users requested a book by title and wizards performed
voice search [49]. In that study, if wizards chose not to offer
a candidate from the query return, they could ask a free-form
question. Table I lists 18 request prompts that occurred 0.01
times per call or more, in decreasing order of frequency per
call (from 2.69 to 0.01), classified into the 9 categories shown
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Freq. Prompt Category
2.69 Is the title ? 1) resolve query return
0.76 Did you ask for an author? 2) clarify book attribute
0.69 Did you ask for a title? 2) clarify book attribute
0.68 What is the author’s name? 3a) request attribute value
0.68 Did you speak the word ? 4a) confirm ASR word
0.61 Can I have the catalog

number? 3a) request attribute value
0.22 What is the author’s last

name? 3b) request partial attribute value
0.13 Is the author’s last name ? 4b) confirm partial attribute value
0.13 Is the author’s first name ? 4b) confirm partial attribute value
0.11 Does the title contain

the word ? 4) confirm ASR word
0.10 What is the author’s first

name? 3b) request partial attribute value
0.09 What is the book about? 5) request subject matter
0.07 Does it begin with ? 4a) confirm ASR word
0.05 What’s the first word? 6) request ASR info
0.04 Does it end with ? 4) confirm ASR word
0.01 How many words are there? 6) request ASR info
0.02 What’s the last word? 6) request ASR info
0.01 Is the author female? 3a) request attribute value

TABLE I
CLARIFICATION PROMPTS AVAILABLE TO THE WIZARDS ORDERED BY

FREQUENCY PER CALL

in the third column. The 7 other prompts occurred less than
0.01 times per call.

Table I illustrates how this data collection supports investi-
gation of clarification questions that can resolve noisy ASR.
Apart from the category request subject matter, none of the
question types in the table would occur with any frequency
in a human-human corpus. Nonetheless, these questions pro-
vide a spoken dialogue system with ways to address noisy
transcriptions beyond those that it might typically use.

C. Contrasting Wizard Strategies

Our six wizards chose different proportions of GUI actions
per call, and had different completion and success rates. As
shown in Table II, the two wizards identified as WA and
WB had the highest proportion of correct books per call,
2.69 and 2.53 respectively. Wizards differed in their overall
strategies; this is especially noticeable with the two most
successful wizards. WA asked the most questions per book
request and performed the most voice search (cf. values in
boldface Table II). She often performed multiple searches
within a book request to gather more information, and asked
questions after each search, as illustrated in Figure 5. In
contrast, WB executed searches at the average rate for all
wizards, and asked the fewest questions. The most distinctive
aspect of WB’s strategy is that, more than any other wizard,
WB would suspend a troublesome book request and move
on to a new or previously suspended request. The prompt
for the action, Let’s try the next book and come back to this
later, occurred from 0.36 to 0.65 times per dialogue for other
wizards, compared with 1.07 times per dialogue for WB. Also,
WB’s dialogues had an average of 4.4 book requests each.
Because only 4 distinct books were provided per scenario, this
indicates that in dialogues with WB, users often returned to
a previously unsuccessful request. Our next challenge was to
exploit these two different but equally successful approaches.

Task Success
Per Scenario
(4 books) Avg. WA WB WC WD WE WF
Book requests 3.72 3.64 4.44 3.75 3.57 3.19 3.69
Correct books 2.26 2.69 2.53 2.19 2.07 1.89 2.28

Actions per book request
Searches 1.73 2.10 1.72 1.73 1.70 1.70 1.67
Questions 3.41 4.09 2.28 3.53 3.68 3.90 3.28
Confirmations 1.74 2.05 1.10 1.66 1.56 2.37 1.93

TABLE II
BREAKDOWN OF WIZARD BEHAVIOR

Learned model Features Instances Accuracy F
VoiceSearch 11 3161 84.81 0.88
OfferResults 11 714 69.37 0.75
NonUndersting 5 1159 67.70 0.71

TABLE III
PERFORMANCE OF THREE LOGISTIC REGRESSION MODELS WITH RFW+

FEATURE SELECTION

VII. CHECKITOUT+: LEARNED DM STRATEGIES

To extend CheckItOut with new behaviors for ASR too
noisy to yield a confident semantic parse, we performed
machine learning on wizard data. The input to the machine
learning algorithms was data from the calls of the two most
successful wizards (WA and WB), who had distinct, comple-
mentary strategies. Their dialogues provided training examples
for three decision points. Each learned model is a component
of the overall dialogue strategy. This section describes the data,
the learned models, and how they were combined in a single
module to produce CheckItOut+.

The learning task was to predict the wizard’s action at
three decision points: whether to use voice search to resolve
noisy ASR, whether to offer a voice search result to the
caller or to prompt for additional information, and whether to
move on from the current book request or to indicate a non-
understanding. One model was learned for each decision point.
Each training instance was a feature vector that represented
an adjacency pair [53] consisting of the wizard’s prompt, a
query if she made one, and the caller’s response. Labels on the
instances represented the wizard’s next action. Some features
represented input available to the wizard (e.g., whether the
adjacency pair was the initial request in a given subdialogue).
Additional features came from the semantic parse and the
confidence annotator. In all, 163 features were assembled and
grouped into categories to facilitate feature selection.

Learning was conducted in Weka [54] using C4.5 decision
trees, support vector machines and logistic regression. From
the 913 dialogues for all wizards, we assembled 16,956
training instances; each had a single caller utterance and no
more than one database query within the adjacency pair.

Given so many features, feature selection was essential. We
extended Weka with XFF, an experimental framework for fea-
ture selection methods [55]. There are two major approaches
to the interaction between feature selection and learning al-
gorithms [56]. In a filter method, features are selected prior
to training through a learner-independent metric (e.g., corre-
lation). In contrast, a wrapper iteratively tests feature subsets
for a particular learner. We compared several feature selection
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Index Description Group Coefficient
VoiceSearch

0 Intercept -1.9050
1 number of database searches in this book request (A) query 13.9992
2 number of words covered by the best parse (B) parse 5.2468
3 average helios confidence of second recognition hypotheses for this request (C) confidence 1.9949
4 average word level confidence in hypothesis 1 (D) recognition 1.7821
5 whether there was no parse for this user utterance (B) parse 0.5909
6 number of questions asked in this call (E) adjacency pair history -0.3150
7 number of top grammar slots in the best parse (B) parse -0.6991
8 number of database searches by title in this book request (F) query history -1.3243
9 number of parses for first recognition hypothesis (B) parse -2.1087

10 total number of explicit confirmations in the call (E) adjacency pair history -2.8164
11 number of adjacency pairs in this book request (E) adjacency pair history -9.7340

OfferResults
0 Intercept -2.5626
1 standard deviation of the average R/O score of search return (A) query 3.3481
2 average R/O score of the search return (A) query 3.1356
3 number of move ons in this call (E) adjacency pair history 0.3711
4 average acoustic model score of the best recognition hypotheses in this call (D) recognition -0.0428
5 whether a new book request was initiated (E) adjacency pair history -0.2551

NonUnderstanding
0 Intercept 10.7225
1 number of database searches by title in this book request (F) query history 2.8356
2 number of user utterances in the call (E) adjacency pair history 1.7930
3 average word level confidence in hypothesis 1 (D) recognition 1.6260
4 maximum word level confidence in the first recognition hypothesis (D) recognition 1.4682
5 total number of explicit confirmations in the call (E) adjacency pair history 1.0495
6 number of partial explicit confirmations in this book request (E) adjacency pair history 0.5904
7 number of title slots for the parse in the first recognition hypothesis (B) parse -0.4353
8 helios confidence of the first recognition hypothesis (C) confidence -0.7359
9 number of words not covered by the best parse (B) parse -0.8826

10 number of database searches by author in this book request (F) query history -0.9554
11 acoustic model score of the first recognition hypothesis (D) recognition -12.4924

TABLE IV
REGRESSION MODELS

methods, including the Randomized Feature Weighting (RFW)
wrapper developed for this work, and its extension RFW+ [55].
In these experiments and on seven datasets from the UCI
repository [57], we found RFW to be at least as accurate
as other wrappers (e.g., [58]), but often orders of magnitude
faster. RFW+ extends RFW to preserve diversity across user-
supplied feature categories. After preliminary feature selection,
RFW+ adds features from underrepresented categories as long
as learning improves.

The models learned for CheckItOut+ rely on RFW+,
which outperformed other feature selection methods (including
RFW) on the wizard data. Thus the feature selection results
alone support our premise that it is beneficial to preserve
diversity of features across all phases of spoken language
understanding. Under 10-fold cross-validation, accuracy on the
full dataset with RFW+ ranged from 88% to 98%, depending
on the sizes of subsets of features tested during learning,
and on the grouping of features into categories. Learning
performance on the reduced sets that focus on the behavior
of WA and WB were somewhat lower (Table III), probably
due to the smaller training sets.

The three learned models are organized in a decision tree.
The first two decisions take advantage of WA’s ability to
pursue a partial interpretation through a sequence of actions.
The first learned model, VoiceSearch, determines whether
CheckItOut+ will perform a voice search given ASR that
cannot be given a confident semantic parse. The second

learned model, OfferResults, to be used only after a voice
search, determines whether CheckItOut+ offers a high ranked
search return or prompts the user for more information.
The third learned model, NonUnderstanding, decides what
to do if the VoiceSearch model results in no voice search.
NonUnderstanding is based on WB’s skillful suspension of
the current book request in order to move on to a new one; a
suspended request is potentially resumed later in the dialogue.

Table III shows the number of instances and features se-
lected by RFW+ in three logistic regression models, along with
their accuracy and F measure. VoiceSearch was learned from
3,161 training instances from WA’s dialogues. OfferResults
was learned from 714 instances where WA had performed
a voice search. NonUnderstanding was learned from 1,159
training instances.

Given a binary classification where the positive class has a
probability p, the odds of the positive class is the ratio of p to
1 − p. Logistic regression models the logit of the odds ratio,
or log odds, (log( p

1−p )) as the sum α + βi xi + ε for the
intercept α, the predictor variables xi and the residual error ε.
The intercept thus indicates the log odds of the positive class
(log( p

1−p )) independent of any predictors. The coefficient of
each predictor indicates the difference in log odds for each unit
increase in the predictor, thus a predictor is more influential
the higher the absolute value of its coefficient, and the sign
on the coefficient indicates whether the predictor increases or
decreases the log odds. Table IV lists the intercept, predictors
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and coefficients for each logistic regression (all features were
normalized in [0,1]). As shown, features from all phases of
spoken language understanding, as well as query and history
features, played a role. Further, the feature sets for each
decision are largely distinct: three in boldface for VoiceSearch
also occur for NonUnderstanding, for a total of 24 distinct
features in these models.

The VoiceSearch intercept in Table IV shows low log odds
of performing voice search. Three features that change the log
odds the most pertain to the query, the parse, or the adjacency
pair history. Log odds of voice search increase the most with
each increase in number of preceding queries, and also with
each next ASR word that is consumed by the semantic parse.
Log odds of voice search decrease the most for each prior
adjacency pair in the book request. For OfferResults, the log
odds are negative, and are increased the most by features
pertaining to the query. They are slightly increased by the
number of times in the call that the move-on prompt was
used, decreased by whether the current book request is new,
and slightly decreased by increases in average acoustic model
(AM) score of the best recognition hypotheses in the call. The
NonUnderstanding model has high log odds that are further
increased by the number of voice searches by title in the
current book request. The feature that has the most impact in
this model is the AM score of the best recognition hypothesis,
which reduces the odds of indicating a non-understanding.

When CheckItOut fails to get a confident semantic parse, it
signals a non-understanding. It provides different degrees of
direction about what the user can do, depending on the number
of consecutive non-understandings. After three consecutive
non-understandings, CheckItOut tells the user to call back.

When CheckitOut+ fails to get a confident semantic parse,
however, the new clarification module chooses a response with
its three learned models. The clarification module organizes
the three learned models in a decision tree, represented in the
pseudo-code in Figure 7. At each branch point, one of four
things happens: the next model is evoked (in lines 1, 3 and
6, possibly after a query, common to both systems; a prompt
informed by the wizard data is selected (in lines 5, 9 and 10,
such as a request for a different attribute); an action informed
by the wizard data is selected (in line 8, where the system
moves on to the next book); or the subdialogue continues in
the usual way (in lines 4 and 7, where a book is identified, or
the system signals non-understanding).

1 IF VoiceSearch(ASR) [Model 1]
2 THEN ExecuteVoiceSearch(ASR,Result)
3 IF OfferResults(Result) [Model 2]
4 THEN OfferTopRanked(Result)
5 ELSE RequestAlternateAttribute
6 ELSIF NonUnderstanding [Model 3]

THEN
IF NumNonUnderstanding < 3

7 THEN SignalNonUnderstanding
ELSIF NumNonUnderstanding >2

8 THEN MoveOn
9 ELSE OR(RequestCatalogNumber,
10 QuestionAuthorRequest)

Fig. 7. Pseudo-code for the error handling component of the new DM

In CheckItOut+, if the VoiceSearch model determines that
CheckItOut+ should perform voice search, three queries use
R/O scores to compare the ASR transcription against the
author, title and catalog number fields of the backend. After
voice search, the OfferResults model determines whether to
offer the return with the highest R/O score to the caller. If it
decides not to offer the highest ranked candidate, it will still
build on information from the query return by prompting for
an attribute other than the one with the highest R/O score (e.g.,
Can you please give me the catalog number?). When there has
been no voice search and two consecutive non-understandings,
the NonUnderstanding model determines whether to move on
to the next book request. If the decision is not to move on, then
CheckItOut+ continues with the current book request, either
with a request for the catalog number or by asking the user
whether she just asked for an author.

Because the learned models depend on features from most
or many phases of spoken language understanding, includ-
ing recognition and parse features, as well as features from
voice search queries, CheckItOut’s information pipeline cannot
accommodate them. RavenClaw is not designed to examine
a multiplicity of confidence values for distinct phases of
spoken language understanding, and the Olympus/RavenClaw
architecture requires backend searches to be executed with
the results of a semantic interpretation, rather than with the
ASR. Rather than re-build parts of RavenClaw and restructure
the information pipeline, we implemented a new dialogue
manager in CheckItOut+ with exactly the same functionality as
the CheckItOut dialogue manager, apart from the clarification
module. Other modules remained the same.

VIII. EVALUATION: PERFORMANCE GAINS

The new module in CheckItOut+ adds the capability to re-
duce non-understandings; it is invoked only when CheckItOut
would have failed to arrive at confident semantic interpretation.
It played a role in 91.5% of calls, and was triggered 4.7 (+/-
3.9) times per call on average. As discussed in this section,
the improved error-handling leads to significantly higher task
completion and success rates, significantly shorter durations
per subtask, and significant changes in the rates at which users
request books using call numbers versus author names. Despite
the improved task success, user satisfaction remains the same
across both systems. While users of CheckItOut+ always order
all 4 books in the task compared to 3.2 for CheckItOut users,
the greater success required increased effort on the part of
users. PARADISE models to account for user satisfaction in
terms of task performance and dialogue costs show that user
satisfaction depends on very distinct system properties.

As noted above, for CheckItOut 562 calls were collected,
and 502 were collected for CheckItOut+ (Section IV).

Table V presents 21 dialogue task and cost metrics used
to compare the two systems. We first discuss whether the
metrics show significant differences between the two systems.
Analysis of variance (ANOVA) measures whether values for a
given measurement, such as task completion, have the same or
different means and variance across groups, such as two sys-
tems. On all measures other than two, differences in the system
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Id Description CIO CIO+ p (ANOVA)
1 Ordered books 3.2 4.0 0
2 Offered books 4.1 6.4 0
3 Completion rate 0.80 0.90 0
4 Correct books 2.4 2.7 7.3× 10−5

5 Incorrect books (↓ CIO+) 0.8 1.3 1.9× 10−12

6 Task success 0.60 0.68 7.3× 10−5

7 Call duration (↓ CIO) 210.9 224.4 3.2× 10−2

8 Time per book 64.6 56.1 4.2× 10−4

9 S(ystem) turns (↑ CIO; ↑ CIO+) 25.1 32.9 0
10 U(ser) turns 24.3 31.9 0
11 Time per S turn (↑ CIO; ↑ CIO+) 8.3 6.8 0
12 Time per U turn (↓ CIO) 8.6 7.0 0
13 User utterances (↓ CIO) 25.2 31.9 0
14 Help messages (↓ CIO+) 1.8 0.1 0
15 Given data messages 4.1 8.3 0
16 Relevant data messages 0.8 1.3 8.5× 10−12

17 Corrections from U (↑ CIO) 1.5 2.4 8.9× 10−10

18 Book requests 8.1 8.0 0.89
19 Book requests by num 2.7 2.1 1.2× 10−7

20 Book requests by author 1.6 2.1 1.2× 10−4

(↑ CIO; ↓ CIO+)
21 Book requests by title (↑ CIO) 3.75 3.83 0.65

Computed user satisfaction 3.1 3.0
Summary user satisfaction 2.6 3.4

TABLE V
MEANS AND ANOVA P VALUES FOR DIALOGUE TASK AND COST

METRICS. METRICS THAT ARE PREDICTIVE IN PARADISE MODELS FOR
CHECKITOUT (CIO) OR CHECKITOUT+ (CIO+) ARE IN PARENTHESES;

ARROWS INDICATE DIRECTION OF INFLUENCE.

means are highly significant, as shown by the p values. Note
that in the column for p values, ’0’ represents probabilities so
small as to effectively be zero (underflow for the R statistical
package). Table V also shows two cases with no significant
difference. The number of Book request subdialogues for
callers to both systems was about the same (8.1 versus 8.0),
and the difference in the number of Book requests by title
(3.75 versus 3.83) was not statistically significant.

On task metrics, such as Ordered books, completion rate,
success (Correct books and Incorrect books) and success rate
(Task success), CheckItOut+ performed significantly better
then CheckItOut. The longer call duration for CheckItOut+
was also statistically significant, but in the 13.5 extra seconds
in calls to CheckItOut+, callers were able to complete a
request for an additional book. The average durations per
received book or per correct book were significantly shorter
for CheckItOut+.

Our user satisfaction survey was based on [59]–[61]. It
had ten questions about the caller experience, plus one about
the users’ overall satisfaction, all on a 5-point scale. Users
completed no more than three surveys. Responses to the
questions provided a reliable scale [62]. We compared user
satisfaction of both sets of users using two scores shown at
the bottom of Table V: computed from the average of the
10 questions (Computed), and the response to the summary
question (Summary).

Overall, users of both systems were equally satisfied. While
the means are nearly the same for the Computed scores of both
systems, and the mean Summary score for CheckItOut+ looks
higher than for CheckItOut, the differences are not statistically
significant. For CheckItOut, the Computed satisfaction scores
were somewhat higher than the Summary scores, and vice

versa for CheckItOut+. Both types of scores lead to the
same conclusion, that overall callers were neutral about their
experience, which suggests that the ten questions for the
computed scores do a reasonable job at capturing individual
components of the caller experience.

On individual questions, there was a statistically significant
difference in responses from callers on only two of the eleven
questions. For the statement, I had to play close attention
while using the system, CheckItOut+ callers agreed more
strongly with the statement than did CheckItOut callers. This
difference in the demand on the user’s attention can perhaps be
explained in terms of the much greater frequency with which
CheckItOut+ users had to correct the system (measure 17).
CheckItOut corrections occurred 1.5 times per call compared
with 2.4 times per call for CheckItOut+. The other question
showing a difference is less easy to explain, and may account
for some of the discrepancy between the two types of scores.
Callers were asked to indicate how strongly they agreed with
the statement I found the system voice easy to understand.
Although both systems used the same synthesized voice,
CheckItOut callers agreed with the statement more than did
CheckItOut+ callers. It has been observed in the literature that
user ratings of spoken dialogue systems often depend more
heavily on the qualities of the synthesized voice than on ease
of use, but here there seems to be a reverse effect where
callers’ impressions of the same voice differ, depending on
the quality of the rest of their experience with the system.

The PARADISE evaluation method assumes that user sat-
isfaction can be modeled as a linear sum of measures of
dialogue task performance and costs [59]. Linear regression
models were explored stepwise, using all measures shown in
Table V as predictors of user satisfaction, for each satisfaction
score. All callers completed at least two surveys, and some
did a third. Satisfaction scores derived from the surveys that
occurred about half way through a caller’s fifty sessions were
associated with the first half of her calls, and scores derived
from the survey completed at the end were associated with the
second half of her calls. The models for the summary scores
produced somewhat better fits, and relied on more predictors,
so we discuss these models here.

The rows in Table V with CIO or CIO+ represent measures
that were predictive of user satisfaction for the corresponding
system, with the arrows representing whether satisfaction
increased with an increase (↑) or a decrease (↓) in the
predictor. The PARADISE model for CheckItOut users has
eight predictors. A smaller number of predictors (N=5) model
the CheckItOut+ user satisfaction for about the same adjusted
R2: 0.06 for CheckItOut versus 0.05 for CheckItOut+. Two
predictors in both models increase user satisfaction: increases
in the number of system turns and increases in time per system
turn. These occur when the system is able to offer the user a
specific book. One predictor appears in both models with an
opposite direction of influence. CheckItOut users were more
satisfied when there were increases in book requests by author.
The table shows that CheckItOut+ users tended to request
books by author one and a third times as often as CheckItOut
users, but they experienced a relative increase in satisfaction
when they ordered by author less often.
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The models for each system each have unique predictors
as well. Only users of CheckItOut had increased satisfaction
with increases in corrections from the user and book requests
by title. Decreases in call duration, the total number of user
utterances, and the time per user turn also increased their
satisfaction. CheckItOut+ users had increased satisfaction with
decreases in the number of incorrect books, and in the number
of help messages from the system. In summary, the more
CheckItOut users were able to request books by title and
author, to be prompted more often by the system and with
longer system turns (with more information), and with more
corrections from the user, and the less time they spent on
a call, the more satisfied they were. CheckItOut+ users also
experienced more satisfaction given more system turns and
longer ones (more information), but in contrast to CheckItOut,
decreases in the number of incorrect books in their order, fewer
help prompts from the system, and less reliance on asking for
books by author also increased their satisfaction.

IX. DISCUSSION

In comparison to CheckItOut, CheckItOut+ had a higher
completion rate and task success with about the same total
duration per call, and therefore less time per book or per
correct book. CheckItOut+’s success depended on a small,
manually constructed decision tree of three learned models
to address the choice point where CheckItOut would have a
non-understanding. We claim that the resulting dialogue man-
agement is more naturalistic in several regards. First, requests
for the caller to repeat her utterance are a last resort, which is
consistent with the ablated WOz studies cited above. Second,
problematic requests are dealt with over successive utterances,
and through various means, to move a partial interpretation
towards a resolution. Third, the clarification actions that the
dialogue manager relies on most are representative of those
that the wizards relied on most. Finally, the new clarification
module draws on features from many dimensions of context
to represent dialogue state, including the domain knowledge
represented in the backend.

Reliance on the new clarification strategies enabled Check-
ItOut+ to interpret noisy ASR by intelligent selection among a
richer set of dialogue actions than was available to CheckItOut.
Of the 18 clarification actions that wizards chose with any
frequency, the most frequent was explicit confirmation of the
title (Table I). This dialogue action occurs in CheckItOut+
whenever the learned VoiceSearch model determines there
should be voice search, followed by a decision from the
OfferResults model to offer the top ranked return. The next
most frequent clarification action selected by wizards was a
clarification question about the attribute that the caller was
providing: Did you ask for an author? This dialogue action
occurs in CheckItOut+ when the NonUnderstanding model
decides to address the current book request rather than move
on to a new one. Wizards also often relied on requests
for a book attribute other than the current one. Thus, this
dialogue action depends on partial information about the type
of attribute the caller has tried to specify.

CheckItOut+’s clarification module executed 4.72 (+/-3.94)
times per call, or a little more than once per book ordered, and

most often resulted in a voice search offer. The combination of
VoiceSearch and OfferResults occurred 3.76 times per call (+/-
3.35). The caller confirmed these offers as correct 1.04 times
per call (+/- 0.75). The fact that the offer of a voice search
candidate was correct only about one time in four was not a
fatal flaw. Dialogues continued constructively, and callers had
the impression that CheckItOut+ would persist in its attempts
to resolve their request. The clarification module elicited a
different attribute 0.92 (+/- 1.20) times per call.

To develop the machine-learned models for CheckItOut’s
clarification module, we performed feature selection on 163
features to represent recognition confidence, acoustic features,
semantic parse features, global confidence features, voice
search results and confidence scores, and dialogue history
features. While each model in CheckItOut+’s new clarifica-
tion module relies on relatively few features, together they
encompass the full range of spoken language understanding
components. The usefulness of complementary sources of
information for dialogue decisions suggests that a dialogue
manager could profit from more subtle information about
dialogue history and dialogue structure. One promising avenue
for further research would be to mine the acoustic signal
for prosodic cues to discourse structure [63], or for other
information apart from the words produced by the speaker. A
feature representing the onset of a new discourse unit played a
role in our second model, OfferResults (Table IV). It lowered
the log odds of offering the top-ranked voice search return.
We speculate this could be because the top-ranked return
might be less reliable at the beginning of a new request,
possibly due to higher likelihood of recognition errors at
the onset of a new discourse unit. In a comparison of two
state-of-the-art recognizers on the same corpus, Goldwater et
al. [1] present results on a variety of features that degrade
the performance of two state-of-the-art speech recognizers.
Among the features they found, several have been shown to
correlate with discourse and dialogue structure. These include
discourse cue words [19], extreme prosodic characteristics,
which might correspond to the increase in pitch range that
characterizes new discourse units [64], and various types of
disfluencies, such as filled or unfilled pauses [20].

X. CONCLUSION

CheckItOut+ performs well despite poor ASR because it
replicates the behavior of human wizards who were asked to
interpret ASR output of similarly poor quality. Wizards were
asked to solve a type of problem that was novel to them.
They did not know in advance which aspects of the context
or what actions would be most relevant, and each wizard
developed distinctive dialogue strategies. The wizards relied
on a much larger set of clarification actions to choose from
than the original CheckItOut. When some of these actions
were incorporated in CheckItOut+, there was a clear and
statistically significant improvement in performance.

Given the time constraints we imposed, wizards were often
forced to end a dialogue before they could address all four
books in a scenario. Nevertheless, WA and WB, the two
most successful wizards, respectively identified 2.69 and 2.53
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correct books per call. CheckItOut’s success rate of 2.40 was
higher than the 2.26 average for all wizards, but not as high
as WA or WB. In contrast, CheckItOut+ achieved a success
rate essentially as good as WA’s by relying on a strategic
combination of the distinct strategies from WA and WB.

From our two previous studies, an offline pilot and online
clarification of a single book request, we expected voice search
would be an important component of a dialogue management
approach to achieve good task success despite noisy ASR. We
also expected, however, that voice search alone would be insuf-
ficient, because addressing a user’s intentions involves more
than the interpretation of each user utterance. Our wizards
relied on their assumptions about the users’ intentions, their
skill at grounding their understanding in collaboration with
their conversational partner, and their background knowledge
about how to achieve a task in different ways. In sum, our
results indicate that a spoken dialogue system should:

• exploit access to the domain entities that users will refer
(e.g., perform voice search as a way to enrich context);

• adapt commonsense knowledge about user requests to
build upon partial interpretations of noisy ASR output
(pursue partial understanding);

• exploit a range of dialogue acts when ASR is poor,
including a variety of clarifications about the task, the
user utterance, or the query return (rich set of clarification
actions);

• rely on a wide range of knowledge sources to characterize
the dialogue state for each utterance, including features
from the speech recognizer, the semantic interpreter,
voice search, the dialogue manager, and dialogue history.

Voice search can either fully resolve a noisy transcription, or
result in a partial understanding when a query returns com-
peting candidates. Questions based on a partial understanding,
such as identification of certain words in an utterance, can
lead to an understanding of a user’s intent across multiple
turns. This kind of incremental understanding of a single user
intention over multiple turns is a more naturalistic way to
communicate than to re-prompt users when the system has a
non-understanding. The results presented here indicate a need
for two kinds of generalization. First, a deeper investigation
of the role of commonsense knowledge in spoken dialogue
could lead to a principled mechanism for a generative model
of dialogue acts. Second, a more comprehensive analysis of
features to represent dialogue state across application domains
and systems with distinct capabilities could lead to more
general representations of dialogue state.

Our wizard corpus has a rich set of actions and states,
and therefore many potential uses beyond the application
presented here. Due to the mismatch between the richness
of the dialogue states in our learned models and the input
expected by an Olympus/RavenClaw dialogue manager, our
experiment did not exploit the full range of dialogue actions
selected by our wizards. In addition, we restricted our attention
to instances that were adjacency pairs containing a single voice
search. Wizards, however, often performed multiple searches
in sequence, especially WA. We are currently preparing the
corpus for public release, through the Columbia University

Academic Commons, a service of the Columbia Libraries’
Center for Digital Research and Scholarship.
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