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Abstract 
To address computationally challenging problems, ingen-
ious researchers often develop a broad variety of heuristics 
with which to reason and learn. The integration of such 
good ideas into a robust, flexible environment presents a va-
riety of difficulties, however. This paper describes how 
metareasoning that relies upon expertise, bounded rational-
ity, and self-awareness supports a self-adaptive architecture 
for learning and problem solving. The resultant programs 
develop considerable skill on problems in three very differ-
ent domains. They also provide insight into the strengths 
and pitfalls of metareasoning. 

 
Anthropologists tell us that an expert is one who performs 
a task better and faster than the rest of us (D'Andrade, 
1991). A programmed expert for challenging problems, 
however, is unlikely to be given every detail of its reason-
ing process in advance — rather, it is expected to learn its 
expertise on its own, to be self-adaptive. Ideally, expertise 
develops quickly. To accelerate its performance during 
both learning and testing, a self-adaptive system is likely to 
be subjected to bounded rationality, that is, to have limits 
placed on its space and time resources. As a result, com-
puter scientists often construct self-aware programs that 
observe their own behavior and monitor their own reason-
ing to improve their performance, as in Figure 1 (Cox and 
Raja, 2007). The perils of such metareasoning become 
quickly evident in any ambitious application, however.1 
 We believe that easy problems should be solved quickly, 
and that hard problems should take a bit longer. Rather 
than rely on thousands of learning experiences, the learners 
we describe develop considerable expertise after experi-
ence with relatively few problems. This paper recounts the 
challenges posed to one learning and problem-solving ar-
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chitecture by three different problem domains, and how 
metareasoning addresses those challenges successfully. 
The first section describes the architecture and the do-
mains. The second section describes the premises that led 
to the architecture’s structure. Subsequent sections explore 
the impact of bounded rationality, how to assess expertise, 
how to manage large bodies of heuristics to learn expertise, 
and how to think less but still maintain performance.  

The Architecture and the Problems 
FORR (For the Right Reasons) is a learning and problem 
solving architecture that models the development of exper-
tise with metareasoning (Epstein, 1994a). From its experi-
ence on a set of problems, FORR learns to solve other, 
similar problems. Together, the problems it solves and 
those expected to be similar to them constitute a problem 
class. On any given problem, FORR seeks a sequence of 
actions that solves the problem, and can explain the reason-
ing that underlies its decisions.  
 FORR provides a flexible environment within which to 
design and execute experiments in metareasoning. The 
domain-dependent ground level in Figure 1 describes each 
world state as it appears during search for a solution. The 
object level re-represents and reasons about these percep-
tions, and gathers extensive data from its experience about 
the nature of the current problem class. The meta-level 
judges and possibly reformulates that decision-making 
process based upon what it detects within the object level. 
 FORR serves as a system shell. To produce a FORR-
based application, one defines a problem domain (classes 
of problems that arise within it) and a set of heuristics that 
advise on decision making there. We focus here on three 
very different problem domains, each of which can be 
solved with a sequence of actions: game playing, path find-
ing, and the solution of constraint satisfaction problems. 
Each domain has its own definitions for problem, problem 
class, action, and solution.  
 Hoyle is a FORR-based application that learns to play 19 
two-person, perfect-information, finite-board games as 
well or better than the best human experts (Epstein, 2001). 
For Hoyle, a problem class is a game (e.g., tic-tac-toe), and 
a problem is a single playing experience. Each action is a 
legal move in the game. A solution is a sequence of such 
moves that achieves an ideal outcome (a win or a tie, as de-
fined by the game tree). Given the rules of a game, Hoyle 

 
Figure 1: FORR addresses a problem. (Cox and Raja, 2007). 



plays it against itself or against an external opponent and 
learns to play the game better. The games in Hoyle’s reper-
toire are not as challenging as chess, but some have large 
game trees (as many as several billion nodes) and the ex-
pert programs crafted to serve as Hoyle’s opponents re-
quired considerable game-specific knowledge and skill. 
 Ariadne is a FORR-based application that learns to find 
its way about a two-dimensional grid-based maze (Epstein, 
1998). For Ariadne, a problem class is a maze generated 
with a specified size and difficulty; a problem is a trip in a 
given maze from an initial location to a goal, as in Figure 
2. (The initial location and the goal vary from one problem 
to the next.) The learner has no map, only the coordinates 
of the goal and the current distance of the robot from the 
nearest obstruction in four orthogonal directions, as if the 
robot only “sees” certain positions on the grid. Each action 
moves the robot in a straight line to any such currently 
visible location. A solution is a sequence of such actions 
that reaches the goal. Given its lack of information, a robot 
can cycle repeatedly through the same locations. Repre-
sented as a graph, a moderately challenging 20 × 20 maze 
would have 280 nodes and about 1485 edges.  
 ACE (the Adaptive Constraint Engine) is a FORR-based 
application that learns to solve constraint satisfaction prob-
lems (CSPs) (Epstein, Freuder and Wallace, 2005). For 
ACE, a problem is an individual (binary) CSP: a set of 
variables, each with an associated set of values, and a set 
of constraints that restrict how pairs of variables can be 
bound to values simultaneously. A problem class is a set of 
CSPs with the same descriptive characterization (e.g., 
number of variables and maximum domain size).    
 Structured CSPs, like those in Figure 3, can have pock-
ets of densely connected variables with very tight con-
straints. A metric that scores possible actions suggests a 

dual pair of heuristics: one takes the maximum, and the 
other takes the minimum. Structured problems present par-
ticular challenges for traditional solvers because the duals 
of traditional heuristics often fare better there than the 
original heuristics. Structured problems also are more simi-
lar to real-world problems than simple random CSPs. From 
extensive data on over 100 CSP classes, we report here on 
a composed class (Aardal et al., 2003) with 30 variables 
and domain size 6 (630 nodes) and a geometric class 
(Johnson et al., 1989b) with 50 variables and domain size 
10 (1050 nodes). Problems from both classes often stumped 
the best solvers at a recent CP competition. 
 Each action in ACE either selects a variable or assigns a 
value to a variable from its associated value set. After each 
assignment, propagation infers its effect on the domains of 
the as-yet-unassigned variables. If any variable is shown to 
have no values consistent with the current assignments (a 
wipeout), the most recent assignments are retracted chrono-
logically until every variable has some possible value. A 
solution in ACE is a sequence of assignments that satisfies 
all the constraints and assigns every variable a value. Such 
search for a solution is NP-hard. CSPs model many of the 
most difficult problems solved by AI systems, including 
graph coloring, propositional satisfiability, and scheduling. 
Metareasoning supports learning to search them expertly. 

Foundation Assumptions 
FORR is based on a set of premises that dictate its general 
structure and behavior. The first set of premises addresses 
the reasons that underlie decisions during search: 
• Good reasons underlie intelligent actions. In FORR, 
proposed domain-specific good reasons are called Advi-
sors. Input to an Advisor is the current problem state and 
the available legal actions. Output from an Advisor is ad-
vice about some number of actions. For example, Hurry 
advises Ariadne to take long steps in any direction, and 
Material advises Hoyle to capture an opponent’s piece.  
• A problem domain has many potential good reasons. 
Typically, a host of Advisors can be extracted from human 
experts. Hoyle and Ariadne each have several dozen; ACE 
has more than 100 drawn from the constraint literature.  
• Some good reasons are always correct. In FORR such 
reasons are tier-1 Advisors that take priority during deci-
sion making. Their fast, accurate guidance chooses an ac-
tion or eliminates some actions from further consideration. 
For example, it is always correct to make an immediately 
winning move in a game, to move directly to a visible goal 
in a maze, and to temporarily ignore a variable without 
neighbors in the constraint graph. 
• Some good decisions include more than one action. In 
FORR this creates a set of tier-2 Advisors that identify and 
address a subproblem with a plan, a (possibly ordered) set 
of actions. For example, Ariadne’s Roundabout circum-
navigates an obstruction that lies directly between the robot 
and the goal. Only one plan may be active at any point in 
time. The tier-1 Advisor Enforcer supports the execution 
of any active plan or terminates it for poor performance.  
• Most good reasons are fallible heuristics. In FORR 

   
 (a)  (b) 
Figure 3: Examples of constraint graphs for (a) composed and (b) 
geometric problems (Johnson et al., 1989a). Each variable is rep-
resented as a node, and each constraint as an edge. 

Figure 2: An example of Ariadne’s grid world, where a robot R 
must move to the goal G. Problems used here are considerably 
larger (Epstein, 1998). 



such reasons are tier-3 Advisors that express preferences 
for choices numerically, as strengths. For example, Ari-
adne’s Hurry assigns greater strengths to longer steps.  
 The Address pseudocode in Figure 4 coordinates all 
three tiers to make a decision; it is the object level in Fig-
ure 1. The next set of premises addresses how an appropri-
ate combination of reasons is assembled: 
• Good reasons make different contributions on differ-
ent problem classes. For example, Ariadne’s warehouse 
mazes have many objects to travel around, but its living-
room mazes have few internal obstructions. FORR evalu-
ates each tier-3 Advisor on each new problem class it en-
counters in a domain. Those that are more constructive we 
call class-appropriate; the others are class-inappropriate. 
For example, ACE’s heuristics are provided in dual pairs 
and the program is left to sort out whether either is appro-
priate. Lines 1 and 2 in Table 1 show that duals are not 
necessarily consistent on different problem classes.  
• A combination of good reasons offers substantial 
benefits. There is evidence for this both in people’s reli-
ance on multiple heuristics (Biswas et al., 1995; Crowley 
and Siegler, 1993; Ratterman and Epstein, 1995; 
Schraagen, 1993) and in programs that integrate multiple 
rationales to their advantage (Keim et al., 1999). Table 1 
shows how pairs (lines 3-5) of heuristics, one for variable 
selection and the other for value selection, may outperform 
individual heuristics (lines 1-2). 
• Good combinations of reasons vary with the problem 
class. Table 1 (lines 3-5) shows that pairs of Advisors suc-
cessful on one problem class may do less well on another. 
• A program can learn to become an expert. In a run, 
FORR addresses a sequence of problems from a class (the 
learning phase) and then evaluates its performance on a 

second sequence of problems (the testing phase) with 
learning turned off. All of Figure 1 is active during learn-
ing, but no further directives from the metareasoning mod-
ule occur during testing. Because decisions may be non-
deterministic, performance is evaluated over a set of runs 
(an experiment), as in Figure 5. The expectation is that 
relatively few learning problems will suffice. For example, 
ACE can learn to solve the geometric problems and the 
composed problems well after experience with only 30 of 
them. Table 1 shows how a mixture of heuristics learned 
by ACE (line 6) can outperform both individual heuristics 
and pairs of them. 
 We add one more premise, on representation: 
• Multiple representations enhance reasoning. Each Ad-
visor in FORR has access to any representation of events 
and states from the ground level and the object level. These 
representations are shared and computed at the object level 
only on demand. For example, Hoyle represents a game 
board linearly, as a grid, as a set of patterns, and as a set of 
zones; Ariadne describes a maze in terms of gates, bases, 
barriers, and several kinds of corridors; and ACE has doz-
ens of descriptions for a CSP, including many that identify 
kinds of subproblems and relationships among variables,  
 Other systems that rely on a mixture of heuristics com-
bine them in a variety of ways. More complex heuristics 
may be reserved for the harder problems (Borrett, Tsang 
and Walsh, 1996). Heuristics from a portfolio may be se-
lected to compete in parallel until one solves the problem, 
or used in turn on the same problem (Gagliolo and 
Schmidhuber, 2007; Gomes and Selman, 2001; Streeter, 
Golovin and Smith, 2007). A system may also label its 
heuristics individually for their appropriateness with 
learned weights. Heuristics can then be consulted one at a 
time in order of their weight (Minton et al., 1995; Nareyek, 
2003) or they can vote, combining advice from each of 
them on every decision (Fukunaga, 2002). When it con-
sults tier 3, FORR has its Advisors vote. 

Learning with Bounded Rationality  
Even under the control of parameters, a random problem 
generator cannot be trusted to create uniformly difficult 

Address(problem, class) 
 state ← start-state(problem) 
 Until problem is solved or abandoned 
 decision←consult-tier-1(state, problem, class) 
 unless decision 
  decision ←consult-tier-2(state, problem, class) 
  unless decision 
    decision←consult-tier-3(state, problem, class) 
 state ← apply (decision, state) 
 
Figure 4: During search, FORR addresses three tiers of Advi-
sors in turn until a decision is made.  

Experiment(domain, class, number-of-runs) 
For number-of-runs 
 Until learning is terminated     ;learning phase 
  Select problem from class 
  Address(problem, class) 
  Learn from the solution, if any   ;metareasoning 
 Until testing is terminated     ;testing phase 
  Select problem from class  
  Address(problem, class) 
Average performance across all runs 
 
Figure 5: Pseudocode for a FORR-based experiment.  

Table 1: The appropriateness of a heuristic varies with the prob-
lem class, and multiple heuristics outperform individual ones in 
CSP search. Variable ordering with ddd calculates the ratio of the 
number of values that a variable could be assigned to the number 
of unassigned neighbors it has in the constraint graph. v1 and v2 
are value-ordering heuristics. After propagation, v1 orders values 
by the smallest domain size produced, and v2 orders values by the 
largest product of domain sizes. Space is nodes searched; elapsed 
time is in CPU seconds. 
 Geometric Composed 

Heuristics Space Time Solved Space Time Solved 
Min ddd 258.1 3.1 98% 996.7 2.0 82% 
Max ddd 4722.7 32.3 6% 529.9 1.0 90% 
Min ddd+v1 199.7 3.6 98% 924.2 3.0  84% 
Min ddd+v2 171.6 3.3 98% 431.1 1.5 92% 
Max ddd+v2 3826.8 53.7 30% 430.6 1.4 92% 
ACE mixture 146.8 5.1 100%  31.4  0.6  100% 



problems in the same class. For example, the difficulty a 
fixed algorithm experiences within a class of putatively 
similar, randomly-generated CSPs may decrease not expo-
nentially but according to a power law, that is, be heavy-
tailed (Gomes et al., 2000). As a result, there are many 
much more difficult problems within the same class.  
 A reasonable response is to set some arbitrary standard 
for performance, and then insist upon it.  One might, for 
example, allocate bounded resources (time or space) to a 
solver, and learn only from solutions achieved within them. 
The presumption here is that a solution that is arrived at 
quickly or visits fewer states is better. Setting such bounds 
is problematic, however. If they are set too low for typical 
problems in the class, only the easiest among them will be 
solved. Solutions will be fewer and training instances un-
trustworthy, because they have been drawn from problems 
where most any decision would do. If the resource bounds 
are set too high, however, long but successful searches will 
provide traces of not-so-expert behavior. For example, 
ACE can be given a limit on the number of nodes (partial 
assignments) it may search before it abandons a problem 
and moves on to the next one. Figure 6 shows the impact 
of a resource limit while learning to solve the geometric 
problems. A run was considered successful if solved at 
least 80% of its 50 testing problems within the specified 
node limit. Observe how a high (100,000) node limit pro-
duced fewer successful runs and incurred a higher search 
cost than learning with a lower (5000 or 10,000) limit. 
 Metareasoning can monitor the overall skill of a self-
adaptive system with bounded rationality and use it to con-
trol the learner. When the system addresses a sequence of 
problems under some resource bound per problem, a 
coarse but significant measure of its success is simply how 
many problems it solves during its learning phase. FORR 
includes the option of full restart, the ability to reinitialize 
all weights to the same small value and begin again, on dif-
ferent problems from the same class (Petrovic and Epstein, 
2006a). (This is different from repeated restart on the same 
problem, which is indented to diversify search for a single 
solution (Gomes and Sellman, 2004)). When too few prob-
lems have been solved during a learning phase, full restart 
begins the entire phase over again. Under a high node limit 
(e.g., 100,000 in Figure 6), full restart modulates the 

heavy-tail difficulty. It abandons a run on an unusually dif-
ficult sample of problems from the class, or one where the 
problems were so easy that misinformation was acquired. 
The resource limit is crucial here, as Figure 6(a) indicates. 
As one would expect, higher resource bounds incur a 
higher learning cost, but full restart considerably modulates 
that effect.  

Modeling Expertise 
Metareasoning permits a system to assess its performance 
on an individual problem. To gauge how well a problem 
solver has done, however, requires some standard of exper-
tise: an oracle, perhaps, or an expert opponent. Although 
such guidance is important, it may not offer enough variety 
to develop a robust learner.  
 Experiments with Hoyle, for example, found that play-
ing against a perfect player (a program that always makes 
an optimal move) was too narrow (Epstein, 1994b). An ex-
pert game player, after all, should hold its own against op-
ponents of any strength. When Hoyle trained against a per-
fect player, it later lost testing contests to opponents with 
far less prowess —it was repeatedly flummoxed by their 
errors. We experimented with many alternatives. The in-
troduction of some percentage of random decisions into an 
otherwise flawless opponent drove the learner’s experience 
outside the narrow realms of perfect play. Those random 
moves lacked good rationales, however, and were therefore 
often of low quality, not the kind of decisions Hoyle 
should learn to make. Self-training, where Hoyle played 
only against itself, did not always develop sufficiently 
strong expertise either. Our most effective approach, lesson 
and practice training, combined supervised and self-
supervised learning: Hoyle alternately played 2 contests 
against a perfect player and then practiced in 7 contests 
against itself. Table 2 shows the results. 
 Without an external standard of expertise for a problem 
class, a system can take traces of its own successes as a 
model. Neither Ariadne nor ACE has an external model; 
each program learns alone, and can only judge the correct-
ness of its actions from their ultimate result: a goal found 
or a CSP solved. When the robot finds the goal, metarea-
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 (a)  (b) 
Figure 6: The impact of resource bounds on the geometric prob-
lems. (a) More runs in an experiment are successful with full re-
start (darker bars) and (b) fewer nodes are expanded. 

Table 2: Skill after learning tic-tac-toe with 2 different models 
of expertise. Lesson and practice training was better prepara-
tion for competition against opponents of different strengths at 
this draw game than training against a perfect player. Hoyle 
played 100 testing contests against each of 4 opponents: one 
moved perfectly, the others had some percentage of random 
moves among otherwise perfect play: 10% random (expert), 
70% random (novice), and 100% (random).  
 

Outcomes 
Perfect 
player 

Lesson and 
practice 

Wins against an expert 12 18 
Wins against a novice 59 63 
Wins against random play 80 85 
Draws against perfect play 100 100 
Draws against an expert 93 98 
Draws against a novice 80 97 
Draws against random play 88 100 



soning excises any closed loops from a trace of the robot’s 
path, and takes the remainder as a model. Similarly, when 
ACE solves a problem, metareasoning excises any assign-
ments that are subsequently retracted, and takes the re-
maining search tree as a model.  
 Unfortunately, neither a loop-free path nor a retraction-
free search is likely to be ideal —there may have been a 
faster way to solve the problem. The temptation is to set 
some arbitrary standard for performance, and then insist 
upon it. The impact of bounded rationality is mixed, how-
ever, as Table 2 warned. Instead we increase the granular-
ity of the metareasoning, as described in the next section. 

Learning about Reasoning 
Metareasoning permits a system to assess the performance 
of its individual components.  Although FORR’s structure 
is a 3-tier hierarchy, most Advisors are expected to lie in 
tier 3. Thus an obvious learning target in FORR is the 
class-appropriateness of each individual heuristic, repre-
sented as a weight for each tier-3 Advisor. FORR learns 
these weights and then uses them in tier 3’s voting. (The 
relatively few Advisors in the other tiers are unweighted; 
they are consulted in some pre-specified order instead.)  
 Given j Advisors, a choice c is selected in tier 3 based 
on both the strength s(Aj, ci, C) that each Advisor Aj ex-
presses for that choice and the weight wj of the Advisor: 

! 

argmax
c"choices

w j

A j "Advisors

# s A j ,c,C( )  

Ideally, only the best Advisors should participate in deci-
sion making, and those that offer better advice should be 
emphasized more. An irrelevant Advisor (e.g., Material in 
tic-tac-toe) simply fails to produce any advice. The meta-
level can instruct the object level to omit such an Advisor 
from computation. For the others, FORR’s metareasoning 
extracts training instances from the (likely imperfect) trace 
of a solved problem in the learning phase. A training in-
stance is a problem state, the available choices there, and a 
decision made by the model of expertise. A positive train-
ing instance is a correct action selection; a negative train-
ing instance is an error.  FORR’s weight learning then 
judges the performance of Advisors on training examples. 

Identifying Good Advice 
Because FORR’s tier-3 Advisors express their preference 
for choices by assigning them numerical strengths, a 
mechanism is needed to judge whether such a set of values 
is correct on the choice specified by a training instance. 
FORR offers two options: top-rated and relative support. 
Under top-rated, an Advisor is considered correct on a 
positive training instance only if it gives the decision a 
strength at least as high (low for negative training in-
stances) as any other it assigned within the set of choices. 
Another way to judge correctness attends more carefully to 
the nuances of variation in the metric. The relative support 
rs(A, c, C) of an Advisor A for choice c in a set of available 
choices C is the normalized difference between the 
strength the Advisor assigned to c and the average of the 

strengths the Advisor assigned to all the choices in C: 

! 

rs A,c,C( ) =
s A,c,C( ) " avg A,C( )

avg A,C( )
,avg A,C( ) =

s A,e,C( )
e#C

$

C

 

Under relative support, an Advisor A is considered correct 
on a training instance with decision c ∈ C if and only if 
rs(A, c, C) is positive. 

Reasoning about Learning 
Metareasoning permits a system to assess the significance 
of an individual training instance. Not all training instances 
are equally important. They are likely to be drawn, as dis-
cussed above, from problems of inherently different diffi-
culty. Moreover, training instances may be of different 
kinds. For example, in CSP search, a decision selects either 
a variable to consider or a value to assign it. When vari-
ables are selected cleverly, propagation is particularly ef-
fective. Thus good variable selection makes value selection 
easier, and therefore less significant.  
 Weight learning in FORR reinforces an Advisor’s 
weight with a reward (increment) or a penalty (decrement) 
based on its correctness on each training instance. FORR 
tallies the number of training instances on which each tier-
3 Advisor gives the correct advice. Some Advisors, such as 
the fork detector in Hoyle, produce important advice, but 
rarely. Thus a tally is not enough. The fraction of times 
that an Advisor’s advice has been correct is a somewhat 
better measure. ACE, however, required the considerably 
more sophisticated metareasoning of DWL and RSWL. 
 DWL (Digression-based Weight Learning) judges cor-
rectness with top-rated (Epstein, Freuder and Wallace, 
2005). DWL calculates reinforcements in proportion to 
problem difficulty, gauged by the resources consumed to 
solve it. On training instances from relatively short solu-
tions DWL assigns larger rewards to variable-selection 
Advisors than to value-selection Advisors. (DWL uses 
metareasoning to estimate “relatively short” based on its 
performance on earlier problems in the same learning 
phase.) DWL also reinforces behavior on a negative train-
ing example in proportion to the size of the digression 
(eventually abandoned search tree) it began.  
 RSWL (Relative Support Weight Learning) judges cor-
rectness with relative support (Petrovic and Epstein, 
2006b). RSWL reinforcements are directly proportional to 
relative support, but penalties are also inversely propor-
tional to the number of choices. Two variations on RSWL 
assign rewards and penalties based on their estimation of a 
training instance’s difficulty. To gauge difficulty, RSWL-κ 
uses κ, and RSWL-d uses search tree depth. κ is a measure 
of constrainedness developed for CSP classes (Gent et al., 
1996). Current search tree depth is considerably less ex-
pensive to compute than a dynamic value for κ. RSWL-d 
assumes that decisions are more difficult at the top of the 
search tree. (This is a reasonable assumption, given that 
every CSP has a backdoor, a set of variables after whose 
consistent assignment with the constraints search becomes 
extremely easy (Williams, Gomes and Selman, 2003).) The 
performance of all four weight-learning algorithms is com-



pared in Table 3.  
 Correct weights only compare Advisors, however; low-
weighted heuristics are still likely to give poor advice. To 
identify the more class-appropriate Advisors, FORR uses 
benchmark Advisors, which produce advice at random. A 
benchmark Advisor does not participate in voting, but it 
does receive a learned weight. After the learning phase, 
metareasoning eliminates from participation any Advisor 
whose weight is lower than its benchmark’s. As an added 
benefit, any representation that was referenced only by the 
eliminated Advisors will no longer be computed. Filtering 
the Advisors in all these ways speeds decisions after learn-
ing, without decreasing performance. In ACE, for example, 
the average testing decision is accelerated by about 30%.  

Learning Competent Reasons 
Learning on a sequence of problems applies knowledge 
from one successful search to subsequent searches. The 
first success increases the weights of those Advisors that 
contributed to its decisions. It may, however, be quite ex-
pensive to solve any first problem at all, particularly when 
the problems are hard, there are many Advisors (perhaps as 
duals), and they disagree with one another. Under bounded 
resources, only the easiest problems in a class may be 
solved. There will be relatively few training instances and 
they will all be drawn from relatively easy situations. In-
deed, on occasion a run fails because the learner has solved 
no problems at all, and therefore changed no weights.  
 FORR’s metareasoning therefore includes the ability to 
work with random subsets of Advisors (Petrovic and Ep-
stein, 2007). For each new problem in the learning phase, 
this method chooses a subset of tier-3 Advisors to consult; 
if search solves that problem, FORR learns weights from it 

only for that subset of Advisors. The expectation is that 
eventually the subset chosen for some problem will be 
dominated by class-appropriate heuristics, the problem will 
be solved, the class-appropriate weights in the subset will 
increase, and whenever any of those Advisors appears in a 
subset for a subsequent problem it will be more likely to 
influence search, making further successes more likely. 
Subset size is crucial, however: it must be large enough to 
expose Advisors to learning frequently, yet small enough 
to speed processing and to give an otherwise minority 
voice the opportunity to dominate decisions. Table 4 shows 
how performance improves using random subsets with full 
restart. Learning with random subsets reduces the number 
of problems addressed during learning and speeds compu-
tation time on each decision. It even functions well when 
we deliberately skew the initial Advisor pool with many 
more class-inappropriate than class-appropriate Advisors. 

Learning to Stop Learning 
A self-aware system that gauges its own overall skill can 
recognize the rate at which its performance improves. If it 
is no longer learning anything new, it should stop learning. 
Metareasoning to stop learning is implemented in FORR as 
learning to stability (Epstein, Freuder and Wallace, 2005). 
Under this option, FORR monitors its Advisors’ weights 
across a recent time window (e.g., the last 20 problems) 
and terminates a learning phase when the Advisors’ 
weights are no longer changing appreciably (the standard 
deviation of changes in them across the window are less 
than ε). Learning to stability assumes that stable weights 
will remain stable; our experience over far longer learning 
phases confirms this. Making a learner more responsive to 
its own learning experience this way has proved successful 
in all three domains: there is no change in performance, 
only a reduction in the resources that would have been de-
voted to learning after the system found no further way to 
improve its weights. For example, Hoyle recognizes that it 
has learned all it can on simple games after 12 contests; 
more difficult games require as many as 120.  

Learning to Reason Less 
In domains where errors are not fatal, more thinking is not 
always better. (Such economy must of course be evaluated 
by the risks of error it presents and the cost required to re-
cover from such errors.) Metareasoning can monitor the 
traces from individual problems to reduce computation in a 
variety of ways, thereby restructuring the reasoning proc-
ess itself. We discuss several such approaches here. 
 One might think that a tier-3 Advisor with a particularly 
high weight could be promoted to the end of the tier-1 list, 
where it could provide guidance earlier and save the re-
sources otherwise directed to tiers 2 and 3. In our experi-
ence in all three domains, however, this is a dangerous 
practice. When we tested it, even with an Advisor whose 
weight was dramatically higher than the others, Hoyle lost 
some contests against strong players, Ariadne never formu-
lated the plans that would have supported its best paths, 

Table 3: Performance improves on two CSP classes after learning 
with different algorithms. For 50 testing problems each, space is 
nodes searched. 

Learning Geometric Composed 
algorithm Space Solved Space Solved 

DWL 225.4 98.0% 298.5 95.4% 
RSWL 237.1 98.6% 161.1 97.8% 
RSWL-d  215.9 98.8% 208.0 96.6% 
RSWL-κ  189.8 98.4% 218.1 96.6% 

Table 4: Random subsets of 30% improve ACE’s learning per-
formance on the geometric problems with full restart, without a 
statistically significantly change in testing performance.  An 
early failure is an unsolved problem before any solved ones. 
 Random subsets 
 Without With 
Learning problems 44.8 36.1 
Learning failures 13.7 6.4 
Early learning failures 7.1 0.9 
Successful runs (of 10) 10 10 
Time per learning decision 0.0161 0.0106 
Time per learning run 1651.6 593.6 
Average nodes in testing 192.7 195.9 
Solved testing problems 98.6% 96.4% 



and ACE made rare, but disastrous errors that produced ex-
tremely large digressions. Simply put, a heuristic is un-
likely to be always right. That is why FORR groups them 
together and relegates them to tier 3. 
 Tier-3 Advisors retained after weight learning give bet-
ter than random advice, but they may not be uniformly ap-
propriate. Under prioritization, FORR partitions tier 3 after 
learning. In this scenario, Advisors with the highest 
weights vote first; only if there is a tie do subsequent 
groups of Advisors have an opportunity to comment. The 
advantage is that fewer resources are likely to be con-
sumed, since ties are relatively rare after the first subset or 
two. The nature and granularity of the partition is impor-
tant, however. Because fixed-size partitions ignore natural 
cutoffs, FORR’s partitioning method places tier-3 Advisors 
into groups of uneven size, based on their weights. If there 
are too many groups, prioritization effectively produces a 
ranked list. (Ranking underperforms a weighted mixture in 
all three of our domains, for every problem class we have 
investigated.) Partitions of 3 to 7 subsets produce the best 
results, but the number of subsets depends on the problem 
class. In any case, we rarely experience more than a 10% 
speedup with prioritization. Fewer Advisors make more 
mistakes, and most representations are still computed, par-
ticularly the computationally intensive ones, on which the 
most class-appropriate Advisors rely. 
 Metareasoning can identify portions of the solution 
process where different behavior is warranted. In some 
domains, the last part of problem solving is more formu-
laic. Game players often have an endgame library, and play 
by lookup (e.g., Chinook, (Schaeffer et al., 2005)); there is 
no need for advice at that point, only rote play. The last 
part of a CSP occurs after its backdoor. Metareasoning es-
timates an upper bound on the expected size of the back-
door as the maximum search depth at which it has experi-
enced a wipeout within the problem class. Under an option 
called Pusher, below the maximum wipeout depth ACE 
consults the single highest-weighted tier-3 variable-
selection Advisor as if it were in tier-1 (Epstein, Freuder 
and Wallace, 2005). In the event of a tie, Pusher chooses a 
variable lexically, bypassing tier 2 and tier 3 entirely. 
Pushing generally reduces computation time by about 8%. 
ACE does not, however, push value selection. Experiments 
indicated that one can think less about where to search af-
ter the backdoor but that thinking more about the values to 
assign there is still worthwhile.  
 Fast and frugal reasoning is a form of human metarea-
soning that favors recognized choices and then breaks ties 
among them with a single heuristic (Gigerenzer, Todd and 
Group, 1999). For ACE, a recognized choice is one made 
earlier in search (and subsequently retracted) on the same 
problem. We tested several strategies (random, most re-
cently used, highest weighted) to select the single heuristic. 
None ever harmed performance. Moreover, on more diffi-
cult problems, where retractions are more common, reus-
ing prior decisions with the highest weighted Advisor to 
break ties accelerated decision time, despite increased er-
rors (Epstein and Ligorio, 2004). 

Discussion  
On difficult problems, errors in a model of expertise may 
be inevitable, and training examples from the same model 
may vary in their quality and significance. Nonetheless, a 
self-aware system can recognize its own prowess or lack 
thereof, and respond accordingly. Moreover, as we have 
shown here, a self-aware system can evaluate and reorgan-
ize its components to improve its performance.  
 ACE learns to solve problems in many difficult classes, 
problems that stymie off-the-shelf solvers (like those in 
Table 1) without the ability to monitor and modify their 
own behavior. Constraint solving is a paradigm for many 
kinds of difficult problems. Hoyle and Ariadne each learn 
how to search a single space, a game tree or a maze, from 
which all the problems in a class are drawn. ACE learns 
about how to search a set of spaces, all of which are sup-
posedly alike, a considerably more difficult task.  
 Much remains to be done. Hoyle learns from lost con-
tests, but Ariadne and ACE do not yet learn from failure. 
(ACE can, however, learn in a problem class with both 
solvable and unsolvable problems, and successfully apply 
its learned knowledge to both.) There are typically very 
few Advisors in tier 1; even a novice in the domain can 
readily prespecify an order for them. Advisors in tier 2, 
however, produce plans, and how to order them is less ob-
vious. Weight learning for tier 2 is future work. Finally, the 
metareasoning described here still depends on settings for 
some parameters, particularly resource limits, the restart 
threshold, and random subset size. Future work includes an 
investigation of the ways those values interact with one 
another. Factor analysis, for example, has indicated that 
many CSP heuristics produce similar advice even from 
very different viewpoints (Wallace, 2006). FORR should 
capitalize on that. 
 Metareasoning is essential in FORR’s ability to learn to 
solve problems within a given class. As it learns a combi-
nation of heuristics, FORR uses metareasoning to decide 
when to abandon an unpromising learning attempt (full re-
start), when to stop learning (the stability criterion), how to 
select heuristics during learning (weights and random sub-
sets), and how to prioritize heuristics. FORR also reasons 
about its performance on previous problems (DWL), its 
previous decisions (fast and frugal reasoning), and the rela-
tive discriminatory power of its heuristics (RSWL). 
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