
 Learning Expertise with Bounded Rationality and Self-awareness

Susan L. Epstein1,2
 and Smiljana Petrovic2

1Computer Science Department, Hunter College of The City University of New York

2Computer Science Department, The Graduate Center of The City University of New York
695 Park Avenue, New York, NY 10065, USA

susan.epstein@hunter.cuny.edu, spetrovic@gc.cuny.edu

Abstract
To address computationally challenging problems, ingen-
ious researchers often develop a broad variety of heuristics
with which to reason and learn. The integration of such
good ideas into a robust, flexible environment presents a va-
riety of difficulties, however. This paper describes how
metareasoning that relies upon expertise, bounded rational-
ity, and self-awareness supports a self-adaptive architecture
for learning and problem solving. The resultant programs
develop considerable skill on problems in three very differ-
ent domains. They also provide insight into the strengths
and pitfalls of metareasoning.

Anthropologists tell us that an expert is one who performs
a task better and faster than the rest of us (D'Andrade,
1991). A programmed expert for challenging problems,
however, is unlikely to be given every detail of its reason-
ing process in advance — rather, it is expected to learn its
expertise on its own, to be self-adaptive. Ideally, expertise
develops quickly. To accelerate its performance during
both learning and testing, a self-adaptive system is likely to
be subjected to bounded rationality, that is, to have limits
placed on its space and time resources. As a result, com-
puter scientists often construct self-aware programs that
observe their own behavior and monitor their own reason-
ing to improve their performance, as in Figure 1 (Cox and
Raja, 2007). The perils of such metareasoning become
quickly evident in any ambitious application, however.1
 We believe that easy problems should be solved quickly,
and that hard problems should take a bit longer. Rather
than rely on thousands of learning experiences, the learners
we describe develop considerable expertise after experi-
ence with relatively few problems. This paper recounts the
challenges posed to one learning and problem-solving ar-

Copyright © 2008, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

chitecture by three different problem domains, and how
metareasoning addresses those challenges successfully.
The first section describes the architecture and the do-
mains. The second section describes the premises that led
to the architecture’s structure. Subsequent sections explore
the impact of bounded rationality, how to assess expertise,
how to manage large bodies of heuristics to learn expertise,
and how to think less but still maintain performance.

The Architecture and the Problems
FORR (For the Right Reasons) is a learning and problem
solving architecture that models the development of exper-
tise with metareasoning (Epstein, 1994a). From its experi-
ence on a set of problems, FORR learns to solve other,
similar problems. Together, the problems it solves and
those expected to be similar to them constitute a problem
class. On any given problem, FORR seeks a sequence of
actions that solves the problem, and can explain the reason-
ing that underlies its decisions.
 FORR provides a flexible environment within which to
design and execute experiments in metareasoning. The
domain-dependent ground level in Figure 1 describes each
world state as it appears during search for a solution. The
object level re-represents and reasons about these percep-
tions, and gathers extensive data from its experience about
the nature of the current problem class. The meta-level
judges and possibly reformulates that decision-making
process based upon what it detects within the object level.
 FORR serves as a system shell. To produce a FORR-
based application, one defines a problem domain (classes
of problems that arise within it) and a set of heuristics that
advise on decision making there. We focus here on three
very different problem domains, each of which can be
solved with a sequence of actions: game playing, path find-
ing, and the solution of constraint satisfaction problems.
Each domain has its own definitions for problem, problem
class, action, and solution.
 Hoyle is a FORR-based application that learns to play 19
two-person, perfect-information, finite-board games as
well or better than the best human experts (Epstein, 2001).
For Hoyle, a problem class is a game (e.g., tic-tac-toe), and
a problem is a single playing experience. Each action is a
legal move in the game. A solution is a sequence of such
moves that achieves an ideal outcome (a win or a tie, as de-
fined by the game tree). Given the rules of a game, Hoyle

Figure 1: FORR addresses a problem. (Cox and Raja, 2007).

plays it against itself or against an external opponent and
learns to play the game better. The games in Hoyle’s reper-
toire are not as challenging as chess, but some have large
game trees (as many as several billion nodes) and the ex-
pert programs crafted to serve as Hoyle’s opponents re-
quired considerable game-specific knowledge and skill.
 Ariadne is a FORR-based application that learns to find
its way about a two-dimensional grid-based maze (Epstein,
1998). For Ariadne, a problem class is a maze generated
with a specified size and difficulty; a problem is a trip in a
given maze from an initial location to a goal, as in Figure
2. (The initial location and the goal vary from one problem
to the next.) The learner has no map, only the coordinates
of the goal and the current distance of the robot from the
nearest obstruction in four orthogonal directions, as if the
robot only “sees” certain positions on the grid. Each action
moves the robot in a straight line to any such currently
visible location. A solution is a sequence of such actions
that reaches the goal. Given its lack of information, a robot
can cycle repeatedly through the same locations. Repre-
sented as a graph, a moderately challenging 20 × 20 maze
would have 280 nodes and about 1485 edges.
 ACE (the Adaptive Constraint Engine) is a FORR-based
application that learns to solve constraint satisfaction prob-
lems (CSPs) (Epstein, Freuder and Wallace, 2005). For
ACE, a problem is an individual (binary) CSP: a set of
variables, each with an associated set of values, and a set
of constraints that restrict how pairs of variables can be
bound to values simultaneously. A problem class is a set of
CSPs with the same descriptive characterization (e.g.,
number of variables and maximum domain size).
 Structured CSPs, like those in Figure 3, can have pock-
ets of densely connected variables with very tight con-
straints. A metric that scores possible actions suggests a

dual pair of heuristics: one takes the maximum, and the
other takes the minimum. Structured problems present par-
ticular challenges for traditional solvers because the duals
of traditional heuristics often fare better there than the
original heuristics. Structured problems also are more simi-
lar to real-world problems than simple random CSPs. From
extensive data on over 100 CSP classes, we report here on
a composed class (Aardal et al., 2003) with 30 variables
and domain size 6 (630 nodes) and a geometric class
(Johnson et al., 1989b) with 50 variables and domain size
10 (1050 nodes). Problems from both classes often stumped
the best solvers at a recent CP competition.
 Each action in ACE either selects a variable or assigns a
value to a variable from its associated value set. After each
assignment, propagation infers its effect on the domains of
the as-yet-unassigned variables. If any variable is shown to
have no values consistent with the current assignments (a
wipeout), the most recent assignments are retracted chrono-
logically until every variable has some possible value. A
solution in ACE is a sequence of assignments that satisfies
all the constraints and assigns every variable a value. Such
search for a solution is NP-hard. CSPs model many of the
most difficult problems solved by AI systems, including
graph coloring, propositional satisfiability, and scheduling.
Metareasoning supports learning to search them expertly.

Foundation Assumptions
FORR is based on a set of premises that dictate its general
structure and behavior. The first set of premises addresses
the reasons that underlie decisions during search:
• Good reasons underlie intelligent actions. In FORR,
proposed domain-specific good reasons are called Advi-
sors. Input to an Advisor is the current problem state and
the available legal actions. Output from an Advisor is ad-
vice about some number of actions. For example, Hurry
advises Ariadne to take long steps in any direction, and
Material advises Hoyle to capture an opponent’s piece.
• A problem domain has many potential good reasons.
Typically, a host of Advisors can be extracted from human
experts. Hoyle and Ariadne each have several dozen; ACE
has more than 100 drawn from the constraint literature.
• Some good reasons are always correct. In FORR such
reasons are tier-1 Advisors that take priority during deci-
sion making. Their fast, accurate guidance chooses an ac-
tion or eliminates some actions from further consideration.
For example, it is always correct to make an immediately
winning move in a game, to move directly to a visible goal
in a maze, and to temporarily ignore a variable without
neighbors in the constraint graph.
• Some good decisions include more than one action. In
FORR this creates a set of tier-2 Advisors that identify and
address a subproblem with a plan, a (possibly ordered) set
of actions. For example, Ariadne’s Roundabout circum-
navigates an obstruction that lies directly between the robot
and the goal. Only one plan may be active at any point in
time. The tier-1 Advisor Enforcer supports the execution
of any active plan or terminates it for poor performance.
• Most good reasons are fallible heuristics. In FORR

 (a) (b)
Figure 3: Examples of constraint graphs for (a) composed and (b)
geometric problems (Johnson et al., 1989a). Each variable is rep-
resented as a node, and each constraint as an edge.

Figure 2: An example of Ariadne’s grid world, where a robot R
must move to the goal G. Problems used here are considerably
larger (Epstein, 1998).

such reasons are tier-3 Advisors that express preferences
for choices numerically, as strengths. For example, Ari-
adne’s Hurry assigns greater strengths to longer steps.
 The Address pseudocode in Figure 4 coordinates all
three tiers to make a decision; it is the object level in Fig-
ure 1. The next set of premises addresses how an appropri-
ate combination of reasons is assembled:
• Good reasons make different contributions on differ-
ent problem classes. For example, Ariadne’s warehouse
mazes have many objects to travel around, but its living-
room mazes have few internal obstructions. FORR evalu-
ates each tier-3 Advisor on each new problem class it en-
counters in a domain. Those that are more constructive we
call class-appropriate; the others are class-inappropriate.
For example, ACE’s heuristics are provided in dual pairs
and the program is left to sort out whether either is appro-
priate. Lines 1 and 2 in Table 1 show that duals are not
necessarily consistent on different problem classes.
• A combination of good reasons offers substantial
benefits. There is evidence for this both in people’s reli-
ance on multiple heuristics (Biswas et al., 1995; Crowley
and Siegler, 1993; Ratterman and Epstein, 1995;
Schraagen, 1993) and in programs that integrate multiple
rationales to their advantage (Keim et al., 1999). Table 1
shows how pairs (lines 3-5) of heuristics, one for variable
selection and the other for value selection, may outperform
individual heuristics (lines 1-2).
• Good combinations of reasons vary with the problem
class. Table 1 (lines 3-5) shows that pairs of Advisors suc-
cessful on one problem class may do less well on another.
• A program can learn to become an expert. In a run,
FORR addresses a sequence of problems from a class (the
learning phase) and then evaluates its performance on a

second sequence of problems (the testing phase) with
learning turned off. All of Figure 1 is active during learn-
ing, but no further directives from the metareasoning mod-
ule occur during testing. Because decisions may be non-
deterministic, performance is evaluated over a set of runs
(an experiment), as in Figure 5. The expectation is that
relatively few learning problems will suffice. For example,
ACE can learn to solve the geometric problems and the
composed problems well after experience with only 30 of
them. Table 1 shows how a mixture of heuristics learned
by ACE (line 6) can outperform both individual heuristics
and pairs of them.
 We add one more premise, on representation:
• Multiple representations enhance reasoning. Each Ad-
visor in FORR has access to any representation of events
and states from the ground level and the object level. These
representations are shared and computed at the object level
only on demand. For example, Hoyle represents a game
board linearly, as a grid, as a set of patterns, and as a set of
zones; Ariadne describes a maze in terms of gates, bases,
barriers, and several kinds of corridors; and ACE has doz-
ens of descriptions for a CSP, including many that identify
kinds of subproblems and relationships among variables,
 Other systems that rely on a mixture of heuristics com-
bine them in a variety of ways. More complex heuristics
may be reserved for the harder problems (Borrett, Tsang
and Walsh, 1996). Heuristics from a portfolio may be se-
lected to compete in parallel until one solves the problem,
or used in turn on the same problem (Gagliolo and
Schmidhuber, 2007; Gomes and Selman, 2001; Streeter,
Golovin and Smith, 2007). A system may also label its
heuristics individually for their appropriateness with
learned weights. Heuristics can then be consulted one at a
time in order of their weight (Minton et al., 1995; Nareyek,
2003) or they can vote, combining advice from each of
them on every decision (Fukunaga, 2002). When it con-
sults tier 3, FORR has its Advisors vote.

Learning with Bounded Rationality
Even under the control of parameters, a random problem
generator cannot be trusted to create uniformly difficult

Address(problem, class)
 state ← start-state(problem)
 Until problem is solved or abandoned
 decision←consult-tier-1(state, problem, class)
 unless decision
 decision ←consult-tier-2(state, problem, class)
 unless decision
 decision←consult-tier-3(state, problem, class)
 state ← apply (decision, state)

Figure 4: During search, FORR addresses three tiers of Advi-
sors in turn until a decision is made.

Experiment(domain, class, number-of-runs)
For number-of-runs
 Until learning is terminated ;learning phase
 Select problem from class
 Address(problem, class)
 Learn from the solution, if any ;metareasoning
 Until testing is terminated ;testing phase
 Select problem from class
 Address(problem, class)
Average performance across all runs

Figure 5: Pseudocode for a FORR-based experiment.

Table 1: The appropriateness of a heuristic varies with the prob-
lem class, and multiple heuristics outperform individual ones in
CSP search. Variable ordering with ddd calculates the ratio of the
number of values that a variable could be assigned to the number
of unassigned neighbors it has in the constraint graph. v1 and v2
are value-ordering heuristics. After propagation, v1 orders values
by the smallest domain size produced, and v2 orders values by the
largest product of domain sizes. Space is nodes searched; elapsed
time is in CPU seconds.
 Geometric Composed

Heuristics Space Time Solved Space Time Solved
Min ddd 258.1 3.1 98% 996.7 2.0 82%
Max ddd 4722.7 32.3 6% 529.9 1.0 90%
Min ddd+v1 199.7 3.6 98% 924.2 3.0 84%
Min ddd+v2 171.6 3.3 98% 431.1 1.5 92%
Max ddd+v2 3826.8 53.7 30% 430.6 1.4 92%
ACE mixture 146.8 5.1 100% 31.4 0.6 100%

problems in the same class. For example, the difficulty a
fixed algorithm experiences within a class of putatively
similar, randomly-generated CSPs may decrease not expo-
nentially but according to a power law, that is, be heavy-
tailed (Gomes et al., 2000). As a result, there are many
much more difficult problems within the same class.
 A reasonable response is to set some arbitrary standard
for performance, and then insist upon it. One might, for
example, allocate bounded resources (time or space) to a
solver, and learn only from solutions achieved within them.
The presumption here is that a solution that is arrived at
quickly or visits fewer states is better. Setting such bounds
is problematic, however. If they are set too low for typical
problems in the class, only the easiest among them will be
solved. Solutions will be fewer and training instances un-
trustworthy, because they have been drawn from problems
where most any decision would do. If the resource bounds
are set too high, however, long but successful searches will
provide traces of not-so-expert behavior. For example,
ACE can be given a limit on the number of nodes (partial
assignments) it may search before it abandons a problem
and moves on to the next one. Figure 6 shows the impact
of a resource limit while learning to solve the geometric
problems. A run was considered successful if solved at
least 80% of its 50 testing problems within the specified
node limit. Observe how a high (100,000) node limit pro-
duced fewer successful runs and incurred a higher search
cost than learning with a lower (5000 or 10,000) limit.
 Metareasoning can monitor the overall skill of a self-
adaptive system with bounded rationality and use it to con-
trol the learner. When the system addresses a sequence of
problems under some resource bound per problem, a
coarse but significant measure of its success is simply how
many problems it solves during its learning phase. FORR
includes the option of full restart, the ability to reinitialize
all weights to the same small value and begin again, on dif-
ferent problems from the same class (Petrovic and Epstein,
2006a). (This is different from repeated restart on the same
problem, which is indented to diversify search for a single
solution (Gomes and Sellman, 2004)). When too few prob-
lems have been solved during a learning phase, full restart
begins the entire phase over again. Under a high node limit
(e.g., 100,000 in Figure 6), full restart modulates the

heavy-tail difficulty. It abandons a run on an unusually dif-
ficult sample of problems from the class, or one where the
problems were so easy that misinformation was acquired.
The resource limit is crucial here, as Figure 6(a) indicates.
As one would expect, higher resource bounds incur a
higher learning cost, but full restart considerably modulates
that effect.

Modeling Expertise
Metareasoning permits a system to assess its performance
on an individual problem. To gauge how well a problem
solver has done, however, requires some standard of exper-
tise: an oracle, perhaps, or an expert opponent. Although
such guidance is important, it may not offer enough variety
to develop a robust learner.
 Experiments with Hoyle, for example, found that play-
ing against a perfect player (a program that always makes
an optimal move) was too narrow (Epstein, 1994b). An ex-
pert game player, after all, should hold its own against op-
ponents of any strength. When Hoyle trained against a per-
fect player, it later lost testing contests to opponents with
far less prowess —it was repeatedly flummoxed by their
errors. We experimented with many alternatives. The in-
troduction of some percentage of random decisions into an
otherwise flawless opponent drove the learner’s experience
outside the narrow realms of perfect play. Those random
moves lacked good rationales, however, and were therefore
often of low quality, not the kind of decisions Hoyle
should learn to make. Self-training, where Hoyle played
only against itself, did not always develop sufficiently
strong expertise either. Our most effective approach, lesson
and practice training, combined supervised and self-
supervised learning: Hoyle alternately played 2 contests
against a perfect player and then practiced in 7 contests
against itself. Table 2 shows the results.
 Without an external standard of expertise for a problem
class, a system can take traces of its own successes as a
model. Neither Ariadne nor ACE has an external model;
each program learns alone, and can only judge the correct-
ness of its actions from their ultimate result: a goal found
or a CSP solved. When the robot finds the goal, metarea-

Successful runs

0

1

2

3

4

5

6

7

8

9

10

5 10 50 100

Node limit (in thousands)

S
u

c
c
e
ss

fu
l

r
u

n
s

Without full restart

With full restart

Search cost

0

200

400

600

800

1000

1200

5 10 50 100

Node limit (in thousands)

N
o

d
es

 p
er

 r
u

n
 (

in
 t

h
o

u
sa

n
d

s)

Without full restart

With full restart

 (a) (b)
Figure 6: The impact of resource bounds on the geometric prob-
lems. (a) More runs in an experiment are successful with full re-
start (darker bars) and (b) fewer nodes are expanded.

Table 2: Skill after learning tic-tac-toe with 2 different models
of expertise. Lesson and practice training was better prepara-
tion for competition against opponents of different strengths at
this draw game than training against a perfect player. Hoyle
played 100 testing contests against each of 4 opponents: one
moved perfectly, the others had some percentage of random
moves among otherwise perfect play: 10% random (expert),
70% random (novice), and 100% (random).

Outcomes
Perfect
player

Lesson and
practice

Wins against an expert 12 18
Wins against a novice 59 63
Wins against random play 80 85
Draws against perfect play 100 100
Draws against an expert 93 98
Draws against a novice 80 97
Draws against random play 88 100

soning excises any closed loops from a trace of the robot’s
path, and takes the remainder as a model. Similarly, when
ACE solves a problem, metareasoning excises any assign-
ments that are subsequently retracted, and takes the re-
maining search tree as a model.
 Unfortunately, neither a loop-free path nor a retraction-
free search is likely to be ideal —there may have been a
faster way to solve the problem. The temptation is to set
some arbitrary standard for performance, and then insist
upon it. The impact of bounded rationality is mixed, how-
ever, as Table 2 warned. Instead we increase the granular-
ity of the metareasoning, as described in the next section.

Learning about Reasoning
Metareasoning permits a system to assess the performance
of its individual components. Although FORR’s structure
is a 3-tier hierarchy, most Advisors are expected to lie in
tier 3. Thus an obvious learning target in FORR is the
class-appropriateness of each individual heuristic, repre-
sented as a weight for each tier-3 Advisor. FORR learns
these weights and then uses them in tier 3’s voting. (The
relatively few Advisors in the other tiers are unweighted;
they are consulted in some pre-specified order instead.)
 Given j Advisors, a choice c is selected in tier 3 based
on both the strength s(Aj, ci, C) that each Advisor Aj ex-
presses for that choice and the weight wj of the Advisor:

!

argmax
c"choices

w j

A j "Advisors

s A j ,c,C()

Ideally, only the best Advisors should participate in deci-
sion making, and those that offer better advice should be
emphasized more. An irrelevant Advisor (e.g., Material in
tic-tac-toe) simply fails to produce any advice. The meta-
level can instruct the object level to omit such an Advisor
from computation. For the others, FORR’s metareasoning
extracts training instances from the (likely imperfect) trace
of a solved problem in the learning phase. A training in-
stance is a problem state, the available choices there, and a
decision made by the model of expertise. A positive train-
ing instance is a correct action selection; a negative train-
ing instance is an error. FORR’s weight learning then
judges the performance of Advisors on training examples.

Identifying Good Advice
Because FORR’s tier-3 Advisors express their preference
for choices by assigning them numerical strengths, a
mechanism is needed to judge whether such a set of values
is correct on the choice specified by a training instance.
FORR offers two options: top-rated and relative support.
Under top-rated, an Advisor is considered correct on a
positive training instance only if it gives the decision a
strength at least as high (low for negative training in-
stances) as any other it assigned within the set of choices.
Another way to judge correctness attends more carefully to
the nuances of variation in the metric. The relative support
rs(A, c, C) of an Advisor A for choice c in a set of available
choices C is the normalized difference between the
strength the Advisor assigned to c and the average of the

strengths the Advisor assigned to all the choices in C:

!

rs A,c,C() =
s A,c,C() " avg A,C()

avg A,C()
,avg A,C() =

s A,e,C()
e#C

$

C

Under relative support, an Advisor A is considered correct
on a training instance with decision c ∈ C if and only if
rs(A, c, C) is positive.

Reasoning about Learning
Metareasoning permits a system to assess the significance
of an individual training instance. Not all training instances
are equally important. They are likely to be drawn, as dis-
cussed above, from problems of inherently different diffi-
culty. Moreover, training instances may be of different
kinds. For example, in CSP search, a decision selects either
a variable to consider or a value to assign it. When vari-
ables are selected cleverly, propagation is particularly ef-
fective. Thus good variable selection makes value selection
easier, and therefore less significant.
 Weight learning in FORR reinforces an Advisor’s
weight with a reward (increment) or a penalty (decrement)
based on its correctness on each training instance. FORR
tallies the number of training instances on which each tier-
3 Advisor gives the correct advice. Some Advisors, such as
the fork detector in Hoyle, produce important advice, but
rarely. Thus a tally is not enough. The fraction of times
that an Advisor’s advice has been correct is a somewhat
better measure. ACE, however, required the considerably
more sophisticated metareasoning of DWL and RSWL.
 DWL (Digression-based Weight Learning) judges cor-
rectness with top-rated (Epstein, Freuder and Wallace,
2005). DWL calculates reinforcements in proportion to
problem difficulty, gauged by the resources consumed to
solve it. On training instances from relatively short solu-
tions DWL assigns larger rewards to variable-selection
Advisors than to value-selection Advisors. (DWL uses
metareasoning to estimate “relatively short” based on its
performance on earlier problems in the same learning
phase.) DWL also reinforces behavior on a negative train-
ing example in proportion to the size of the digression
(eventually abandoned search tree) it began.
 RSWL (Relative Support Weight Learning) judges cor-
rectness with relative support (Petrovic and Epstein,
2006b). RSWL reinforcements are directly proportional to
relative support, but penalties are also inversely propor-
tional to the number of choices. Two variations on RSWL
assign rewards and penalties based on their estimation of a
training instance’s difficulty. To gauge difficulty, RSWL-κ
uses κ, and RSWL-d uses search tree depth. κ is a measure
of constrainedness developed for CSP classes (Gent et al.,
1996). Current search tree depth is considerably less ex-
pensive to compute than a dynamic value for κ. RSWL-d
assumes that decisions are more difficult at the top of the
search tree. (This is a reasonable assumption, given that
every CSP has a backdoor, a set of variables after whose
consistent assignment with the constraints search becomes
extremely easy (Williams, Gomes and Selman, 2003).) The
performance of all four weight-learning algorithms is com-

pared in Table 3.
 Correct weights only compare Advisors, however; low-
weighted heuristics are still likely to give poor advice. To
identify the more class-appropriate Advisors, FORR uses
benchmark Advisors, which produce advice at random. A
benchmark Advisor does not participate in voting, but it
does receive a learned weight. After the learning phase,
metareasoning eliminates from participation any Advisor
whose weight is lower than its benchmark’s. As an added
benefit, any representation that was referenced only by the
eliminated Advisors will no longer be computed. Filtering
the Advisors in all these ways speeds decisions after learn-
ing, without decreasing performance. In ACE, for example,
the average testing decision is accelerated by about 30%.

Learning Competent Reasons
Learning on a sequence of problems applies knowledge
from one successful search to subsequent searches. The
first success increases the weights of those Advisors that
contributed to its decisions. It may, however, be quite ex-
pensive to solve any first problem at all, particularly when
the problems are hard, there are many Advisors (perhaps as
duals), and they disagree with one another. Under bounded
resources, only the easiest problems in a class may be
solved. There will be relatively few training instances and
they will all be drawn from relatively easy situations. In-
deed, on occasion a run fails because the learner has solved
no problems at all, and therefore changed no weights.
 FORR’s metareasoning therefore includes the ability to
work with random subsets of Advisors (Petrovic and Ep-
stein, 2007). For each new problem in the learning phase,
this method chooses a subset of tier-3 Advisors to consult;
if search solves that problem, FORR learns weights from it

only for that subset of Advisors. The expectation is that
eventually the subset chosen for some problem will be
dominated by class-appropriate heuristics, the problem will
be solved, the class-appropriate weights in the subset will
increase, and whenever any of those Advisors appears in a
subset for a subsequent problem it will be more likely to
influence search, making further successes more likely.
Subset size is crucial, however: it must be large enough to
expose Advisors to learning frequently, yet small enough
to speed processing and to give an otherwise minority
voice the opportunity to dominate decisions. Table 4 shows
how performance improves using random subsets with full
restart. Learning with random subsets reduces the number
of problems addressed during learning and speeds compu-
tation time on each decision. It even functions well when
we deliberately skew the initial Advisor pool with many
more class-inappropriate than class-appropriate Advisors.

Learning to Stop Learning
A self-aware system that gauges its own overall skill can
recognize the rate at which its performance improves. If it
is no longer learning anything new, it should stop learning.
Metareasoning to stop learning is implemented in FORR as
learning to stability (Epstein, Freuder and Wallace, 2005).
Under this option, FORR monitors its Advisors’ weights
across a recent time window (e.g., the last 20 problems)
and terminates a learning phase when the Advisors’
weights are no longer changing appreciably (the standard
deviation of changes in them across the window are less
than ε). Learning to stability assumes that stable weights
will remain stable; our experience over far longer learning
phases confirms this. Making a learner more responsive to
its own learning experience this way has proved successful
in all three domains: there is no change in performance,
only a reduction in the resources that would have been de-
voted to learning after the system found no further way to
improve its weights. For example, Hoyle recognizes that it
has learned all it can on simple games after 12 contests;
more difficult games require as many as 120.

Learning to Reason Less
In domains where errors are not fatal, more thinking is not
always better. (Such economy must of course be evaluated
by the risks of error it presents and the cost required to re-
cover from such errors.) Metareasoning can monitor the
traces from individual problems to reduce computation in a
variety of ways, thereby restructuring the reasoning proc-
ess itself. We discuss several such approaches here.
 One might think that a tier-3 Advisor with a particularly
high weight could be promoted to the end of the tier-1 list,
where it could provide guidance earlier and save the re-
sources otherwise directed to tiers 2 and 3. In our experi-
ence in all three domains, however, this is a dangerous
practice. When we tested it, even with an Advisor whose
weight was dramatically higher than the others, Hoyle lost
some contests against strong players, Ariadne never formu-
lated the plans that would have supported its best paths,

Table 3: Performance improves on two CSP classes after learning
with different algorithms. For 50 testing problems each, space is
nodes searched.

Learning Geometric Composed
algorithm Space Solved Space Solved

DWL 225.4 98.0% 298.5 95.4%
RSWL 237.1 98.6% 161.1 97.8%
RSWL-d 215.9 98.8% 208.0 96.6%
RSWL-κ 189.8 98.4% 218.1 96.6%

Table 4: Random subsets of 30% improve ACE’s learning per-
formance on the geometric problems with full restart, without a
statistically significantly change in testing performance. An
early failure is an unsolved problem before any solved ones.
 Random subsets
 Without With
Learning problems 44.8 36.1
Learning failures 13.7 6.4
Early learning failures 7.1 0.9
Successful runs (of 10) 10 10
Time per learning decision 0.0161 0.0106
Time per learning run 1651.6 593.6
Average nodes in testing 192.7 195.9
Solved testing problems 98.6% 96.4%

and ACE made rare, but disastrous errors that produced ex-
tremely large digressions. Simply put, a heuristic is un-
likely to be always right. That is why FORR groups them
together and relegates them to tier 3.
 Tier-3 Advisors retained after weight learning give bet-
ter than random advice, but they may not be uniformly ap-
propriate. Under prioritization, FORR partitions tier 3 after
learning. In this scenario, Advisors with the highest
weights vote first; only if there is a tie do subsequent
groups of Advisors have an opportunity to comment. The
advantage is that fewer resources are likely to be con-
sumed, since ties are relatively rare after the first subset or
two. The nature and granularity of the partition is impor-
tant, however. Because fixed-size partitions ignore natural
cutoffs, FORR’s partitioning method places tier-3 Advisors
into groups of uneven size, based on their weights. If there
are too many groups, prioritization effectively produces a
ranked list. (Ranking underperforms a weighted mixture in
all three of our domains, for every problem class we have
investigated.) Partitions of 3 to 7 subsets produce the best
results, but the number of subsets depends on the problem
class. In any case, we rarely experience more than a 10%
speedup with prioritization. Fewer Advisors make more
mistakes, and most representations are still computed, par-
ticularly the computationally intensive ones, on which the
most class-appropriate Advisors rely.
 Metareasoning can identify portions of the solution
process where different behavior is warranted. In some
domains, the last part of problem solving is more formu-
laic. Game players often have an endgame library, and play
by lookup (e.g., Chinook, (Schaeffer et al., 2005)); there is
no need for advice at that point, only rote play. The last
part of a CSP occurs after its backdoor. Metareasoning es-
timates an upper bound on the expected size of the back-
door as the maximum search depth at which it has experi-
enced a wipeout within the problem class. Under an option
called Pusher, below the maximum wipeout depth ACE
consults the single highest-weighted tier-3 variable-
selection Advisor as if it were in tier-1 (Epstein, Freuder
and Wallace, 2005). In the event of a tie, Pusher chooses a
variable lexically, bypassing tier 2 and tier 3 entirely.
Pushing generally reduces computation time by about 8%.
ACE does not, however, push value selection. Experiments
indicated that one can think less about where to search af-
ter the backdoor but that thinking more about the values to
assign there is still worthwhile.
 Fast and frugal reasoning is a form of human metarea-
soning that favors recognized choices and then breaks ties
among them with a single heuristic (Gigerenzer, Todd and
Group, 1999). For ACE, a recognized choice is one made
earlier in search (and subsequently retracted) on the same
problem. We tested several strategies (random, most re-
cently used, highest weighted) to select the single heuristic.
None ever harmed performance. Moreover, on more diffi-
cult problems, where retractions are more common, reus-
ing prior decisions with the highest weighted Advisor to
break ties accelerated decision time, despite increased er-
rors (Epstein and Ligorio, 2004).

Discussion
On difficult problems, errors in a model of expertise may
be inevitable, and training examples from the same model
may vary in their quality and significance. Nonetheless, a
self-aware system can recognize its own prowess or lack
thereof, and respond accordingly. Moreover, as we have
shown here, a self-aware system can evaluate and reorgan-
ize its components to improve its performance.
 ACE learns to solve problems in many difficult classes,
problems that stymie off-the-shelf solvers (like those in
Table 1) without the ability to monitor and modify their
own behavior. Constraint solving is a paradigm for many
kinds of difficult problems. Hoyle and Ariadne each learn
how to search a single space, a game tree or a maze, from
which all the problems in a class are drawn. ACE learns
about how to search a set of spaces, all of which are sup-
posedly alike, a considerably more difficult task.
 Much remains to be done. Hoyle learns from lost con-
tests, but Ariadne and ACE do not yet learn from failure.
(ACE can, however, learn in a problem class with both
solvable and unsolvable problems, and successfully apply
its learned knowledge to both.) There are typically very
few Advisors in tier 1; even a novice in the domain can
readily prespecify an order for them. Advisors in tier 2,
however, produce plans, and how to order them is less ob-
vious. Weight learning for tier 2 is future work. Finally, the
metareasoning described here still depends on settings for
some parameters, particularly resource limits, the restart
threshold, and random subset size. Future work includes an
investigation of the ways those values interact with one
another. Factor analysis, for example, has indicated that
many CSP heuristics produce similar advice even from
very different viewpoints (Wallace, 2006). FORR should
capitalize on that.
 Metareasoning is essential in FORR’s ability to learn to
solve problems within a given class. As it learns a combi-
nation of heuristics, FORR uses metareasoning to decide
when to abandon an unpromising learning attempt (full re-
start), when to stop learning (the stability criterion), how to
select heuristics during learning (weights and random sub-
sets), and how to prioritize heuristics. FORR also reasons
about its performance on previous problems (DWL), its
previous decisions (fast and frugal reasoning), and the rela-
tive discriminatory power of its heuristics (RSWL).

Acknowledgements
This work was supported by the National Science Founda-
tion under 9222720, IRI-9703475, IIS-0328743, and IIS-
0739122. ACE is an ongoing joint project with Eugene
Freuder and Richard Wallace. Joanna Lesniak, Tiziana
Ligorio, Xingjian Li, Esther Lock, Anton Morozov, Barry
Schiffman, and Zhijun Zhang have all made substantial
contributions to this work.

References
Aardal, K. I., S. P. M. van Hoesel, A. M. C. A. Koster, C.
Mannino and A. Sassano 2003. Models and solution tech-

niques for frequency assignment problems. 4OR: A Quar-
terly Journal of Operations Research 1(4): 261-317.
Biswas, G., S. Goldman, D. Fisher, B. Bhuva and G.
Glewwe 1995. Assessing Design Activity in Complex
CMOS Circuit Design. Cognitively Diagnostic Assessment.
Nichols, P., S. Chipman and R. Brennan. Hillsdale, NJ,
Lawrence Erlbaum: 167-188.
Borrett, J., E. P. K. Tsang and N. R. Walsh 1996. Adaptive
Constraint Satisfaction: the Quickest First Principle. In
Proc. of 12th European Conference on AI, 160-164.
Cox, M. T. and A. Raja 2007. Metareasoning: A Mani-
festo, Technical Report. , BBN Technologies.
Crowley, K. and R. S. Siegler 1993. Flexible Strategy Use
in Young Children's Tic-Tac-Toe. Cognitive Science 17(4):
531-561.
D'Andrade, R. G. 1991. Culturally Based Reasoning. Cog-
nition and Social Worlds. Gellatly, A. and D. Rogers. Ox-
ford, Clarendon Press: 795-830.
Epstein, S. L. 1994a. For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science 18(3): 479-511.
Epstein, S. L. 1994b. Toward an Ideal Trainer. Machine
Learning 15(3): 251-277.
Epstein, S. L. 1998. Pragmatic Navigation: Reactivity,
Heuristics, and Search. Artificial Intelligence 100(1-2):
275-322.
Epstein, S. L. 2001. Learning to Play Expertly: A Tutorial
on Hoyle. Machines That Learn to Play Games. Fürnkranz,
J. and M. Kubat. Huntington, NY, Nova Science: 153-178.
Epstein, S. L., E. C. Freuder and R. J. Wallace 2005.
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.
Epstein, S. L. and T. Ligorio 2004. Fast and Frugal Rea-
soning Enhances a Solver for Really Hard Problems. In
Proc. of Cognitive Science 2004, 351-356. Chicago, Law-
rence Earlbaum.
Fukunaga, A. S. 2002. Automated Discovery of Composite
SAT Variable-Selection Heuristics. In Proc. of AAAI/IAAI,
641-648.
Gagliolo, M. and J. Schmidhuber 2007. Learning dynamic
algorithm portfolios. Annals of Mathematics and Artificial
Intelligence 47(3-4): 295-328.
Gent, I. E., E. MacIntyre, P. Prosser and T. Walsh 1999.
The Constrainedness of Search. In Proc. of Thirteenth Na-
tional Conference on Artificial Intelligence, 246-252.
Gigerenzer, G., P. M. Todd and A. R. Group 1999. Simple
Heuristics that Make Us Smart. New York, Oxford Uni-
versity Press.
Gomes, C. P. and M. Sellman 2004. Streamlined Con-
straint Reasoning. In Proc. of CP-2004, 274-289. Springer.
Gomes, C. P. and B. Selman 2001. Algorithm portfolios.
Artificial Intelligence 126(1-2): 43-62.
Gomes, C. P., B. Selman, N. Crato and H. Kautz 2000.
Heavy-tailed Phenomena in Satisfiability and Constraint

Satisfaction Problems. Journal of Automated Reasoning
24: 67-100.
Johnson, D. B., C. R. Aragon, L. A. McGeooh and C.
Schevon 1989a. Optimization by Simulated Annealing: An
experimental evaluation; Part 1, Graph partitioning. Opera-
tions Research 37: 865-892.
Johnson, D. S., C. R. Aragon, L. A. McGeoch and C.
Schevon 1989b. Optimization by Simulated Annealing: An
Experimental Evaluation; Part
I, Graph Partitioning. Operations Research 37: 865-892.
Keim, G. A., N. M. Shazeer, M. L. Littman, S. Agarwal, C.
M. Cheves, J. Fitzgerald, J. Grosland, F. Jiang, S. Pollard
and K. Weinmeister 1999. PROVERB: The Probabilistic
Cruciverbalist. In Proc. of Sixteenth National Conference
on Artificial Intelligence, 710-717. Orlando, AAAI Press.
Minton, S., J. A. Allen, S. Wolfe and A. Philpot 1995. An
Overview of Learning in the Multi-TAC System. In Proc.
of First International Joint Workshop on Artificial Intelli-
gence and Operations Research, Timberline, Oregon,
USA.
Nareyek, A. 2003. Choosing Search Heuristics by Non-
stationary Reinforcement Learning. Metaheuristics: Com-
puter Decision-Making. Resende, M. G. C. and J. P.
deSousa. Boston, Kluwer: 523-544.
Petrovic, S. and S. L. Epstein 2006a. Full Restart Speeds
Learning. In Proc. of FLAIRS-2006.
Petrovic, S. and S. L. Epstein 2006b. Learning Weights for
Heuristics that Solve Constraint Problems. In Proc. of
Workshop on Learning to Search at AAAI-2006, 115-122.
Boston.
Petrovic, S. and S. L. Epstein 2007. Random Subsets Sup-
port Learning a Mixture of Heuristics. In Proc. of FLAIRS
2007, Key West, AAAI.
Ratterman, M. J. and S. L. Epstein 1995. Skilled like a Per-
son: A Comparison of Human and Computer Game Play-
ing. In Proc. of Seventeenth Annual Conference of the
Cognitive Science Society, 709-714. Pittsburgh, Lawrence
Erlbaum Associates.
Schaeffer, J., Y. Bjornsson, N. Burch, A. Kishimoto, M.
Muller, R. Lake, P. Lu and S. Sutphen 2005. Solving
Checkers. In Proc. of IJCAI-05, 292-297.
Schraagen, J. M. 1993. How Experts Solve a Novel Prob-
lem in Experimental Design. Cognitive Science 17(2): 285-
309.
Streeter, M., D. Golovin and S. F. Smith 2007. Combining
multiple heuristics online. In Proc. of AAAI-07, 1197-1203.
Wallace, R. J. 2006. Analysis of heuristic synergies. Re-
cent Advances in Constraints. Joint ERCIM/CologNet
Workshop on Constraint Solving and Constraint Logic
Programming - CSCLP 2005, LNCS 3978. Carlsson, M.,
F. Fages, B. Hnich and F. Rossi. Berlin, Springer.
Williams, R., C. Gomes and B. Selman 2003. On the Con-
nections between Heavy-tails, Backdoors, and Restarts in
Combinatorial search. In Proc. of SAT 2003.

