Visualization for Structured Constraint Satisfaction Problems

Xingjian Li* and Susan L. Epstein*?

Department of Computer Science
The Graduate Center and *Hunter College of The City University of New York

New York, NY 10065 USA
xlil@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract

Constraint satisfaction problems are mathematical models of
real-world problems. In contrast to randomly generated arti-
ficial problems, real-world problems usually have non-
random structure. Knowledge about that structure, when
identified in advance, can make search to find solutions
more effective. This paper introduces DrawCSP, a visuali-
zation program that can show both the original and the dis-
covered structure of constraint satisfaction problems.
DrawCSP provides insight into both search algorithm de-
sign and into the challenges real-world problems present.

Introduction

Constraint satisfaction is a paradigm that applies to many
challenging real-world problems, including planning and
scheduling. Traditionally, algorithms and heuristics to
solve constraint satisfaction problems (CSPs) have drawn
both inspiration and guidance from visualizations called
constraint graphs. As solvers tackle more challenging
problems, however, these visualizations become larger and
more opaque. The thesis of this paper is that, because real-
world problems have non-random structure, proper visuali-
zation can both support search algorithm design and pro-
vide insight into the challenges inherent in real-world prob-
lems. The principal results of this paper are several novel
visualizations of structured CSPs, and the exploitation of
that detected structure to improve search performance on
challenging real-world problems.

Consider, for example, the driverlog problems from the
Third International Planning Competition (Long and Fox,
2002). Each problem involves sets of drivers, trucks, loca-
tions, and packages. The goal is to deliver packages to dif-
ferent locations, and have the drivers and trucks finish at

Copyright © 2010, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

specified destinations. When cast as a CSP, a driverlog
problem can be visualized as a constraint graph. The tradi-
tional constraint graph in Figure 1(a), for example, plots
650 points for one driverlog problem along the circumfer-
ence of a circle, and includes 17447 lines, each of which
joins a pair of vertices. This picture offers little information
about the structure of the problem. Figures 1(b)-1(d) are
products of the program DrawCSP. They offer more strik-
ing and more useful visualizations.

Formally, a CSP <X, D, C> is a set of variables X, a set
of domains D (possible value sets for each of the vari-
ables), and a set of constraints C. Each constraint restricts
the simultaneous value assignment of its scope, a subset of
X. A constraint is n-ary if its scope is of size n. This paper
deals only with binary CSPs, those with constraints whose
scopes are at most of size 2. In the constraint graph G =
<V, E> for a CSP <X, D, C>, V represents the variables X,
and E represents the constraints C. Thus the driverlog
problem in Figure 1(a) has 650 variables and 17447 con-
straints.

The tightness t of a constraint is the percentage of value
tuples it excludes from the Cartesian product of the do-
mains of its scope variables. In Figure 1 darker edges rep-
resent tighter constraints. (DrawCSP actually produces
diagrams in color, where tighter edges are represented with
deeper colors. The figures in this paper have been adjusted
for maximum contrast in grayscale printing.)

The density d of a CSP is the fraction of possible con-
straints included. Although the density of the problem in
Figure 1 is less than 0.1, its many constraints mask any
structure from view, at least when the variables are ar-
ranged on a circle. To cope with this opacity, Figure 1(b)
plots the same vertices on two concentric circles, odd-
numbered vertices on the outer circle and even-numbered
vertices on the inner circle. (Variable numbers were as-
signed by the planning competition.) Figure 1(b) reveals at

(a) (b)
Figure 1. For the same driverlog CSP (a) an uninformative constraint graph plots variables on the circumference of a circle
while (b) another constraint graph reveals more of its structure. (c) The adjacency matrix of the same graph (d) Subproblems,
identified by local search, that significantly improve global search performance.

least six major, tightly-connected subproblems (darker
edges) with looser (lighter) connections between subprob-
lems.

Figure 1(c) is an alternative visualization of the same
constraint graph as an adjacency matrix. With the lower-
left corner as the origin, the x-axis and y-axis both record
variable numbers. A point plotted at (x, y) represents a con-
straint between variables numbered x and y, where x <y.
Darker points denote tighter constraints and lighter points
looser ones. In addition to the structural information that
Figure 1(b) provides, Figure 1(c) makes clear that the tight
subproblems form a secondary structure: a path. In Figure
1(c), subproblems are loosely connected only to neighbor-
ing subproblems.

Based on such observed structural knowledge, we have
designed a hybrid search algorithm. First it identifies the
densely and tightly connected subproblems (clusters)
shown circled in Figure 1(d), and then it solves the original
problem guided by this structural knowledge (Epstein and
Li, 2009b). This algorithm significantly outperforms a
state-of-the-art search heuristic on real-world and bench-
mark CSPs. Indeed, in some cases search becomes an order
of magnitude faster.

The next section of this paper provides background on
traditional CSP search algorithms and heuristics. Subse-
quent sections explain how structural knowledge can guide
search, describe the visualization program DrawCSP, and
show the structure of various problems. Finally, we dem-
onstrate improved search results with this structural
knowledge.

Search for CSP Solutions

Global search for a solution to a CSP assigns a value to
one variable at a time. Global search repeatedly tries to ex-
tend a partial instantiation, a set of value assignments, to a
full instantiation, where every variable is assigned a value.

(©) (d)

A solution to a CSP is a full instantiation that satisfies all
its constraints. During search, a future variable is one
without an assigned value in the current partial instantia-
tion. The (static) degree of a variable is the number of
neighbors its vertex has in the constraint graph. The dy-
namic degree of a variable is the number of those neigh-
bors that represent future variables.

After each new assignment, propagation removes from
the domains of the future variables any values that are in-
consistent with the current partial instantiation, thus pro-
ducing dynamic domains. When a dynamic domain be-
comes empty (a wipeout) search backtracks, that is, it re-
tracts previously assigned values and restores previously-
reduced dynamic domains. All experiments reported here
use MAC-3 propagation to maintain arc consistency (Sabin
and Freuder, 1997) and chronological backtracking.

Global search is complete because it either finds a solu-
tion to a CSP or proves that no solution exists. A problem
is labeled “solved” if search achieves either. CSP search is
usually evaluated by time (in CPU seconds) and by the
number of nodes (partial instantiations) explored.

Global search traditionally uses variable-ordering heu-
ristics to select which variable to instantiate next. Many
variable-ordering heuristics follow the fail first principle:
address first those variables for which it is difficult to find
values that lead to a solution (Haralick and Elliot, 1980).
For example, a variable with a small domain and many fu-
ture variables as neighbors is likely to be involved in a
wipeout. MinDomDeg, the most popular traditional heuris-
tic, accordingly prefers variables that minimize the ratio of
their dynamic domain size to their dynamic degree. Be-
cause MinDomDeg overlooks constraints’ tightness, how-
ever, it can perform poorly on some CSPs with special
structure, as shown below in the experimental results.

Learning can improve the quality of search heuristics
when it identifies troubled variables dynamically. One way
to do so is to assign a weight, initialized to 1, to every con-

(©)

Figure 2. Constraint graphs for a CSP from the class Comp: (a) an uninformative constraint graph (b) the actual structure of
the problem showing a large, loose central component on the right and five small but tight satellites on the left (c) the adja-
cency matrix constraint graph shows the central component at the lower left, the smaller satellites along the diagonal and, in
the upper left, the loose links from the central component to its satellites, which are not connected to one another.

straint (Boussemart et al., 2004). Whenever, through
propagation during search, a constraint causes a wipeout
on a variable in its scope, that constraint’s weight is in-
creased by 1. The variable-ordering heuristic MinDom-
Wdeg minimizes the ratio of dynamic domain size to
weighted degree (the sum of the weights on all constraints
whose scope includes the variable). As some constraints’
weights gradually increase during search, MinDomWdeg
favors variables in the scope of constraints that cause more
wipeouts. At the beginning of search, however, MinDom-
Wdeg is identical to MinDomDeg, because all weights are
1. Therefore early search guided by MinDomWdeg is just
like that guided by MinDomDeg. Because it learns, Min-
DomWdeg can eventually recover from poor initial choices

(@)

as search proceeds. Such recovery would be unnecessary,
however, if these heuristics did not ignore tightness and
structure.

Structure-guided search

A structured CSP has non-random characteristics that can
be exploited by a structure-sensitive method to outperform
a more general one. For example, a composed CSP is an
artificial problem that partitions its variables into con-
nected components: one central component connected by
constraints (links) to at least one satellite. There are also
constraints within satellites but no constraints between
them. A class of composed problems has signature

(©)

Figure 3. Foretell finds clusters in the problem shown in Figure 2. Each cluster is circled; the label x(y) denotes that it in-
cludes x variables and that it needs y additional edges to become a clique. (a) Direct output from DrawCSP, where the five
groups of clusters correspond to the five satellites (b) The nine clusters manually rearranged (c) Cluster variables are dark-

ened in the adjacency matrix.

<nk,dt>s<n’k,dt>d”t”

This specifies a central component <n,k,d,t> on n variables
with maximum domain size k, density d, and tightness t,
plus s satellites <n’k’d’t> each on n’ variables with
maximum domain size k’, density d’, and tightness t’, and
links between a satellite and the central component with
density d”” and tightness t”. For example, Figure 2 shows
an unsolvable problem in the composed class
Comp =<100,10,0.15,0.05>5<20,10,0.25,0.50>0.012, 0.05

Structure-guided search first uses a local search algo-
rithm, Foretell, to identify clusters, and then guides global
search for a solution with Focus, a cluster-oriented vari-
able-ordering heuristic (Epstein and Li, 2009a). Figure 3
shows the clusters found by Foretell for the same Comp
problem shown in Figure 2. The cluster finder Foretell was
inspired by state-of-the-art work for both speed and accu-
racy on the DIMACS maximum clique problems (Hansen,
Mladenovic and Urosevic, 2004). (A clique is a graph with
density 1, that is, it has an edge between every pair of vari-
ables.) Foretell searches for large, dense and tight subprob-

lems that either are cliques or near-cliques. (A near-clique
is a graph with density very close to 1. Note, for example,
the missing edges in the clusters of Figure 3(b).) Whereas
the maximum clique algorithm relies on variable degree,
Foretell relies on the notion of pressure. The pressure on a
variable v, given all the constraints upon it, is the probabil-
ity that when one of v’s neighbors is assigned a value, at
least one value will be excluded from v’s domain. For a
constraint with tightness t between variables V; and V, with
domain sizes D; and D,, respectively, Foretell calculates
the initial pressure on variable V; as:

((Dl -1)-D, }
_ 1 (1-t)D,-D, -
p(Vi) = degree(V,) &y, [DivD,

((1—t) D, - DZJ

Equation [1] estimates variable pressure to avoid the ex-
pense of precise calculation, with a correction to avoid bias
in favor of variables with high degrees.

v
FF

o
.

(d)

(e)

(f)

Figure 4. Examples of DrawCSP. Constraint graphs for BlackHole-4-4-e-0_ext.xml (a) with variables arranged on a single
circle or (b) arranged on two circles and (c) after manual arrangement to reveal its structure, which includes a large tree and
5 short paths of length 2. (d) BlackHole-4-4-e-0_ext.xml displayed in the adjacency matrix mode. (e) Constraint graph on
two concentric circles for a large optical network problem and (f) its adjacency matrix.

Once Foretell detects the clusters, Focus restricts search
to one cluster at a time, and uses MinDomWdeg to break
ties within that cluster. Focus selects a cluster with the
minimum ratio of dynamic domain size to original domain
size for all future variables in the cluster. This ratio dy-
namically estimates the extent to which tuples have been
eliminated as possible cluster solutions, another application
of the fail-first principle. Table 1 demonstrates that struc-
ture-guided search significantly outperforms both Min-
DomDeg and the adaptive MinDomWdeg.

Related structure-based work in CSP includes identifica-
tion and exploitation of tractable (Dechter and Pearl, 1987;
Gyssens, Jeavons and Cohen, 1994; Mackworth and
Freuder, 1985) and complex structures (Gompert and
Choueiry, 2005). Unlike clusters, however, that work ig-
nores tightness along individual constraints, the crucial dis-
tinction between the satellites and the central component in
a Comp problem.

DrawCSP, a CSP visualization program

DrawCSP is a small, portable CSP visualization program,
written in C++ with OpenGL and the OpenGL Utility
Toolkit (GLUT). DrawCSP accepts a CSP in XCSP format
(Roussel and Lecoutre, 2008), which is essentially a vari-
ant of XML. DrawCSP uses the XML parser from
(Berghen, 2009). There are two drawing modes; the graph
mode that produced Figures 2(a) and 2(b), and the adja-
cency matrix mode that produced Figure 2(c).

In the graph mode, DrawCSP variables can be plotted
either on one circle or on two concentric circles. The two-
circle arrangement sometimes displays constraints between
geometrically close variables more effectively than the
single circle arrangement, as it did in Figures 1(b) and 2(b).
The user can also manually move variables on the screen,
and variables’ coordinates can be saved to files for future
re-display. Figures 4(a-c) show a black hole CSP (Gent et
al., 2007) plotted on one circle, on two concentric circles,
and after manually rearrangement.

In the adjacency matrix mode, a constraint with scope
variables numbered x and y, x <'y, is displayed with coor-
dinates (x, y). Manual rearrangement of constraints is not
allowed in matrix mode. Although a constraint graph rep-
resents a CSP, it can be difficult to detect the actual struc-
ture when the number of constraints is large or the density
of the CSP is high. Because constraints do not overlap on
the adjacency matrix presentation, an adjacency matrix
may better clarify relationships and thereby provide more
structural information. Figure 4(d), the adjacency matrix of
the same problem shown in Figures 4(a-c), shows the prob-
lem’s structure without any manual re-arrangement. Fig-

Table 1: Structure-guided search speeds traditional heuris-
tics on 50 Comp problems by more than an order of magni-
tude. Average and standard deviation are shown for search
tree nodes and for time in CPU seconds, including time for
cluster detection. Search is restricted to 1800 seconds.
MinDomDeg fails to solve all but two instances; the other
two heuristics solve all 50 problems. Boldface denotes re-
sults that are statistically significantly better at the 95%
confidence level.

Heuristic Time Nodes

MinDomDeg 1728.16 (355.88) | 285751.97 (61368.70)
MinDomWdeg 8358 (38.96)| 12519.36 (5811.37)

Foretell + Focus 431 (241) 497.96 (324.33)

ures 4(e) and (f) are, respectively, the double-circle con-
straint graph and the adjacency matrix of a large optical
network problem with 778 variables and 12876 constraints.
No structure is visible in its constraint graph, but Figure
4(f) suggests that this problem has approximately three
long paths of variables.

DrawCSP visualizes clusters when a cluster formation
file (generated by the solver during search) is provided. If
it is in graph mode, DrawCSP draws only the clusters, with
the radius of each cluster proportional to the number of
variables it contains. The center of each cluster’s circle is
the geometric center of all the vertices it includes, with
their coordinates computed from what would have been
their single-circle locations. The geometric center is se-
lected to preserve the relative positions of the subproblems,
as presented by clusters, in the entire CSP graph. For ex-
ample, the clusters shown in Figure 1(d) closely represent
their corresponding subproblems in Figure 1(b). Supported
manual rearrangement of clusters includes translation and
rotation. In adjacency matrix mode, DrawCSP plots con-
straints that are inside clusters darker than out-of-cluster
constraints (Figure 3(c)).

Visualization and search results

The experiments reported in this section compare the state-
of-the-art learning heuristic MinDomWdeg against Foretell
with Focus, and use MinDomWdeg to break ties within
clusters. To control for the vagaries of local search, ex-
periments with Foretell are always averaged across 10 tri-
als for each problem. All experiments were run with the
constraint solver ACE (Epstein, Freuder and Wallace,
2005). On each problem, Foretell was given a short time
limit, usually less than 500 milliseconds, to find a cluster.
Foretell identified as many clusters as it could until it
could not find a cluster of size at least 3. The time that
Foretell uses to find clusters is included in the performance
measurements in Table 2.

Adjacency matrices Clusters identified by Foretell Constraint graphs

Clusters in adjacency matrices

rifap_scenell.xml

driverlogw-08c-sat_ext.xml

Figure 5. Constraint graphs, adjacency matrices and identified structures for a problem in composed-25-10-20-
1 ext.xml, and for rlfap_scenell.xml and driverlogw-08c-sat_ext.xml. For clarity, only the lower-left quarters of the
figures are shown for rifap_scenell.xml’s cluster graph, adjacency matrix and clusters within its adjacency matrix, and
for driverlogw-08c-sat_ext.xml’s adjacency matrix and clusters within its adjacency matrix.

Heuristics were compared on all the classes of composed
problems on the benchmark website (Lecoutre, 2009),
where there are 10 problems per class. A problem de-
scribed there by a-b-c denotes a central component with a
variables, b satellites of 8 variables each and c links. All
variables have domain size 10, with constraint tightness
0.150 within the central component and 0.050 on each link.
Constraint density within a satellite is always 0.786. The
upper section of Table 2 shows the results on these classes
(together with Comp). On seven classes, structure-guided
search provided an order of magnitude speedup.

The lower section of Table 2 shows the results on the
three most difficult driverlog problems and on scenell, a
Radio Link Frequency Assignment Problem (RLFAP)
(Murphey, Pardalos and Resende, 1999). An RLFAP in-
volves hundreds of radio broadcasting facilities with lim-
ited broadcasting frequencies. If the frequencies of two
geographically close broadcasting facilities are too close
numerically, their signals will interfere with one another
and communication will be distorted. Thousands of such
pairs of broadcasting facilities in France are susceptible to
interference. An RLFAP represents radio broadcasting fa-
cilities as variables, and restricts their frequencies with
constraints between pairs of variables. The domain of an
RLFAP variable is the set of radio frequencies that a facil-
ity can be assigned. A solution to an RLFAP CSP is
equivalent to the establishment of interference-free com-
munication. Scenell is the most difficult solvable RLFAP
problem.

While these pictures support improved search perform-
ance, they also leave many questions for future investiga-
tion. For example, the RLFAP problem has tight con-
straints between every pair V; and V;.; where i is an even

number. This is why the double-circle constraint graph re-
sembles a sun with rays of light. The clusters that Foretell
detects are also bipartite on tight edges. It would be inter-
esting to study whether the structure of evenly distributed
tight constraints makes this problem difficult. As another
example, the constraint graph and the cluster graph of
driverlogw-08c in Figure 5 show that a subproblem can be
covered by more than one cluster. This observation raises
questions about the possibility that some order should be
imposed on how subsets of clusters are visited during
search.

The semantics of tight subproblems (darker) in a con-
straint graph are only sometimes available for inspection.
For example, composed problems were designed and gen-
erated to mislead traditional variable-ordering heuristics,
such as MinDomDeg, to the loose central component, al-
though the actual contention is in the tight satellites. Se-
mantics for the tight subproblems in the driverlog problems
are not provided. Foretell, however, does not rely on prob-
lem semantics. It looks instead for structure that is likely to
be contentious during search. When the problem is solv-
able, clusters provide guidance for a more effective search.
When the problem is unsolvable, clusters provide an ac-
cessible description of the unsolvable core and thereby
suggest areas that might be relaxed, that is, made easier to
satisfy, so that the problem has a solution. Relaxation
could add values to the domains of core variables or accept
more value pairs for core constraints.

Conclusion

This paper presents DrawCSP, a visualization program for
constraint satisfaction problems. DrawCSP can display a

Table 2: Preference for variables in clusters improves search. Problem identifiers above the line are from (Lecoutre,
2009). For example, the first class is <25, 10, 0.67, 0.15> 10 <8, 10, 0.79, 0.50> 0.01, 0.05. Full descriptions are
available in (Lecoutre, Boussemart and Hemery, 2004). All data for Foretell with Focus are averaged across 10 runs,
and show mean and standard deviation. At the 95% confidence level, Foretell + Focus outperforms MinDomWdeg on
these problems. Order of magnitude improvements over MinDomWdeg are in boldface.

Problems d v o Number of | MinDomWdeg | Foretell + Focus Time | Foretell + Focus Nodes
instances | Time Nodes u o 1 c
25-10-20 0.667 0.50 0.010 10 2.49 670.10 0.88 0.47 192.07 149.88
25-1-80 0.667 0.65 0.010 10 0.95 308.00 0.26 0.25 94.50 71.81
75-1-80 0.216 0.65 0.133 10 2.32 595.20 0.37 0.17 181.40 21.69
25-1-2 0.667 0.65 0.010 10 1.01 553.00 0.02 0.00 41.40 1.36
25-1-25 0.667 0.65 0.125 10 091 465.70 0.04 0.02 41.60 1.29
25-1-40 0.667 0.65 0.200 10 1.10 473.80 0.07 0.02 41.50 1.21
75-1-2 0.216 0.65 0.003 10 3.33 1171.70 0.04 0.01 91.60 1.50
75-1-25 0.216 0.65 0.042 10 3.29 1084.40 0.15 0.12 91.40 1.29
75-1-40 0.216 0.65 0.067 10 297 960.90 0.15 0.14 91.30 1.28
Comp 0.150 0.50 0.120 50 83.58 12519.40 4.31 241 497.96 324.33
RLFAP scene 11 —_ - — 1 40.74 2810.00 16.00 0.07 978.00 0.00
Driverlogw 02 —_ - — 1 19.49 1862.00 6.08 2.14 507.80 22311
Driverlogw 08c —_ - — 1 101.58 4820.00 21.09 0.28 967.80 0.42
Driverlogw 09 - — — 1 634.03 15987.00 | 303.52 4.31 7847.10 153.74

CSP in two different ways. Each of them provides a direct
view of the problem that may help design structure-
oriented search algorithms for its solution. DrawCSP can
also display the structure identified by solvers like ACE in
a picture that users can easily verify and compare with the
problem’s original structure.

Visualization of identified structure supports the design
and improvement of search heuristics that exploit such
structure. The constraint graph, the adjacency matrix, and
the cluster graphs provide abstractions of the problem.
They improve users' understanding of the internal structure
and suggest possible alternative ways to model the problem
if it proves too costly to solve. The structure observed in
DrawCSP output inspired the design of a structure-guided
search algorithm for constraints solvers, one which
achieves significant performance improvement over a
state-of-the-art search heuristic on structured problems.

Acknowledgements

We thank our collaborators at the Cork Constraint Compu-
tation Centre for their continued support and involvement,
particularly Eugene Freuder and Richard Wallace. This
work was supported in part by the National Science Foun-
dation under award 11S-0811437.

References

Berghen, F. V. 2009. "Small, simple, cross-platform, free
and fast C++ XML Parser." from http://www.applied-
mathematics.net/tools/xmlParser.html.

Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004.
Boosting systematic search by weighting constraints. In
Proceedings of the Sixteenth European Conference on Ar-
tificial Intelligence (ECAI-2004), 146-150. Valencia,
Spain.

Dechter, R. and J. Pearl 1987. The cycle-cutset method for
improving search performance in Al applications. In Pro-
ceedings of Third IEEE on Al Applications, 224-230. Or-
lando, Florida.

Epstein, S. L., E. C. Freuder and R. J. Wallace 2005.
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.

Epstein, S. L. and X. Li 2009a. Cluster Graphs as Abstrac-
tions for Constraint Satisfaction Problems. The Eighth
Symposium on Abstraction, Reformulation and Approxima-
tion (SARA), Lake Arrowhead, California

Epstein, S. L. and X. Li 2009b. Search on Constraint Satis-
faction Problems with Sparse Secondary Structure. Inter-
national Symposium on Combinatorial Search, Lake Ar-
rowhead, California

Gent, 1., C. Jefferson, T. Kelsey, I. Lynce, I. Miguel, P.
Nightingale, B. M. Smith and S. A. Tarim 2007. Search in
the patience game 'Black Hole'. Al Communications 20(3):
211-226.

Gompert, J. and B. Y. Choueiry 2005. A Decomposition
Techniques For CSPs Using Maximal Independent Sets
And Its Integration With Local Search. In Proceedings of
FLAIRS-2005, 167-174. Clearwater Beach, FL, AAAI
Press.

Gyssens, M., P. G. Jeavons and D. A. Cohen 1994. De-
composing constraint satisfaction problems using database
techniques. Artificial Intelligence 66(1): 57-89.

Hansen, P., N. Mladenovic and D. Urosevic 2004. Variable
neighborhood search for the maximum clique. Discrete
Applied Mathematics 145: 117-125.

Haralick, R. M. and G. L. Elliot 1980. Increasing Tree-
Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14: 263-313.

Lecoutre, C. 2009. "Benchmarks - XML representation of
CSP instances" from
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.
Lecoutre, C., F. Boussemart and F. Hemery 2004. Back-
jump-based techniques versus conflict-directed heuristics.
In Proceedings of ICTAI, 549-558.

Long, D. and M. Fox. 2002. "The Third International Plan-
ning Competition." from
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/lo
ng03a-html/node37.html.

Mackworth, A. K. and E. C. Freuder 1985. The Complex-
ity of Some Polynomial Network Consistency Algorithms
for Constraint Satisfaction Problems. Artificial Intelligence
25(1): 65-74.

Murphey, R. A., P. M. Pardalos and M. G. C. Resende
1999. Frequency assignment problems. Handbook of Com-
binatorial Optimization. Du, D. Z. and P. M. Pardalos,
Kluwer Academic Publishers, Netherlands.

Roussel, O. and C. Lecoutre. 2008. "XCSP 2.1: a format to
represent CSP/QCSP/WCSP instances.” from
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.
Sabin, D. and E. C. Freuder 1997. Understanding and Im-
proving the MAC Algorithm. In Proceedings of Principles
and Practice of Constraint Programming (CP1997), 167-
181. Linz, Austria, Springer Verlag.

