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Abstract 
This paper advocates the use of a portfolio of representa-
tions for problem solving in complex domains. It describes 
an approach that decouples efficient storage mechanisms 
called descriptives from the decision-making procedures 
that employ them. An architecture that takes this approach 
can learn which representations are appropriate for a given 
problem class. Examples of search with a portfolio of repre-
sentations are drawn from a broad set of domains.  

Representation and cognition 
A representation formally describes objects and their rela-
tionships, and provides ways to use them. In a complex 
domain, however, there may be many plausible representa-
tions for the same information about the search space and 
an agent’s position in it. Reasoning in such a domain may 
not be well served by a single representation. This paper 
proposes a portfolio of representations instead, one that 
takes different perspectives on the same objects and high-
lights different relationships among them. Its principle re-
sult is the automated coordination of such a portfolio to 
make good decisions during problem solving.  
 At the atomic level, every representation has the same 
facts about the task at hand. In a board game, for example, 
the atomic level itemizes the location of each playing piece 
and whose turn it is to move. The power of a representation 
comes from its ability to view those facts in a way that 
supports expert reasoning. In chess, for example, pawn 
structure describes an important offensive and defensive 
mechanism. The facts, where the pawns are on the board, 
are no different. The difference lies in the aggregation of 
those facts and how that aggregation can be used. 
 To solve problems better, people often shift from one 
representation to another. A novice eventually solved the 
Tower of Hanoi expertly with her third representation 
(Anzai and Simon, 1979). A mathematician solved a gen-
eralized version of the Missionaries and Cannibals problem 
with a sequence of increasingly powerful representations 
(Amarel, 1968). More recently, graduate students in cogni-
tive science documented their own representational shifts 
while learning to play a simple game (Epstein, 2005). In 
each case, only one representation was judged ideal. 
 In some domains, however, experts maintain a portfolio 
of representations, and select an appropriate one. For ex-

ample, geneticists represent a protein as a string of nucleo-
tides, a string of amino acids, or a three-dimensional struc-
ture. A representation may sacrifice detail for clarity. 
Amino acids, for example, are shorthand for nucleotide tri-
ples (codons), but some amino acids have more than one 
codon. As a result, comparison of nucleotide strings may 
detect a mutation that would go unnoticed in amino acid 
strings. In turn, amino acid strings simplify the detection of 
repetitive patterns. Thus, different representations better 
serve different kinds of analysis. 
 Representations need not be employed one at a time. An 
expert chess player, for example, considers more than ma-
terial (the number and value of playing pieces) to select the 
next move. Control of the center of the board, possible 
forks (multiple threats), and defensive strategies are likely 
to temper the drive to conserve and amass material.  
 The premise that people employ multiple representations 
simultaneously is supported by their reported use of multi-
ple strategies to make a decision. For example, under-
graduates playing simple board games reported the use of 
as many as seven strategies (Ratterman and Epstein, 1995). 
Among them, these strategies referenced individual loca-
tions, sets of locations aligned along a straight line, forks, 
and learned visual configurations of pieces. Moreover, the 
skilled players among them reported the use of more 
strategies than did the unskilled players. Thus, multiple 
representations appear to support more expert reasoning. 
 At any given decision point, multiple representations 
may not support the same action. For example, architects 
design plans for individual subsystems such as room lay-
out, plumbing diagrams, and electrical plans (Schraagen, 
1993). Within the footprint of the structure, each specifies 
information about the same building, but ignores the oth-
ers.  When overlaid on tracing paper, these representations 
often interfere with one another — wiring may intersect 
pipelines. Nonetheless, human architects choose to create 
and then resolve these conflicts. The individual representa-
tions' contributions to the quality of the solution apparently 
outweigh the cost of coordinating them.  
 Multiple representations come at a price. They require 
more computation, some of which may be repetitive. 
Moreover, since the most appropriate representations are 
not always known in advance, a system may need to learn 
which prespecified representations to use. The next two 
sections of this paper describe how multiple representa-



tions can be organized and applied effectively to make de-
cisions. Then an architecture that automatically sifts 
through and combines a portfolio of representations is de-
tailed, along with a discussion of the challenges that arise 
with this approach.  

A portfolio of descriptives 
A descriptive is a domain-dependent storage mechanism 
intended to conserve computational resources while it sup-
ports decision making. In game playing, for example, de-
scriptives could include openings, material, and patterns 
formed by playing pieces on the board. A descriptive is 
computed only when its trigger indicates that its current 
value may be outdated. (For example, material does not 
change unless there has been a piece capture.) A descrip-
tive is only computed on demand, so costly computations 
are performed only when necessary. Furthermore, a de-
scriptive’s value is shared, not recalculated, by the deci-
sion-making procedures that reference it. 
 One example of a problem solver that learns with a port-
folio of spatial descriptives is Ariadne, a system for simu-
lated robot pathfinding (Epstein, 1998). Ariadne’s task is to 
move a robot through a two-dimensional maze without a 
map, going around obstructions from an initial location to a 
goal location. Ariadne detects visible locations around the 
robot in four orthogonal directions to the nearest obstruc-
tion (dotted Figure 1). Each decision Ariadne makes moves 
the robot in a straight line to one of those visible locations. 
Instead of a map, Ariadne has a portfolio of descriptives 
that capture the robot’s experience, shown in Figure 1.  
 Many of Ariadne’s descriptives aggregate locations. 
Corridors are width-one passageways. They include dead 
ends (a single exit), hallways (two exits), and pipes (hall-
ways whose endpoints lie in the same row or the same col-
umn). Chambers and bottles are room-like areas; the for-
mer is learned deliberately, with exploration, the latter af-

terwards. Each is a rectangular approximation of a re-
stricted space with a single known access point. Finally, a 
barrier is a linear approximation of a wall that obstructs 
movement.  
 Several other descriptives focus on properties of indi-
vidual locations. A corner is the endpoint of a pipe that af-
fords a 90° turn. A gate is a location that provides access 
between two quadrants. A base is a location that, although 
not in the direction from the robot to the goal, proved use-
ful in a path that succeeded. Each base has a frequency that 
records how often it has served this way.  
 The values of all these descriptives are learned from ex-
perience in the same maze, much the way a person learns 
her way during travel around a new town. Bases and bot-
tles are learned from traces of a successful task once it is 
completed. The others are discovered by Ariadne as the ro-
bot moves through the maze. When a descriptive’s pre-
specified condition triggers, its value is recomputed. Some 
descriptives are recomputed after each decision, others be-
fore search or when search encounters difficulties.  
 A descriptive need not include all the atomic facts about 
the current state of the world. It provides a perspective, and 
that perspective may well be heuristic. For example, the 
rectangular approximation of the chamber in Figure 1 actu-
ally misses a few locations because the robot never ven-
tured far enough to encounter them. Descriptives may also 
use other descriptives in their own computations. 
 Recall, however, that a representation is more than a 
storage mechanism; it must also provide ways to make use 
of the knowledge it encapsulates. The next section consid-
ers how to apply a descriptive to create a representation. 

Applying descriptives as advice 
The purpose of a representation is to support intelligent 
behavior on a problem class, a set of similarly character-
ized problems. Appropriate representations for a problem 
class support appropriate behavior there. In problem solv-
ing, appropriate behavior is a sequence of decisions that 
leads to a solution effectively. Thus a useful representation 
for problem solving is a descriptive used by at least one 
decision maker that consistently supports appropriate deci-
sions and opposes inappropriate ones. 
 Assume that, like the people described earlier, a problem 
solver has a set of strategies with which to make decisions. 
(We defer the issue of their control to the next section.) Let 
us call these strategies Advisors, since they give advice at a 
decision point. A descriptive provides data in a storage 
structure that an Advisor can apply. 
 One Advisor can use the same descriptive in different 
ways. For example, if the goal is not within a particular 
chamber’s rectangle, Ariadne’s heuristic Advisor Cham-
berlain discourages individual decisions that would move 
the robot into that chamber. If the robot travels there de-
spite this advice, Chamberlain also supports movement out 
of the chamber through its access point.  
 Different Advisors can also use the same descriptive. 
For example, Ariadne’s Advisor Outta Here produces a 

  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Examples of descriptives learned for one of Ari-
adne’s mazes. A single decision moves the robot to any 
visible location. Numbers denote the frequency with which 
each location was learned as a base (shown for the left side 
only). The dotted line is a sequence of moves constructed 
from bases to move the robot near the goal.  

R 

G 
A 

C 

T 

1 1 
1 

1 
1 
1 1 

1 

1 

2 
2 

2 

3 
4 

4 
6 6 

9 

R robot 
G goal 
A access 
T gate 
C corner 

obstruction 
visible location 
dead end 
hallway 

barrier 
chamber 
path 



short (at most 3-action) sequence to leave a chamber 
through its access point.  An Advisor may also employ any 
number of descriptives. Outta Here, for example, uses both 
chambers and hallways to construct its action sequences. 
 Advisors should exploit descriptives to achieve problem-
solving goals and to avoid pitfalls to solution. In some do-
mains, the way to apply a descriptive is obvious. With Ari-
adne, for example, gates, bases, and corners facilitate 
movement through the maze, that is, they make more ef-
fective decisions when properly visited. Chambers, bottles, 
and barriers, on the other hand, obstruct movement and for 
the most part should be avoided. In other domains, how-
ever, the correct way to use a descriptive may vary with the 
problem class. 
  Consider, for example, constraint satisfaction problems 
(CSPs). Many difficult problems can be represented and 
solved as CSPs, including graph coloring, Boolean satisfi-
ability, and planning and scheduling tasks. A CSP is de-
fined by a set of variables, each with its own domain of 
possible values, and a set of constraints that restricts how 
subsets of those variables can hold values simultaneously. 
A solution to a CSP assigns a value from its domain to 
each variable so that it abides by all the constraints.  
 Search for a solution to a CSP is NP-complete. Global 
search assigns a value to one variable at a time, and tests to 
make certain that no constraint has been violated before it 
proceeds to the next assignment. If an assignment violates 
a constraint, backtracking returns to an earlier decision 
point to make a different assignment. (A variety of mecha-
nisms exist to backtrack and to infer which untried values 
will fail; these are not our concern here.)  
 If a CSP is binary (has constraints only on pairs of vari-
ables), one popular way to visualize it is as a constraint 
graph, where each variable appears as a vertex and each 
constraint as an edge between the pair of variables it con-
strains. For a binary CSP, density is the fraction of possible 
constraints it includes and tightness is the average percent-
age of the possible value pairs its constraints exclude from 
the Cartesian product of the domains of their variables. 
When its density is very high or its constraints are very 
tight, a CSP is less likely to have a solution. 
 CSPs with low density and loose constraints generally 
have many solutions and are easy to solve. Very dense 
CSPs with tight constraints are also easy to “solve;” search 
quickly identifies some variable none of whose domain 
values can lead to a solution. For any given problem size 
(number of variables and domain sizes), the most difficult 
problems (those at the phase transition) have a density and 
tightness that permits few, difficult to find, solutions. To 
avoid a combinatoric explosion, difficult CSPs are ad-
dressed under a resource limit; a solver abandons a prob-
lem once it reaches that limit. 
 Unlike pathfinding, where the right ways to use a de-
scriptive are clear, in constraint solving the right ways to 
apply a descriptive depends upon the problem class. There 
is an extensive literature of heuristics to select the next 
variable and its value during CSP search. The typical heu-
ristic relies on a metric (readily implemented as a descrip-

tive), and makes a decision by maximizing or minimizing 
the value of that metric over the actions. For example, the 
degree of a variable is the number of constraints in which 
it is involved. Max Degree is a heuristic that prefers vari-
ables with the highest degree. For many CSPs, Max De-
gree is an effective Advisor. There are, however, problem 
classes of CSPs on which Max Degree fails and its oppo-
site, Min Degree, is effective.  
 In summary, the approach taken here views a representa-
tion as a descriptive plus the Advisors that reference it. The 
next section describes an architecture that supports such 
multiplicity, and learns which representations best guide 
decision making in a particular problem class.  

Coordinating multiple representations 
FORR (FOr the Right Reasons) is a cognitively plausible 
architecture for learning and problems solving (Epstein, 
1992). A FORR-based system solves a problem with a se-
quence of decisions. Each decision selects an alternative 
from among the current available actions. Decisions are 
based upon advice from Advisors that reference descrip-
tives. In this way, a FORR-based system integrates multi-
ple representations. 
 Each FORR-based system has a domain, a set of prob-
lems (e.g., mazes or CSP classes). The FORR-based sys-
tem for simulated pathfinding is Ariadne; the FORR-based 
system for constraint solving is ACE (the Adaptive Con-
straint Engine). To apply FORR to a domain, the user de-
fines any number of descriptives and Advisors. Ariadne 
has 7 descriptives referenced by 31 Advisors; ACE has 
about 50 descriptives, referenced by more than 100 Advi-
sors. Such multiplicity requires thoughtful organization. 

An organizational hierarchy 
FORR provides an organizational hierarchy of three tiers to 
coordinate all the Advisors in a domain. The user must 
place each Advisor in an appropriate tier based on its reli-
ability, speed, and the nature of its advice.  
 Advisors in tier 1 are always correct and provide their 
advice quickly. Advice from a tier-1 Advisor mandates a 
particular action or eliminates one or more actions from 
further consideration. For example, Ariadne’s tier 1 Advi-
sor Victory takes the robot directly to the goal if it is visi-
ble. Another tier-1 Advisor, No Way, prevents the robot 
from entering a dead end that does not contain the goal.   
 Within some time limit, an Advisor in tier 2 formulates 
a sequence of actions. Each tier-2 Advisor has a situation-
based execution trigger. For example, Roundabout is Ari-
adne’s tier-2 Advisor to circumnavigate obstructions. 
Roundabout triggers when the robot is aligned with the 
goal but there is an intervening obstruction. Roundabout 
uses a pair of orthogonal directions to direct the robot 
closer to the goal, searching not along the wall but in ever-
widening lateral swaths until it succeeds or its time has 
been exhausted. There is no guarantee that a tier-2 Advi-
sor’s action sequence will solve the subgoal it addresses.  



 An Advisor in tier 3 is a heuristic whose advice is a set 
of comments. Each comment addresses an available action 
and assigns it a numerical strength that expresses the Advi-
sor’s degree of support for (positive strength) or opposition 
to (negative strength) that particular action. For example, 
Giant Step is Ariadne’s tier-3 Advisor that prefers long 
moves. The further a visible location is from the robot’s 
current position, the higher Giant Step’s comment strength 
will be for that location. 
 To make a decision, a FORR-based system presents a set 
of actions to its Advisors. For example, an action in Ari-
adne is to move to a visible location, and an action in ACE 
is to select a variable or a value for assignment. The deci-
sion is made in tier 1 if any Advisor there mandates an ac-
tion or if among them they reject all but one. Otherwise, 
the remaining actions are forwarded to tier 2. If a sequence 
of actions is produced by any tier-2 Advisor, it is executed. 
Otherwise (typically about 95% of the time in with FORR), 
the tier-3 Advisors reach a decision a consensus that sup-
ports some remaining action. Advisors in tiers 1 and 2 are 
consulted in a prespecified order. In tier 3, however, every 
Advisor can comment on any number of actions at once. 
 Comments from tier-3 Advisors are combined in a proc-
ess called voting. The simplest voting method sums the 
strengths of the comments that address each action, and 
then selects the action with the highest sum. Such even-
handedness assumes that every Advisor is equally appro-
priate. For CSPs, however, that is clearly not the case. In-
stead, a FORR-based system can learn to manage tier 3. 

Learning which representations are appropriate 
An Advisor’s tier suggests how appropriate its advice is 
likely to be. Advisors in tier 1 are expected to be quick and 
correct; their advice goes unquestioned. Advisors in tier 2 
are allocated limited time and comment relatively infre-
quently. In contrast, tier 3 usually contains the vast major-
ity of the Advisors, whose comments are frequent, possibly 
incorrect, and often in conflict with one another.  
 When a FORR-based system learns which tier-3 Advi-
sors are the most appropriate for a problem class, it is also 
learning which representations (descriptives plus tier-3 
Advisors) are the most appropriate. Every tier-3 Advisor in 
ACE, for example, has a dual Advisor; one maximizes a 
descriptive metric while the other minimizes it. On some 
CSP classes, one of a dual pair is more appropriate than the 
other; on other classes neither is appropriate. (We have yet 
to encounter a class where both are.)  
 The appropriateness of an Advisor is gauged by the im-
pact of its comments on a completed task. Consider, for 
example, Hoyle, the FORR-based system that learns to 
play two-person, perfect information, finite-board games 
(Epstein, 2001). When Hoyle plays a draw game (one 
where the best possible outcome with error-free play on 
both sides is a draw), it should never lose. Advisors that 
supported decisions that led to a loss should therefore be 
penalized, while those that supported decisions that led to a 
win or draw should be rewarded. Hoyle learns after any 

contest at a game. Ariadne and ACE, however, learn only 
from solved problems, so failure to solve prevents learning. 
 Training instances to learn appropriate Advisors are 
taken from the trace of a task. They are individual deci-
sions made by tier 3 during problem-solving search. Pre-
processing the trace may clarify which decisions were suf-
ficient for solution. For Ariadne, appropriate decisions 
move the robot to the goal; preprocessing removes loops 
from the traveled path. For ACE, digressions (subtrees 
eventually abandoned by backtracking) were wasted effort, 
so preprocessing removes most of each digression, retain-
ing only the immediate actions that (mistakenly) led to it.  
 “Appropriate” is an approximation. It would be compu-
tationally exorbitant to determine precisely which move 
was responsible for the outcome of a non-trivial game. 
Similarly although the optimal path to Ariadne’s goal or 
the optimal ordering for decisions during search for a solu-
tion to a CSP could be identified, the algorithms referenced 
here do not calculate them. Instead they assume that suc-
cessful advice is worthy of attention, even emphasis. 
(Ramifications of this are considered in the next section.) 
 To assemble a portfolio of representations appropriate to 
a particular problem class, a FORR-based system learns 
weights for voting. Let s(Ai, a, C) be the comment strength 
of tier-3 Advisor Ai on action a from among a set of actions 
C, and let wi be the weight of Ai. Then the selected action is  
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Strengths and Advisors’ varying comment frequencies mo-
tivated new reinforcement learning algorithms (Petrovic 
and Epstein, 2008). In each of them, all Advisors begin 
with a uniform, small weight. Then, one training instance 
at a time, the weight of each Advisor whose set of the 
comments is judged appropriate is incremented, and that of 
each Advisor whose set of the comments is judged inap-
propriate is decremented. Each weight reflects only in-
stances on which the Advisor commented. This learning is 
expected to require only a few experiences: 20 contests at a 
game, 20 trips in the same maze, or 30 CSPs from a class. 
 Learning which representations are appropriate not only 
enables FORR to emphasize them, but also enables it to 
disregard the inappropriate ones. A benchmark Advisor 
makes randomly many comments with random strengths. 
(Each benchmark represents a category of tier-3 Advisors, 
for example, variable-selection and value-selection Advi-
sors in ACE.) Benchmark Advisors do not participate in 
decisions but they earn learned weights. After learning, any 
Advisor whose weight is lower than its respective bench-
mark is not consulted, and any descriptive referenced only 
by such Advisors is no longer computed. 
 Learning appropriate representations improves perform-
ance. For example, in one set of experiments, shown in 
Table 1, a run had ACE learn on 30 CSPs and then tested it 
on 50 more CSPs from the same phase-transition problem 
class. The first two lines compare ACE’s performance after 
learning weights for 40 Advisors to the performance of the 
best individual Advisor among them. Each experiment 



with ACE had 10 runs. Originally, DWL, the weight-
learning algorithm that produced the best single run in Ta-
ble 1, considered digression size. More recent algorithms 
have retained DWL’s testing performance and provided 
improved performance during learning. RSWL compares 
the strength of an Advisor’s comment on an action to the 
strengths of its comments on other actions. Variations 
(RSWL-d and RSWL-κ) include an estimate of the diffi-
culty of an individual training instance (Petrovic and Ep-
stein, 2008).  

Learning about representations 
Learning about representations seeks to acquire descrip-
tives’ values (e.g., board positions or maze travel) and to 
appraise procedures that make use of those values. A fun-
damental premise here is that experience can support those 
goals. This section addresses issues in learning about rep-
resentations. 

Problem uniformity 
To be consistently expert, a system should have experience 
throughout the space in which it searches. For game play-
ing, that means learning against both expert and inexpert 
competitors (Epstein, 1994). The expert opponent provides 
a model to imitate, while the inexpert opponent broadens 
the learner’s experience. Hoyle plays more reliably against 
opponents at all levels when it trains this way. Because 
Ariadne’s trips all learn about the same maze, breadth of 
experience there comes with travel. In some sense, Hoyle 
and Ariadne each explore a single set of possibilities. 
 In constraint solving, however, each problem has its own 
space, and there is only ostensible control over problem 
uniformity. Classes of CSPs not based on real-world data 
are randomly generated according to parameters 
(MacIntyre et al., 1998). Nonetheless, for any given search 
algorithm, the difficulty of problems within such a class 
has been shown to have a heavy tail (Hulubei and O'Sulli-
van, 2005). This lack of uniformity readily misleads a 
learner. Recall that ACE only learns from solved problems. 
Early in learning on a class of CSPs, ACE may encounter a 
problem so easy that most any advice will do. Learning 
may award high weights to inappropriate Advisors based 

on that solution path, so that no subsequent problems of 
even reasonable difficulty are solved.  
 This issue motivated full restart in FORR, under which 
unsuccessful learning is terminated automatically, tier-3 
weights are reinitialized, and learning begins afresh on new 
problems from the same class (Petrovic and Epstein, 2008). 
Without full restart, ACE did not always learn to solve 
small problems at the phase transition (30 variables, do-
main size 8, density 0.26, and tightness 0.34) within a 
5000-node resource limit. Within a fixed number of full re-
starts, it learned on every run, and reduced its use of com-
putational resources during learning by about 55%.  

Too many representations 
Too many tier-3 Advisors not only slow learning (while 
each one generates its advice) but also may prevent learn-
ing entirely. Initially in a difficult problem class, for exam-
ple, the contention in the advice from ACE’s equally-
weighted Advisors in dual pairs may well prevent the solu-
tion of any problem. That in turn prevents any learning. In 
our experience, even 40 tier-3 Advisors can be too many.  
 The solution implemented in FORR is to select a new 
random subset of tier-3 Advisors for each problem during 
learning (Petrovic and Epstein, 2008). Even when the full 
set is heavily biased toward inappropriate representations, 
this method eventually finds a subset that solves some 
problem, and goes on to strengthen the weights of those 
Advisors repeatedly over time. Together, full restart and 
random subsets have substantially improved learning per-
formance. On the problems of Table 1, individual decision 
time was reduced by 45%, and overall search time by 79%.  

Using a new descriptive 
As emphasized earlier, to be a representation a descriptive 
must support appropriate behavior. We offer a telling re-
cent example from ACE. The problem is RLFAP scene 11, 
the most difficult of the radio-link frequency problems for 

Table 1: Performance on 50 problems with 50 variables, 
domain size 10, density 0.38, and tightness 0.2.  
 
 Search tree size Solved 
Testing performance   
Best individual heuristic  30,024.66 84.0% 
Best single ACE run 8,559.66 98.0% 
Learning performance   
ACE (DWL) 13,708.58  91.8% 
ACE (RSWL) 13,111.44  95.2% 
ACE (RSWL-d) 11,849.00  94.6% 
ACE (RSWL-κ) 11,231.60  95.0% 

 
Figure 2: Descriptives for RLFAP scene 11. (a) Constraint 
graph with vertices on two concentric circles. (b) Con-
straints with tightness ≥ 0.3 form a bipartite graph. (c) Part 
of the cluster graph, whose darker edges also appear in (b). 
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the assignment of broadcasting frequencies to radio towers 
in France (Cabon et al., 1999). Figure 2(a) shows its con-
straint graph on 680 variables. 
 Ideally, search begins with the most difficult parts of a 
problem. Foretell is an algorithm that predicts where they 
are likely to lie in a CSP before search begins (Epstein and 
Li, 2009). Tight constraints alone, such as those in Figure 
2(b), may reveal little about a CSP’s basic nature. On the 
other hand, disjoint clusters (dense, tight subproblems) can 
provide insight. Foretell detects clusters. Figure 2(c) is part 
of a cluster graph for the same problem. It shows 40 vari-
ables in 4 significant clusters found by Foretell, and in-
cludes all edges between them in the original graph.  
 A cluster graph is only a descriptive, however. Although 
it appears to convey meaningful data, it is not clear how an 
Advisor that prioritizes variables during search ought to 
use it. How should an Advisor select a variable within a 
cluster? Should a cluster-oriented Advisor concentrate on 
one cluster at a time, or hop from one to the next at the 
whim of other Advisors? If the former, in what order 
should clusters be addressed? Must a cluster be solved in 
its entirety before search moves on to the next one?  
 The right representation must answer these procedural 
questions. Selected manually, the right representation for a 
class of CSPs with non-random structure produced an or-
der of magnitude speedup over the best individual CSP 
heuristic tested (Boussemart et al., 2004). (See Table 2.) 
For the problem in Figure 2, however, the best answers 
thus far have produced only a 12% speedup. Automatically 
learning the right answers to these questions is the subject 
of current research. A good descriptive alone is not 
enough. 

Conclusions 
In a complex domain, human experts typically use more 
than one representation. If a program is to solve problems 
there expertly, it too needs multiple representations. This 
requires both efficient storage structures and the ability to 
combine and apply them in a variety of productive ways. 
Representations have been described here in terms of de-
scriptives and Advisors.  
 The FORR architecture provides a framework within 
which several programs learn to manage a portfolio of rep-
resentations seamlessly. A set of Advisors is predicated, 
along with a set of descriptives. The most appropriate ones 
are then learned for a given problem class. After learning, 
low-weighted Advisors and descriptives unreferenced by 
high-weighted Advisors need no longer be computed. As a 
result, FORR-based programs display considerable per-
formance improvement after learning. 
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