

Integrating a Portfolio of Representations to Solve Hard Problems

Susan L. Epstein

Hunter College and The Graduate Center of The City University of New York
susan.epstein@hunter.cuny.edu

Abstract
This paper advocates the use of a portfolio of representa-
tions for problem solving in complex domains. It describes
an approach that decouples efficient storage mechanisms
called descriptives from the decision-making procedures
that employ them. An architecture that takes this approach
can learn which representations are appropriate for a given
problem class. Examples of search with a portfolio of repre-
sentations are drawn from a broad set of domains.

Representation and cognition
A representation formally describes objects and their rela-
tionships, and provides ways to use them. In a complex
domain, however, there may be many plausible representa-
tions for the same information about the search space and
an agent’s position in it. Reasoning in such a domain may
not be well served by a single representation. This paper
proposes a portfolio of representations instead, one that
takes different perspectives on the same objects and high-
lights different relationships among them. Its principle re-
sult is the automated coordination of such a portfolio to
make good decisions during problem solving.
 At the atomic level, every representation has the same
facts about the task at hand. In a board game, for example,
the atomic level itemizes the location of each playing piece
and whose turn it is to move. The power of a representation
comes from its ability to view those facts in a way that
supports expert reasoning. In chess, for example, pawn
structure describes an important offensive and defensive
mechanism. The facts, where the pawns are on the board,
are no different. The difference lies in the aggregation of
those facts and how that aggregation can be used.
 To solve problems better, people often shift from one
representation to another. A novice eventually solved the
Tower of Hanoi expertly with her third representation
(Anzai and Simon, 1979). A mathematician solved a gen-
eralized version of the Missionaries and Cannibals problem
with a sequence of increasingly powerful representations
(Amarel, 1968). More recently, graduate students in cogni-
tive science documented their own representational shifts
while learning to play a simple game (Epstein, 2005). In
each case, only one representation was judged ideal.
 In some domains, however, experts maintain a portfolio
of representations, and select an appropriate one. For ex-

ample, geneticists represent a protein as a string of nucleo-
tides, a string of amino acids, or a three-dimensional struc-
ture. A representation may sacrifice detail for clarity.
Amino acids, for example, are shorthand for nucleotide tri-
ples (codons), but some amino acids have more than one
codon. As a result, comparison of nucleotide strings may
detect a mutation that would go unnoticed in amino acid
strings. In turn, amino acid strings simplify the detection of
repetitive patterns. Thus, different representations better
serve different kinds of analysis.
 Representations need not be employed one at a time. An
expert chess player, for example, considers more than ma-
terial (the number and value of playing pieces) to select the
next move. Control of the center of the board, possible
forks (multiple threats), and defensive strategies are likely
to temper the drive to conserve and amass material.
 The premise that people employ multiple representations
simultaneously is supported by their reported use of multi-
ple strategies to make a decision. For example, under-
graduates playing simple board games reported the use of
as many as seven strategies (Ratterman and Epstein, 1995).
Among them, these strategies referenced individual loca-
tions, sets of locations aligned along a straight line, forks,
and learned visual configurations of pieces. Moreover, the
skilled players among them reported the use of more
strategies than did the unskilled players. Thus, multiple
representations appear to support more expert reasoning.
 At any given decision point, multiple representations
may not support the same action. For example, architects
design plans for individual subsystems such as room lay-
out, plumbing diagrams, and electrical plans (Schraagen,
1993). Within the footprint of the structure, each specifies
information about the same building, but ignores the oth-
ers. When overlaid on tracing paper, these representations
often interfere with one another — wiring may intersect
pipelines. Nonetheless, human architects choose to create
and then resolve these conflicts. The individual representa-
tions' contributions to the quality of the solution apparently
outweigh the cost of coordinating them.
 Multiple representations come at a price. They require
more computation, some of which may be repetitive.
Moreover, since the most appropriate representations are
not always known in advance, a system may need to learn
which prespecified representations to use. The next two
sections of this paper describe how multiple representa-

tions can be organized and applied effectively to make de-
cisions. Then an architecture that automatically sifts
through and combines a portfolio of representations is de-
tailed, along with a discussion of the challenges that arise
with this approach.

A portfolio of descriptives
A descriptive is a domain-dependent storage mechanism
intended to conserve computational resources while it sup-
ports decision making. In game playing, for example, de-
scriptives could include openings, material, and patterns
formed by playing pieces on the board. A descriptive is
computed only when its trigger indicates that its current
value may be outdated. (For example, material does not
change unless there has been a piece capture.) A descrip-
tive is only computed on demand, so costly computations
are performed only when necessary. Furthermore, a de-
scriptive’s value is shared, not recalculated, by the deci-
sion-making procedures that reference it.
 One example of a problem solver that learns with a port-
folio of spatial descriptives is Ariadne, a system for simu-
lated robot pathfinding (Epstein, 1998). Ariadne’s task is to
move a robot through a two-dimensional maze without a
map, going around obstructions from an initial location to a
goal location. Ariadne detects visible locations around the
robot in four orthogonal directions to the nearest obstruc-
tion (dotted Figure 1). Each decision Ariadne makes moves
the robot in a straight line to one of those visible locations.
Instead of a map, Ariadne has a portfolio of descriptives
that capture the robot’s experience, shown in Figure 1.
 Many of Ariadne’s descriptives aggregate locations.
Corridors are width-one passageways. They include dead
ends (a single exit), hallways (two exits), and pipes (hall-
ways whose endpoints lie in the same row or the same col-
umn). Chambers and bottles are room-like areas; the for-
mer is learned deliberately, with exploration, the latter af-

terwards. Each is a rectangular approximation of a re-
stricted space with a single known access point. Finally, a
barrier is a linear approximation of a wall that obstructs
movement.
 Several other descriptives focus on properties of indi-
vidual locations. A corner is the endpoint of a pipe that af-
fords a 90° turn. A gate is a location that provides access
between two quadrants. A base is a location that, although
not in the direction from the robot to the goal, proved use-
ful in a path that succeeded. Each base has a frequency that
records how often it has served this way.
 The values of all these descriptives are learned from ex-
perience in the same maze, much the way a person learns
her way during travel around a new town. Bases and bot-
tles are learned from traces of a successful task once it is
completed. The others are discovered by Ariadne as the ro-
bot moves through the maze. When a descriptive’s pre-
specified condition triggers, its value is recomputed. Some
descriptives are recomputed after each decision, others be-
fore search or when search encounters difficulties.
 A descriptive need not include all the atomic facts about
the current state of the world. It provides a perspective, and
that perspective may well be heuristic. For example, the
rectangular approximation of the chamber in Figure 1 actu-
ally misses a few locations because the robot never ven-
tured far enough to encounter them. Descriptives may also
use other descriptives in their own computations.
 Recall, however, that a representation is more than a
storage mechanism; it must also provide ways to make use
of the knowledge it encapsulates. The next section consid-
ers how to apply a descriptive to create a representation.

Applying descriptives as advice
The purpose of a representation is to support intelligent
behavior on a problem class, a set of similarly character-
ized problems. Appropriate representations for a problem
class support appropriate behavior there. In problem solv-
ing, appropriate behavior is a sequence of decisions that
leads to a solution effectively. Thus a useful representation
for problem solving is a descriptive used by at least one
decision maker that consistently supports appropriate deci-
sions and opposes inappropriate ones.
 Assume that, like the people described earlier, a problem
solver has a set of strategies with which to make decisions.
(We defer the issue of their control to the next section.) Let
us call these strategies Advisors, since they give advice at a
decision point. A descriptive provides data in a storage
structure that an Advisor can apply.
 One Advisor can use the same descriptive in different
ways. For example, if the goal is not within a particular
chamber’s rectangle, Ariadne’s heuristic Advisor Cham-
berlain discourages individual decisions that would move
the robot into that chamber. If the robot travels there de-
spite this advice, Chamberlain also supports movement out
of the chamber through its access point.
 Different Advisors can also use the same descriptive.
For example, Ariadne’s Advisor Outta Here produces a

Figure 1: Examples of descriptives learned for one of Ari-
adne’s mazes. A single decision moves the robot to any
visible location. Numbers denote the frequency with which
each location was learned as a base (shown for the left side
only). The dotted line is a sequence of moves constructed
from bases to move the robot near the goal.

R

G
A

C

T

1 1
1

1
1
1 1

1

1

2
2

2

3
4

4
6 6

9

R robot
G goal
A access
T gate
C corner

obstruction
visible location
dead end
hallway

barrier
chamber
path

short (at most 3-action) sequence to leave a chamber
through its access point. An Advisor may also employ any
number of descriptives. Outta Here, for example, uses both
chambers and hallways to construct its action sequences.
 Advisors should exploit descriptives to achieve problem-
solving goals and to avoid pitfalls to solution. In some do-
mains, the way to apply a descriptive is obvious. With Ari-
adne, for example, gates, bases, and corners facilitate
movement through the maze, that is, they make more ef-
fective decisions when properly visited. Chambers, bottles,
and barriers, on the other hand, obstruct movement and for
the most part should be avoided. In other domains, how-
ever, the correct way to use a descriptive may vary with the
problem class.
 Consider, for example, constraint satisfaction problems
(CSPs). Many difficult problems can be represented and
solved as CSPs, including graph coloring, Boolean satisfi-
ability, and planning and scheduling tasks. A CSP is de-
fined by a set of variables, each with its own domain of
possible values, and a set of constraints that restricts how
subsets of those variables can hold values simultaneously.
A solution to a CSP assigns a value from its domain to
each variable so that it abides by all the constraints.
 Search for a solution to a CSP is NP-complete. Global
search assigns a value to one variable at a time, and tests to
make certain that no constraint has been violated before it
proceeds to the next assignment. If an assignment violates
a constraint, backtracking returns to an earlier decision
point to make a different assignment. (A variety of mecha-
nisms exist to backtrack and to infer which untried values
will fail; these are not our concern here.)
 If a CSP is binary (has constraints only on pairs of vari-
ables), one popular way to visualize it is as a constraint
graph, where each variable appears as a vertex and each
constraint as an edge between the pair of variables it con-
strains. For a binary CSP, density is the fraction of possible
constraints it includes and tightness is the average percent-
age of the possible value pairs its constraints exclude from
the Cartesian product of the domains of their variables.
When its density is very high or its constraints are very
tight, a CSP is less likely to have a solution.
 CSPs with low density and loose constraints generally
have many solutions and are easy to solve. Very dense
CSPs with tight constraints are also easy to “solve;” search
quickly identifies some variable none of whose domain
values can lead to a solution. For any given problem size
(number of variables and domain sizes), the most difficult
problems (those at the phase transition) have a density and
tightness that permits few, difficult to find, solutions. To
avoid a combinatoric explosion, difficult CSPs are ad-
dressed under a resource limit; a solver abandons a prob-
lem once it reaches that limit.
 Unlike pathfinding, where the right ways to use a de-
scriptive are clear, in constraint solving the right ways to
apply a descriptive depends upon the problem class. There
is an extensive literature of heuristics to select the next
variable and its value during CSP search. The typical heu-
ristic relies on a metric (readily implemented as a descrip-

tive), and makes a decision by maximizing or minimizing
the value of that metric over the actions. For example, the
degree of a variable is the number of constraints in which
it is involved. Max Degree is a heuristic that prefers vari-
ables with the highest degree. For many CSPs, Max De-
gree is an effective Advisor. There are, however, problem
classes of CSPs on which Max Degree fails and its oppo-
site, Min Degree, is effective.
 In summary, the approach taken here views a representa-
tion as a descriptive plus the Advisors that reference it. The
next section describes an architecture that supports such
multiplicity, and learns which representations best guide
decision making in a particular problem class.

Coordinating multiple representations
FORR (FOr the Right Reasons) is a cognitively plausible
architecture for learning and problems solving (Epstein,
1992). A FORR-based system solves a problem with a se-
quence of decisions. Each decision selects an alternative
from among the current available actions. Decisions are
based upon advice from Advisors that reference descrip-
tives. In this way, a FORR-based system integrates multi-
ple representations.
 Each FORR-based system has a domain, a set of prob-
lems (e.g., mazes or CSP classes). The FORR-based sys-
tem for simulated pathfinding is Ariadne; the FORR-based
system for constraint solving is ACE (the Adaptive Con-
straint Engine). To apply FORR to a domain, the user de-
fines any number of descriptives and Advisors. Ariadne
has 7 descriptives referenced by 31 Advisors; ACE has
about 50 descriptives, referenced by more than 100 Advi-
sors. Such multiplicity requires thoughtful organization.

An organizational hierarchy
FORR provides an organizational hierarchy of three tiers to
coordinate all the Advisors in a domain. The user must
place each Advisor in an appropriate tier based on its reli-
ability, speed, and the nature of its advice.
 Advisors in tier 1 are always correct and provide their
advice quickly. Advice from a tier-1 Advisor mandates a
particular action or eliminates one or more actions from
further consideration. For example, Ariadne’s tier 1 Advi-
sor Victory takes the robot directly to the goal if it is visi-
ble. Another tier-1 Advisor, No Way, prevents the robot
from entering a dead end that does not contain the goal.
 Within some time limit, an Advisor in tier 2 formulates
a sequence of actions. Each tier-2 Advisor has a situation-
based execution trigger. For example, Roundabout is Ari-
adne’s tier-2 Advisor to circumnavigate obstructions.
Roundabout triggers when the robot is aligned with the
goal but there is an intervening obstruction. Roundabout
uses a pair of orthogonal directions to direct the robot
closer to the goal, searching not along the wall but in ever-
widening lateral swaths until it succeeds or its time has
been exhausted. There is no guarantee that a tier-2 Advi-
sor’s action sequence will solve the subgoal it addresses.

 An Advisor in tier 3 is a heuristic whose advice is a set
of comments. Each comment addresses an available action
and assigns it a numerical strength that expresses the Advi-
sor’s degree of support for (positive strength) or opposition
to (negative strength) that particular action. For example,
Giant Step is Ariadne’s tier-3 Advisor that prefers long
moves. The further a visible location is from the robot’s
current position, the higher Giant Step’s comment strength
will be for that location.
 To make a decision, a FORR-based system presents a set
of actions to its Advisors. For example, an action in Ari-
adne is to move to a visible location, and an action in ACE
is to select a variable or a value for assignment. The deci-
sion is made in tier 1 if any Advisor there mandates an ac-
tion or if among them they reject all but one. Otherwise,
the remaining actions are forwarded to tier 2. If a sequence
of actions is produced by any tier-2 Advisor, it is executed.
Otherwise (typically about 95% of the time in with FORR),
the tier-3 Advisors reach a decision a consensus that sup-
ports some remaining action. Advisors in tiers 1 and 2 are
consulted in a prespecified order. In tier 3, however, every
Advisor can comment on any number of actions at once.
 Comments from tier-3 Advisors are combined in a proc-
ess called voting. The simplest voting method sums the
strengths of the comments that address each action, and
then selects the action with the highest sum. Such even-
handedness assumes that every Advisor is equally appro-
priate. For CSPs, however, that is clearly not the case. In-
stead, a FORR-based system can learn to manage tier 3.

Learning which representations are appropriate
An Advisor’s tier suggests how appropriate its advice is
likely to be. Advisors in tier 1 are expected to be quick and
correct; their advice goes unquestioned. Advisors in tier 2
are allocated limited time and comment relatively infre-
quently. In contrast, tier 3 usually contains the vast major-
ity of the Advisors, whose comments are frequent, possibly
incorrect, and often in conflict with one another.
 When a FORR-based system learns which tier-3 Advi-
sors are the most appropriate for a problem class, it is also
learning which representations (descriptives plus tier-3
Advisors) are the most appropriate. Every tier-3 Advisor in
ACE, for example, has a dual Advisor; one maximizes a
descriptive metric while the other minimizes it. On some
CSP classes, one of a dual pair is more appropriate than the
other; on other classes neither is appropriate. (We have yet
to encounter a class where both are.)
 The appropriateness of an Advisor is gauged by the im-
pact of its comments on a completed task. Consider, for
example, Hoyle, the FORR-based system that learns to
play two-person, perfect information, finite-board games
(Epstein, 2001). When Hoyle plays a draw game (one
where the best possible outcome with error-free play on
both sides is a draw), it should never lose. Advisors that
supported decisions that led to a loss should therefore be
penalized, while those that supported decisions that led to a
win or draw should be rewarded. Hoyle learns after any

contest at a game. Ariadne and ACE, however, learn only
from solved problems, so failure to solve prevents learning.
 Training instances to learn appropriate Advisors are
taken from the trace of a task. They are individual deci-
sions made by tier 3 during problem-solving search. Pre-
processing the trace may clarify which decisions were suf-
ficient for solution. For Ariadne, appropriate decisions
move the robot to the goal; preprocessing removes loops
from the traveled path. For ACE, digressions (subtrees
eventually abandoned by backtracking) were wasted effort,
so preprocessing removes most of each digression, retain-
ing only the immediate actions that (mistakenly) led to it.
 “Appropriate” is an approximation. It would be compu-
tationally exorbitant to determine precisely which move
was responsible for the outcome of a non-trivial game.
Similarly although the optimal path to Ariadne’s goal or
the optimal ordering for decisions during search for a solu-
tion to a CSP could be identified, the algorithms referenced
here do not calculate them. Instead they assume that suc-
cessful advice is worthy of attention, even emphasis.
(Ramifications of this are considered in the next section.)
 To assemble a portfolio of representations appropriate to
a particular problem class, a FORR-based system learns
weights for voting. Let s(Ai, a, C) be the comment strength
of tier-3 Advisor Ai on action a from among a set of actions
C, and let wi be the weight of Ai. Then the selected action is

!

argmax
a"C

w
i
#

Ai "Advisors

$ s A
i
,a,C()

Strengths and Advisors’ varying comment frequencies mo-
tivated new reinforcement learning algorithms (Petrovic
and Epstein, 2008). In each of them, all Advisors begin
with a uniform, small weight. Then, one training instance
at a time, the weight of each Advisor whose set of the
comments is judged appropriate is incremented, and that of
each Advisor whose set of the comments is judged inap-
propriate is decremented. Each weight reflects only in-
stances on which the Advisor commented. This learning is
expected to require only a few experiences: 20 contests at a
game, 20 trips in the same maze, or 30 CSPs from a class.
 Learning which representations are appropriate not only
enables FORR to emphasize them, but also enables it to
disregard the inappropriate ones. A benchmark Advisor
makes randomly many comments with random strengths.
(Each benchmark represents a category of tier-3 Advisors,
for example, variable-selection and value-selection Advi-
sors in ACE.) Benchmark Advisors do not participate in
decisions but they earn learned weights. After learning, any
Advisor whose weight is lower than its respective bench-
mark is not consulted, and any descriptive referenced only
by such Advisors is no longer computed.
 Learning appropriate representations improves perform-
ance. For example, in one set of experiments, shown in
Table 1, a run had ACE learn on 30 CSPs and then tested it
on 50 more CSPs from the same phase-transition problem
class. The first two lines compare ACE’s performance after
learning weights for 40 Advisors to the performance of the
best individual Advisor among them. Each experiment

with ACE had 10 runs. Originally, DWL, the weight-
learning algorithm that produced the best single run in Ta-
ble 1, considered digression size. More recent algorithms
have retained DWL’s testing performance and provided
improved performance during learning. RSWL compares
the strength of an Advisor’s comment on an action to the
strengths of its comments on other actions. Variations
(RSWL-d and RSWL-κ) include an estimate of the diffi-
culty of an individual training instance (Petrovic and Ep-
stein, 2008).

Learning about representations
Learning about representations seeks to acquire descrip-
tives’ values (e.g., board positions or maze travel) and to
appraise procedures that make use of those values. A fun-
damental premise here is that experience can support those
goals. This section addresses issues in learning about rep-
resentations.

Problem uniformity
To be consistently expert, a system should have experience
throughout the space in which it searches. For game play-
ing, that means learning against both expert and inexpert
competitors (Epstein, 1994). The expert opponent provides
a model to imitate, while the inexpert opponent broadens
the learner’s experience. Hoyle plays more reliably against
opponents at all levels when it trains this way. Because
Ariadne’s trips all learn about the same maze, breadth of
experience there comes with travel. In some sense, Hoyle
and Ariadne each explore a single set of possibilities.
 In constraint solving, however, each problem has its own
space, and there is only ostensible control over problem
uniformity. Classes of CSPs not based on real-world data
are randomly generated according to parameters
(MacIntyre et al., 1998). Nonetheless, for any given search
algorithm, the difficulty of problems within such a class
has been shown to have a heavy tail (Hulubei and O'Sulli-
van, 2005). This lack of uniformity readily misleads a
learner. Recall that ACE only learns from solved problems.
Early in learning on a class of CSPs, ACE may encounter a
problem so easy that most any advice will do. Learning
may award high weights to inappropriate Advisors based

on that solution path, so that no subsequent problems of
even reasonable difficulty are solved.
 This issue motivated full restart in FORR, under which
unsuccessful learning is terminated automatically, tier-3
weights are reinitialized, and learning begins afresh on new
problems from the same class (Petrovic and Epstein, 2008).
Without full restart, ACE did not always learn to solve
small problems at the phase transition (30 variables, do-
main size 8, density 0.26, and tightness 0.34) within a
5000-node resource limit. Within a fixed number of full re-
starts, it learned on every run, and reduced its use of com-
putational resources during learning by about 55%.

Too many representations
Too many tier-3 Advisors not only slow learning (while
each one generates its advice) but also may prevent learn-
ing entirely. Initially in a difficult problem class, for exam-
ple, the contention in the advice from ACE’s equally-
weighted Advisors in dual pairs may well prevent the solu-
tion of any problem. That in turn prevents any learning. In
our experience, even 40 tier-3 Advisors can be too many.
 The solution implemented in FORR is to select a new
random subset of tier-3 Advisors for each problem during
learning (Petrovic and Epstein, 2008). Even when the full
set is heavily biased toward inappropriate representations,
this method eventually finds a subset that solves some
problem, and goes on to strengthen the weights of those
Advisors repeatedly over time. Together, full restart and
random subsets have substantially improved learning per-
formance. On the problems of Table 1, individual decision
time was reduced by 45%, and overall search time by 79%.

Using a new descriptive
As emphasized earlier, to be a representation a descriptive
must support appropriate behavior. We offer a telling re-
cent example from ACE. The problem is RLFAP scene 11,
the most difficult of the radio-link frequency problems for

Table 1: Performance on 50 problems with 50 variables,
domain size 10, density 0.38, and tightness 0.2.

 Search tree size Solved
Testing performance
Best individual heuristic 30,024.66 84.0%
Best single ACE run 8,559.66 98.0%
Learning performance
ACE (DWL) 13,708.58 91.8%
ACE (RSWL) 13,111.44 95.2%
ACE (RSWL-d) 11,849.00 94.6%
ACE (RSWL-κ) 11,231.60 95.0%

Figure 2: Descriptives for RLFAP scene 11. (a) Constraint
graph with vertices on two concentric circles. (b) Con-
straints with tightness ≥ 0.3 form a bipartite graph. (c) Part
of the cluster graph, whose darker edges also appear in (b).

 (a)

 (b)

(c)

the assignment of broadcasting frequencies to radio towers
in France (Cabon et al., 1999). Figure 2(a) shows its con-
straint graph on 680 variables.
 Ideally, search begins with the most difficult parts of a
problem. Foretell is an algorithm that predicts where they
are likely to lie in a CSP before search begins (Epstein and
Li, 2009). Tight constraints alone, such as those in Figure
2(b), may reveal little about a CSP’s basic nature. On the
other hand, disjoint clusters (dense, tight subproblems) can
provide insight. Foretell detects clusters. Figure 2(c) is part
of a cluster graph for the same problem. It shows 40 vari-
ables in 4 significant clusters found by Foretell, and in-
cludes all edges between them in the original graph.
 A cluster graph is only a descriptive, however. Although
it appears to convey meaningful data, it is not clear how an
Advisor that prioritizes variables during search ought to
use it. How should an Advisor select a variable within a
cluster? Should a cluster-oriented Advisor concentrate on
one cluster at a time, or hop from one to the next at the
whim of other Advisors? If the former, in what order
should clusters be addressed? Must a cluster be solved in
its entirety before search moves on to the next one?
 The right representation must answer these procedural
questions. Selected manually, the right representation for a
class of CSPs with non-random structure produced an or-
der of magnitude speedup over the best individual CSP
heuristic tested (Boussemart et al., 2004). (See Table 2.)
For the problem in Figure 2, however, the best answers
thus far have produced only a 12% speedup. Automatically
learning the right answers to these questions is the subject
of current research. A good descriptive alone is not
enough.

Conclusions
In a complex domain, human experts typically use more
than one representation. If a program is to solve problems
there expertly, it too needs multiple representations. This
requires both efficient storage structures and the ability to
combine and apply them in a variety of productive ways.
Representations have been described here in terms of de-
scriptives and Advisors.
 The FORR architecture provides a framework within
which several programs learn to manage a portfolio of rep-
resentations seamlessly. A set of Advisors is predicated,
along with a set of descriptives. The most appropriate ones
are then learned for a given problem class. After learning,
low-weighted Advisors and descriptives unreferenced by
high-weighted Advisors need no longer be computed. As a
result, FORR-based programs display considerable per-
formance improvement after learning.

Acknowledgements
Thanks to the FORR study group, particularly Smiljana
Petrovic and Xingjian Li. ACE is a joint project with
Eugene Freuder and Richard Wallace of the Cork Con-
straint Computation Centre. This work was supported in
part by the National Science Foundation under awards IIS-
0811437 and IIS-0739122.

References

Amarel, S. 1968. On Representations of Problems of Rea-
soning about Actions. Machine Intelligence 3. Michie, D.
Edinburgh, Edinburgh University Press: 131-171.
Anzai, Y. and H. Simon 1979. The Theory of Learning by
Doing. Psychological Review 36(2): 124-140.
Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004.
Boosting systematic search by weighting constraints. In
Proceedings of ECAI-2004, 146-149. IOS Press.
Cabon, R., S. De Givry, L. Lobjois, T. Schiex and J. P.
Warners 1999. Radio Link Frequency Assignment. Con-
straints 4: 79-89.
Epstein, S. L. 1992. Prior Knowledge Strengthens Learn-
ing to Control Search in Weak Theory Domains. Interna-
tional Journal of Intelligent Systems 7: 547-586.
Epstein, S. L. 1994. Toward an Ideal Trainer. Machine
Learning 15(3): 251-277.
Epstein, S. L. 1998. Pragmatic Navigation: Reactivity,
Heuristics, and Search. Artificial Intelligence 100(1-2):
275-322.
Epstein, S. L. 2001. Learning to Play Expertly: A Tutorial
on Hoyle. Machines That Learn to Play Games. Fürnkranz,
J. and M. Kubat. Huntington, NY, Nova Science: 153-178.
Epstein, S. L. 2005. Thinking through Diagrams: Discov-
ery in Game Playing. In Proceedings of Spatial Cognition
IV, 260-283. Springer-Verlag.
Epstein, S. L. and X. Li 2009. Cluster Graphs as Abstrac-
tions for Constraint Satisfaction Problems. In Proceedings
of SARA-09, Lake Arrowhead, CA.
Hulubei, T. and B. O'Sullivan 2005. Search heuristics and
heavy-tailed behavior. In Proceedings of CP 2005, 328-
342. Berlin, Springer-Verlag.
MacIntyre, E., P. Prosser, B. Smith and T. Walsh 1998.
Random Constraint Satisfaction: theory meets practice. In
Proceedings of CP-98, 325-339. Springer Verlag.
Petrovic, S. and S. L. Epstein 2008. Tailoring a Mixture of
Search Heuristics. Constraint Programming Letters 4: 15-
38.
Ratterman, M. J. and S. L. Epstein 1995. Skilled like a Per-
son: A Comparison of Human and Computer Game Play-
ing. In Proceedings of Seventeenth Annual Conference of
the Cognitive Science Society, 709-714. Pittsburgh, Law-
rence Erlbaum Associates.
Schraagen, J. M. 1993. How Experts Solve a Novel Prob-
lem in Experimental Design. Cognitive Science 17(2): 285-
309.

Table 2: Performance on 50 structured problems with 200
variables. Time is CPU seconds per problem.

 Time Nodes
Min Domain / Weighted Degree 83.580 12519.40
ACE with cluster Advisors 4.311 497.96

