
94 Chapter 2 Operating-System Structures

The types of requests vary according to level. The system-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, are translated into a sequence of system calls. System services
can be classified into several categories: program control, status requests, and
I/O requests. Program errors can be considered implicit requests for service.

The design of a new operating system is a major task. It is important that
the goals of the system be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

Throughout the entire design cycle, we must be careful to separate policy
decisions from implementation details (mechanisms). This separation allows
maximum flexibility if policy decisions are to be changed later.

Once an operating system is designed, it must be implemented. Oper-
ating systems today are almost always written in a systems-implementation
language or in a higher-level language. This feature improves their implemen-
tation, maintenance, and portability.

A system as large and complex as a modern operating system must
be engineered carefully. Modularity is important. Designing a system as a
sequence of layers or using a microkernel is considered a good technique. Many
operating systems now support dynamically loaded modules, which allow
adding functionality to an operating system while it is executing. Generally,
operating systems adopt a hybrid approach that combines several different
types of structures.

Debugging process and kernel failures can be accomplished through the
use of debuggers and other tools that analyze core dumps. Tools such as DTrace
analyze production systems to find bottlenecks and understand other system
behavior.

To create an operating system for a particular machine configuration, we
must perform system generation. For the computer system to begin running,
the CPU must initialize and start executing the bootstrap program in firmware.
The bootstrap can execute the operating system directly if the operating system
is also in the firmware, or it can complete a sequence in which it loads
progressively smarter programs from firmware and disk until the operating
system itself is loaded into memory and executed.

Practice Exercises

2.1 What is the purpose of system calls?

2.2 What are the five major activities of an operating system with regard to
process management?

2.3 What are the three major activities of an operating system with regard
to memory management?

2.4 What are the three major activities of an operating system with regard
to secondary-storage management?

2.5 What is the purpose of the command interpreter? Why is it usually
separate from the kernel?



Exercises 95

2.6 What system calls have to be executed by a command interpreter or shell
in order to start a new process?

2.7 What is the purpose of system programs?

2.8 What is the main advantage of the layered approach to system design?
What are the disadvantages of the layered approach?

2.9 List five services provided by an operating system, and explain how each
creates convenience for users. In which cases would it be impossible for
user-level programs to provide these services? Explain your answer.

2.10 Why do some systems store the operating system in firmware, while
others store it on disk?

2.11 How could a system be designed to allow a choice of operating systems
from which to boot? What would the bootstrap program need to do?

Exercises

2.12 The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories,
and discuss how they differ.

2.13 Describe three general methods for passing parameters to the operating
system.

2.14 Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

2.15 What are the five major activities of an operating system with regard to
file management?

2.16 What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?

2.17 Would it be possible for the user to develop a new command interpreter
using the system-call interface provided by the operating system?

2.18 What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

2.19 Why is the separation of mechanism and policy desirable?

2.20 It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

2.21 What is the main advantage of the microkernel approach to system
design? How do user programs and system services interact in a
microkernel architecture? What are the disadvantages of using the
microkernel approach?

2.22 What are the advantages of using loadable kernel modules?



96 Chapter 2 Operating-System Structures

2.23 How are iOS and Android similar? How are they different?

2.24 Explain why Java programs running on Android systems do not use the
standard Java API and virtual machine.

2.25 The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization.

Programming Problems

2.26 In Section 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the Windows or POSIX API. Be sure to include all necessary error
checking, including ensuring that the source file exists.

Once you have correctly designed and tested the program, if you
used a system that supports it, run the program using a utility that traces
system calls. Linux systems provide the strace utility, and Solaris and
Mac OS X systems use the dtrace command. As Windows systems do
not provide such features, you will have to trace through the Windows
version of this program using a debugger.

Programming Projects

Linux Kernel Modules

In this project, you will learn how to create a kernel module and load it into the
Linux kernel. The project can be completed using the Linux virtual machine
that is available with this text. Although you may use an editor to write these
C programs, you will have to use the terminal application to compile the
programs, and you will have to enter commands on the command line to
manage the modules in the kernel.

As you’ll discover, the advantage of developing kernel modules is that it
is a relatively easy method of interacting with the kernel, thus allowing you to
write programs that directly invoke kernel functions. It is important for you
to keep in mind that you are indeed writing kernel code that directly interacts
with the kernel. That normally means that any errors in the code could crash
the system! However, since you will be using a virtual machine, any failures
will at worst only require rebooting the system.

Part I—Creating Kernel Modules

The first part of this project involves following a series of steps for creating and
inserting a module into the Linux kernel.



Programming Projects 97

You can list all kernel modules that are currently loaded by entering the
command

lsmod

This command will list the current kernel modules in three columns: name,
size, and where the module is being used.

The following program (named simple.c and available with the source
code for this text) illustrates a very basic kernel module that prints appropriate
messages when the kernel module is loaded and unloaded.

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

/* This function is called when the module is loaded. */
int simple init(void)
{

printk(KERN INFO "Loading Module\n");

return 0;
}

/* This function is called when the module is removed. */
void simple exit(void)
{

printk(KERN INFO "Removing Module\n");
}

/* Macros for registering module entry and exit points. */
module init(simple init);
module exit(simple exit);

MODULE LICENSE("GPL");
MODULE DESCRIPTION("Simple Module");
MODULE AUTHOR("SGG");

The function simple init() is the module entry point, which represents
the function that is invoked when the module is loaded into the kernel.
Similarly, the simple exit() function is the module exit point—the function
that is called when the module is removed from the kernel.

The module entry point function must return an integer value, with 0
representing success and any other value representing failure. The module exit
point function returns void. Neither the module entry point nor the module
exit point is passed any parameters. The two following macros are used for
registering the module entry and exit points with the kernel:

module init()

module exit()



98 Chapter 2 Operating-System Structures

Notice how both the module entry and exit point functions make calls
to the printk() function. printk() is the kernel equivalent of printf(),
yet its output is sent to a kernel log buffer whose contents can be read by
the dmesg command. One difference between printf() and printk() is that
printk() allows us to specify a priority flag whose values are given in the
<linux/printk.h> include file. In this instance, the priority is KERN INFO,
which is defined as an informational message.

The final lines—MODULE LICENSE(), MODULE DESCRIPTION(), and MOD-
ULE AUTHOR()—represent details regarding the software license, description
of the module, and author. For our purposes, we do not depend on this
information, but we include it because it is standard practice in developing
kernel modules.

This kernel module simple.c is compiled using the Makefile accom-
panying the source code with this project. To compile the module, enter the
following on the command line:

make

The compilation produces several files. The file simple.ko represents the
compiled kernel module. The following step illustrates inserting this module
into the Linux kernel.

Loading and Removing Kernel Modules

Kernel modules are loaded using theinsmod command, which is run as follows:

sudo insmod simple.ko

To check whether the module has loaded, enter the lsmod command and search
for the module simple. Recall that the module entry point is invoked when
the module is inserted into the kernel. To check the contents of this message in
the kernel log buffer, enter the command

dmesg

You should see the message "Loading Module."
Removing the kernel module involves invoking the rmmod command

(notice that the .ko suffix is unnecessary):

sudo rmmod simple

Be sure to check with the dmesg command to ensure the module has been
removed.

Because the kernel log buffer can fill up quickly, it often makes sense to
clear the buffer periodically. This can be accomplished as follows:

sudo dmesg -c



Programming Projects 99

Part I Assignment

Proceed through the steps described above to create the kernel module and to
load and unload the module. Be sure to check the contents of the kernel log
buffer using dmesg to ensure you have properly followed the steps.

Part II—Kernel Data Structures

The second part of this project involves modifying the kernel module so that
it uses the kernel linked-list data structure.

In Section 1.10, we covered various data structures that are common in
operating systems. The Linux kernel provides several of these structures. Here,
we explore using the circular, doubly linked list that is available to kernel
developers. Much of what we discuss is available in the Linux source code—
in this instance, the include file <linux/list.h>—and we recommend that
you examine this file as you proceed through the following steps.

Initially, you must define a struct containing the elements that are to be
inserted in the linked list. The following C struct defines birthdays:

struct birthday {
int day;
int month;
int year;
struct list head list;

}

Notice the member struct list head list. The list head structure is
defined in the include file <linux/types.h>. Its intention is to embed the
linked list within the nodes that comprise the list. This list head structure is
quite simple—it merely holds two members, next and prev, that point to the
next and previous entries in the list. By embedding the linked list within the
structure, Linux makes it possible to manage the data structure with a series of
macro functions.

Inserting Elements into the Linked List

We can declare a list head object, which we use as a reference to the head of
the list by using the LIST HEAD() macro

static LIST HEAD(birthday list);

This macro defines and initializes the variable birthday list, which is of type
struct list head.



100 Chapter 2 Operating-System Structures

We create and initialize instances of struct birthday as follows:

struct birthday *person;

person = kmalloc(sizeof(*person), GFP KERNEL);
person->day = 2;
person->month= 8;
person->year = 1995;
INIT LIST HEAD(&person->list);

The kmalloc() function is the kernel equivalent of the user-level malloc()
function for allocating memory, except that kernel memory is being allocated.
(The GFP KERNEL flag indicates routine kernel memory allocation.) The macro
INIT LIST HEAD() initializes the list member in struct birthday. We can
then add this instance to the end of the linked list using the list add tail()
macro:

list add tail(&person->list, &birthday list);

Traversing the Linked List

Traversing the list involves using the list for each entry() Macro, which
accepts three parameters:

• A pointer to the structure being iterated over

• A pointer to the head of the list being iterated over

• The name of the variable containing the list head structure

The following code illustrates this macro:

struct birthday *ptr;

list for each entry(ptr, &birthday list, list) {
/* on each iteration ptr points */
/* to the next birthday struct */

}

Removing Elements from the Linked List

Removing elements from the list involves using the list del() macro, which
is passed a pointer to struct list head

list del(struct list head *element)

This removes element from the list while maintaining the structure of the
remainder of the list.

Perhaps the simplest approach for removing all elements from a
linked list is to remove each element as you traverse the list. The macro
list for each entry safe() behaves much like list for each entry()



Bibliographical Notes 101

except that it is passed an additional argument that maintains the value of the
next pointer of the item being deleted. (This is necessary for preserving the
structure of the list.) The following code example illustrates this macro:

struct birthday *ptr, *next

list for each entry safe(ptr,next,&birthday list,list) {
/* on each iteration ptr points */
/* to the next birthday struct */
list del(&ptr->list);
kfree(ptr);

}

Notice that after deleting each element, we return memory that was previously
allocated with kmalloc() back to the kernel with the call to kfree(). Careful
memory management—which includes releasing memory to prevent memory
leaks—is crucial when developing kernel-level code.

Part II Assignment

In the module entry point, create a linked list containing fivestruct birthday
elements. Traverse the linked list and output its contents to the kernel log buffer.
Invoke the dmesg command to ensure the list is properly constructed once the
kernel module has been loaded.

In the module exit point, delete the elements from the linked list and return
the free memory back to the kernel. Again, invoke the dmesg command to check
that the list has been removed once the kernel module has been unloaded.

Bibliographical Notes

[Dijkstra (1968)] advocated the layered approach to operating-system design.
[Brinch-Hansen (1970)] was an early proponent of constructing an operating
system as a kernel (or nucleus) on which more complete systems could be
built. [Tarkoma and Lagerspetz (2011)] provide an overview of various mobile
operating systems, including Android and iOS.

MS-DOS, Version 3.1, is described in [Microsoft (1986)]. Windows NT
and Windows 2000 are described by [Solomon (1998)] and [Solomon and
Russinovich (2000)]. Windows XP internals are described in [Russinovich
and Solomon (2009)]. [Hart (2005)] covers Windows systems programming
in detail. BSD UNIX is described in [McKusick et al. (1996)]. [Love (2010)] and
[Mauerer (2008)] thoroughly discuss the Linux kernel. In particular, [Love
(2010)] covers Linux kernel modules as well as kernel data structures. Several
UNIX systems—including Mach—are treated in detail in [Vahalia (1996)]. Mac
OS X is presented at http://www.apple.com/macosx and in [Singh (2007)].
Solaris is fully described in [McDougall and Mauro (2007)].

DTrace is discussed in [Gregg and Mauro (2011)]. The DTrace source code
is available at http://src.opensolaris.org/source/.


