
Practice Exercises 191

structures of the parent process. A new task is also created when the clone()
system call is made. However, rather than copying all data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone().

4.8 Summary

A thread is a flow of control within a process. A multithreaded process contains
several different flows of control within the same address space. The benefits of
multithreading include increased responsiveness to the user, resource sharing
within the process, economy, and scalability factors, such as more efficient use
of multiple processing cores.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kernel threads, because no intervention from the kernel is
required.

Three different types of models relate user and kernel threads. The many-
to-one model maps many user threads to a single kernel thread. The one-to-one
model maps each user thread to a corresponding kernel thread. The many-to-
many model multiplexes many user threads to a smaller or equal number of
kernel threads.

Most modern operating systems provide kernel support for threads. These
include Windows, Mac OS X, Linux, and Solaris.

Thread libraries provide the application programmer with an API for
creating and managing threads. Three primary thread libraries are in common
use: POSIX Pthreads, Windows threads, and Java threads.

In addition to explicitly creating threads using the API provided by a
library, we can use implicit threading, in which the creation and management
of threading is transferred to compilers and run-time libraries. Strategies for
implicit threading include thread pools, OpenMP, and Grand Central Dispatch.

Multithreaded programs introduce many challenges for programmers,
including the semantics of the fork() and exec() system calls. Other
issues include signal handling, thread cancellation, thread-local storage, and
scheduler activations.

Practice Exercises

4.1 Provide two programming examples in which multithreading provides
better performance than a single-threaded solution.

4.2 What are two differences between user-level threads and kernel-level
threads? Under what circumstances is one type better than the other?

4.3 Describe the actions taken by a kernel to context-switch between kernel-
level threads.

4.4 What resources are used when a thread is created? How do they differ
from those used when a process is created?

192 Chapter 4 Threads

4.5 Assume that an operating system maps user-level threads to the kernel
using the many-to-many model and that the mapping is done through
LWPs. Furthermore, the system allows developers to create real-time
threads for use in real-time systems. Is it necessary to bind a real-time
thread to an LWP? Explain.

Exercises

4.6 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

4.7 Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

4.8 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

4.9 Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system? Explain.

4.10 In Chapter 3, we discussed Google’s Chrome browser and its practice
of opening each new website in a separate process. Would the same
benefits have been achieved if instead Chrome had been designed to
open each new website in a separate thread? Explain.

4.11 Is it possible to have concurrency but not parallelism? Explain.

4.12 Using Amdahl’s Law, calculate the speedup gain of an application that
has a 60 percent parallel component for (a) two processing cores and (b)
four processing cores.

4.13 Determine if the following problems exhibit task or data parallelism:

• The multithreaded statistical program described in Exercise 4.21

• The multithreaded Sudoku validator described in Project 1 in this
chapter

• The multithreaded sorting program described in Project 2 in this
chapter

• The multithreaded web server described in Section 4.1

4.14 A system with two dual-core processors has four processors available
for scheduling. A CPU-intensive application is running on this system.
All input is performed at program start-up, when a single file must
be opened. Similarly, all output is performed just before the program

Exercises 193

terminates, when the program results must be written to a single
file. Between startup and termination, the program is entirely CPU-
bound. Your task is to improve the performance of this application
by multithreading it. The application runs on a system that uses the
one-to-one threading model (each user thread maps to a kernel thread).

• How many threads will you create to perform the input and output?
Explain.

• How many threads will you create for the CPU-intensive portion of
the application? Explain.

4.15 Consider the following code segment:

pid t pid;

pid = fork();
if (pid == 0) { /* child process */

fork();
thread create(. . .);

}
fork();

a. How many unique processes are created?

b. How many unique threads are created?

4.16 As described in Section 4.7.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending on the
set of flags passed to the clone() system call. However, other operating
systems, such as Windows, treat processes and threads differently.
Typically, such systems use a notation in which the data structure for
a process contains pointers to the separate threads belonging to the
process. Contrast these two approaches for modeling processes and
threads within the kernel.

4.17 The program shown in Figure 4.16 uses the Pthreads API. What would
be the output from the program at LINE C and LINE P?

4.18 Consider a multicore system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be greater than the number of processing cores
in the system. Discuss the performance implications of the following
scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processing cores.

b. The number of kernel threads allocated to the program is equal to
the number of processing cores.

c. The number of kernel threads allocated to the program is greater
than the number of processing cores but less than the number of
user-level threads.

194 Chapter 4 Threads

#include <pthread.h>
#include <stdio.h>

#include <types.h>

int value = 0;
void *runner(void *param); /* the thread */

int main(int argc, char *argv[])
{
pid t pid;
pthread t tid;
pthread attr t attr;

pid = fork();

if (pid == 0) { /* child process */
pthread attr init(&attr);
pthread create(&tid,&attr,runner,NULL);
pthread join(tid,NULL);
printf("CHILD: value = %d",value); /* LINE C */

}
else if (pid > 0) { /* parent process */

wait(NULL);
printf("PARENT: value = %d",value); /* LINE P */

}
}

void *runner(void *param) {
value = 5;
pthread exit(0);

}

Figure 4.16 C program for Exercise 4.17.

4.19 Pthreads provides an API for managing thread cancellation. The
pthread setcancelstate() function is used to set the cancellation
state. Its prototype appears as follows:

pthread setcancelstate(int state, int *oldstate)

The two possible values for the state are PTHREAD CANCEL ENABLE and
PTHREAD CANCEL DISABLE.

Using the code segment shown in Figure 4.17, provide examples of
two operations that would be suitable to perform between the calls to
disable and enable thread cancellation.

Programming Problems 195

int oldstate;

pthread setcancelstate(PTHREAD CANCEL DISABLE, &oldstate);

/* What operations would be performed here? */

pthread setcancelstate(PTHREAD CANCEL ENABLE, &oldstate);

Figure 4.17 C program for Exercise 4.19.

Programming Problems

4.20 Modify programming problem Exercise 3.20 from Chapter 3, which asks
you to design a pid manager. This modification will consist of writing
a multithreaded program that tests your solution to Exercise 3.20. You
will create a number of threads—for example, 100—and each thread will
request a pid, sleep for a random period of time, and then release the pid.
(Sleeping for a random period of time approximates the typical pid usage
in which a pid is assigned to a new process, the process executes and
then terminates, and the pid is released on the process’s termination.) On
UNIX and Linux systems, sleeping is accomplished through the sleep()
function, which is passed an integer value representing the number of
seconds to sleep. This problem will be modified in Chapter 5.

4.21 Write a multithreaded program that calculates various statistical values
for a list of numbers. This program will be passed a series of numbers on
the command line and will then create three separate worker threads.
One thread will determine the average of the numbers, the second
will determine the maximum value, and the third will determine the
minimum value. For example, suppose your program is passed the
integers

90 81 78 95 79 72 85

The program will report

The average value is 82
The minimum value is 72
The maximum value is 95

The variables representing the average, minimum, and maximum values
will be stored globally. The worker threads will set these values, and the
parent thread will output the values once the workers have exited. (We
could obviously expand this program by creating additional threads
that determine other statistical values, such as median and standard
deviation.)

4.22 An interesting way of calculating ! is to use a technique known as Monte
Carlo, which involves randomization. This technique works as follows:
Suppose you have a circle inscribed within a square, as shown in Figure

