
Practice Exercises 449

Kernel processes typically require memory to be allocated using pages
that are physically contiguous. The buddy system allocates memory to kernel
processes in units sized according to a power of 2, which often results in
fragmentation. Slab allocators assign kernel data structures to caches associated
with slabs, which are made up of one or more physically contiguous pages.
With slab allocation, no memory is wasted due to fragmentation, and memory
requests can be satisfied quickly.

In addition to requiring us to solve the major problems of page replacement
and frame allocation, the proper design of a paging system requires that
we consider prepaging, page size, TLB reach, inverted page tables, program
structure, I/O interlock and page locking, and other issues.

Practice Exercises

9.1 Under what circumstances do page faults occur? Describe the actions
taken by the operating system when a page fault occurs.

9.2 Assume that you have a page-reference string for a process with m
frames (initially all empty). The page-reference string has length p, and
n distinct page numbers occur in it. Answer these questions for any
page-replacement algorithms:

a. What is a lower bound on the number of page faults?

b. What is an upper bound on the number of page faults?

9.3 Consider the page table shown in Figure 9.30 for a system with 12-bit
virtual and physical addresses and with 256-byte pages. The list of free
page frames is D, E , F (that is, D is at the head of the list, E is second,
and F is last).

Page Page Frame

0

1

2

3

4

5

–

2

C

A

–

4

6 3

7 –

8 B

9 0

Figure 9.30 Page table for Exercise 9.3.



450 Chapter 9 Virtual Memory

Convert the following virtual addresses to their equivalent physical
addresses in hexadecimal. All numbers are given in hexadecimal. (A
dash for a page frame indicates that the page is not in memory.)

• 9EF

• 111

• 700

• 0FF

9.4 Consider the following page-replacement algorithms. Rank these algo-
rithms on a five-point scale from “bad” to “perfect” according to their
page-fault rate. Separate those algorithms that suffer from Belady’s
anomaly from those that do not.

a. LRU replacement

b. FIFO replacement

c. Optimal replacement

d. Second-chance replacement

9.5 Discuss the hardware support required to support demand paging.

9.6 An operating system supports a paged virtual memory. The central
processor has a cycle time of 1 microsecond. It costs an additional 1
microsecond to access a page other than the current one. Pages have 1,000
words, and the paging device is a drum that rotates at 3,000 revolutions
per minute and transfers 1 million words per second. The following
statistical measurements were obtained from the system:

• One percent of all instructions executed accessed a page other than
the current page.

• Of the instructions that accessed another page, 80 percent accessed
a page already in memory.

• When a new page was required, the replaced page was modified 50
percent of the time.

Calculate the effective instruction time on this system, assuming that the
system is running one process only and that the processor is idle during
drum transfers.

9.7 Consider the two-dimensional array A:

int A[][] = new int[100][100];

where A[0][0] is at location 200 in a paged memory system with pages
of size 200. A small process that manipulates the matrix resides in page
0 (locations 0 to 199). Thus, every instruction fetch will be from page 0.

For three page frames, how many page faults are generated by the
following array-initialization loops? Use LRU replacement, and assume



Practice Exercises 451

that page frame 1 contains the process and the other two are initially
empty.

a. for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)

A[i][j] = 0;

b. for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)

A[i][j] = 0;

9.8 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement
algorithms, assuming one, two, three, four, five, six, and seven frames?
Remember that all frames are initially empty, so your first unique pages
will cost one fault each.

• LRU replacement

• FIFO replacement

• Optimal replacement

9.9 Suppose that you want to use a paging algorithm that requires a reference
bit (such as second-chance replacement or working-set model), but
the hardware does not provide one. Sketch how you could simulate a
reference bit even if one were not provided by the hardware, or explain
why it is not possible to do so. If it is possible, calculate what the cost
would be.

9.10 You have devised a new page-replacement algorithm that you think may
be optimal. In some contorted test cases, Belady’s anomaly occurs. Is the
new algorithm optimal? Explain your answer.

9.11 Segmentation is similar to paging but uses variable-sized “pages.” Define
two segment-replacement algorithms, one based on the FIFO page-
replacement scheme and the other on the LRU page-replacement scheme.
Remember that since segments are not the same size, the segment that
is chosen for replacement may be too small to leave enough consecutive
locations for the needed segment. Consider strategies for systems where
segments cannot be relocated and strategies for systems where they can.

9.12 Consider a demand-paged computer system where the degree of mul-
tiprogramming is currently fixed at four. The system was recently
measured to determine utilization of the CPU and the paging disk. Three
alternative results are shown below. For each case, what is happening?
Can the degree of multiprogramming be increased to increase the CPU
utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent

b. CPU utilization 87 percent; disk utilization 3 percent

c. CPU utilization 13 percent; disk utilization 3 percent



452 Chapter 9 Virtual Memory

9.13 We have an operating system for a machine that uses base and limit
registers, but we have modified the machine to provide a page table.
Can the page tables be set up to simulate base and limit registers? How
can they be, or why can they not be?

Exercises

9.14 Assume that a program has just referenced an address in virtual memory.
Describe a scenario in which each of the following can occur. (If no such
scenario can occur, explain why.)

• TLB miss with no page fault

• TLB miss and page fault

• TLB hit and no page fault

• TLB hit and page fault

9.15 A simplified view of thread states is Ready, Running, and Blocked, where
a thread is either ready and waiting to be scheduled, is running on the
processor, or is blocked (for example, waiting for I/O). This is illustrated
in Figure 9.31. Assuming a thread is in the Running state, answer the
following questions, and explain your answer:

a. Will the thread change state if it incurs a page fault? If so, to what
state will it change?

b. Will the thread change state if it generates a TLB miss that is resolved
in the page table? If so, to what state will it change?

c. Will the thread change state if an address reference is resolved in
the page table? If so, to what state will it change?

9.16 Consider a system that uses pure demand paging.

a. When a process first starts execution, how would you characterize
the page-fault rate?

b. Once the working set for a process is loaded into memory, how
would you characterize the page-fault rate?

Ready

Blocked Running

Figure 9.31 Thread state diagram for Exercise 9.15.



Exercises 453

c. Assume that a process changes its locality and the size of the new
working set is too large to be stored in available free memory.
Identify some options system designers could choose from to
handle this situation.

9.17 What is the copy-on-write feature, and under what circumstances is its
use beneficial? What hardware support is required to implement this
feature?

9.18 A certain computer provides its users with a virtual memory space of
232 bytes. The computer has 222 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4,096 bytes.
A user process generates the virtual address 11123456. Explain how
the system establishes the corresponding physical location. Distinguish
between software and hardware operations.

9.19 Assume that we have a demand-paged memory. The page table is held in
registers. It takes 8 milliseconds to service a page fault if an empty frame
is available or if the replaced page is not modified and 20 milliseconds if
the replaced page is modified. Memory-access time is 100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the
time. What is the maximum acceptable page-fault rate for an effective
access time of no more than 200 nanoseconds?

9.20 When a page fault occurs, the process requesting the page must block
while waiting for the page to be brought from disk into physical memory.
Assume that there exists a process with five user-level threads and that
the mapping of user threads to kernel threads is one to one. If one user
thread incurs a page fault while accessing its stack, would the other
user threads belonging to the same process also be affected by the page
fault—that is, would they also have to wait for the faulting page to be
brought into memory? Explain.

9.21 Consider the following page reference string:

7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0 , 1.

Assuming demand paging with three frames, how many page faults
would occur for the following replacement algorithms?

• LRU replacement

• FIFO replacement

• Optimal replacement

9.22 The page table shown in Figure 9.32 is for a system with 16-bit virtual
and physical addresses and with 4,096-byte pages. The reference bit is
set to 1 when the page has been referenced. Periodically, a thread zeroes
out all values of the reference bit. A dash for a page frame indicates
the page is not in memory. The page-replacement algorithm is localized
LRU, and all numbers are provided in decimal.

a. Convert the following virtual addresses (in hexadecimal) to the
equivalent physical addresses. You may provide answers in either



454 Chapter 9 Virtual Memory

Page Page Frame Reference Bit

0 9 0
1 1 0
2 14 0
3 10 0
4 – 0
5 13 0
6 8 0
7 15 0
8 – 0
9 0 0

10 5 0
11 4 0
12 – 0
13 – 0
14 3 0
15 2 0

Figure 9.32 Page table for Exercise 9.22.

hexadecimal or decimal. Also set the reference bit for the appro-
priate entry in the page table.

• 0xE12C

• 0x3A9D

• 0xA9D9

• 0x7001

• 0xACA1

b. Using the above addresses as a guide, provide an example of a
logical address (in hexadecimal) that results in a page fault.

c. From what set of page frames will the LRU page-replacement
algorithm choose in resolving a page fault?

9.23 Assume that you are monitoring the rate at which the pointer in the
clock algorithm moves. (The pointer indicates the candidate page for
replacement.) What can you say about the system if you notice the
following behavior:

a. Pointer is moving fast.

b. Pointer is moving slow.

9.24 Discuss situations in which the least frequently used (LFU) page-
replacement algorithm generates fewer page faults than the least recently
used (LRU) page-replacement algorithm. Also discuss under what cir-
cumstances the opposite holds.

9.25 Discuss situations in which the most frequently used (MFU) page-
replacement algorithm generates fewer page faults than the least recently
used (LRU) page-replacement algorithm. Also discuss under what cir-
cumstances the opposite holds.



Exercises 455

9.26 The VAX/VMS system uses a FIFO replacement algorithm for resident
pages and a free-frame pool of recently used pages. Assume that the
free-frame pool is managed using the LRU replacement policy. Answer
the following questions:

a. If a page fault occurs and the page does not exist in the free-frame
pool, how is free space generated for the newly requested page?

b. If a page fault occurs and the page exists in the free-frame pool,
how is the resident page set and the free-frame pool managed to
make space for the requested page?

c. What does the system degenerate to if the number of resident pages
is set to one?

d. What does the system degenerate to if the number of pages in the
free-frame pool is zero?

9.27 Consider a demand-paging system with the following time-measured
utilizations:

CPU utilization 20%
Paging disk 97.7%
Other I/O devices 5%

For each of the following, indicate whether it will (or is likely to) improve
CPU utilization. Explain your answers.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

f. Install a faster hard disk or multiple controllers with multiple hard
disks.

g. Add prepaging to the page-fetch algorithms.

h. Increase the page size.

9.28 Suppose that a machine provides instructions that can access memory
locations using the one-level indirect addressing scheme. What sequence
of page faults is incurred when all of the pages of a program are
currently nonresident and the first instruction of the program is an
indirect memory-load operation? What happens when the operating
system is using a per-process frame allocation technique and only two
pages are allocated to this process?

9.29 Suppose that your replacement policy (in a paged system) is to examine
each page regularly and to discard that page if it has not been used since
the last examination. What would you gain and what would you lose
by using this policy rather than LRU or second-chance replacement?



456 Chapter 9 Virtual Memory

9.30 A page-replacement algorithm should minimize the number of page
faults. We can achieve this minimization by distributing heavily used
pages evenly over all of memory, rather than having them compete for
a small number of page frames. We can associate with each page frame
a counter of the number of pages associated with that frame. Then,
to replace a page, we can search for the page frame with the smallest
counter.

a. Define a page-replacement algorithm using this basic idea. Specif-
ically address these problems:

i. What is the initial value of the counters?
ii. When are counters increased?

iii. When are counters decreased?
iv. How is the page to be replaced selected?

b. How many page faults occur for your algorithm for the following
reference string with four page frames?

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page-
replacement strategy for the reference string in part b with four
page frames?

9.31 Consider a demand-paging system with a paging disk that has an
average access and transfer time of 20 milliseconds. Addresses are
translated through a page table in main memory, with an access time of 1
microsecond per memory access. Thus, each memory reference through
the page table takes two accesses. To improve this time, we have added
an associative memory that reduces access time to one memory reference
if the page-table entry is in the associative memory.

Assume that 80 percent of the accesses are in the associative memory
and that, of those remaining, 10 percent (or 2 percent of the total) cause
page faults. What is the effective memory access time?

9.32 What is the cause of thrashing? How does the system detect thrashing?
Once it detects thrashing, what can the system do to eliminate this
problem?

9.33 Is it possible for a process to have two working sets, one representing
data and another representing code? Explain.

9.34 Consider the parameter ! used to define the working-set window in the
working-set model. When ! is set to a small value, what is the effect
on the page-fault frequency and the number of active (nonsuspended)
processes currently executing in the system? What is the effect when !

is set to a very high value?

9.35 In a 1,024-KB segment, memory is allocated using the buddy system.
Using Figure 9.26 as a guide, draw a tree illustrating how the following
memory requests are allocated:

• Request 6-KB



Programming Problems 457

• Request 250 bytes

• Request 900 bytes

• Request 1,500 bytes

• Request 7-KB

Next, modify the tree for the following releases of memory. Perform
coalescing whenever possible:

• Release 250 bytes

• Release 900 bytes

• Release 1,500 bytes

9.36 A system provides support for user-level and kernel-level threads. The
mapping in this system is one to one (there is a corresponding kernel
thread for each user thread). Does a multithreaded process consist of (a)
a working set for the entire process or (b) a working set for each thread?
Explain

9.37 The slab-allocation algorithm uses a separate cache for each different
object type. Assuming there is one cache per object type, explain why
this scheme doesn’t scale well with multiple CPUs. What could be done
to address this scalability issue?

9.38 Consider a system that allocates pages of different sizes to its processes.
What are the advantages of such a paging scheme? What modifications
to the virtual memory system provide this functionality?

Programming Problems

9.39 Write a program that implements the FIFO, LRU, and optimal page-
replacement algorithms presented in this chapter. First, generate a
random page-reference string where page numbers range from 0 to 9.
Apply the random page-reference string to each algorithm, and record
the number of page faults incurred by each algorithm. Implement the
replacement algorithms so that the number of page frames can vary from
1 to 7. Assume that demand paging is used.

9.40 Repeat Exercise 3.22, this time using Windows shared memory. In partic-
ular, using the producer—consumer strategy, design two programs that
communicate with shared memory using the Windows API as outlined
in Section 9.7.2. The producer will generate the numbers specified in
the Collatz conjecture and write them to a shared memory object. The
consumer will then read and output the sequence of numbers from
shared memory.

In this instance, the producer will be passed an integer parameter
on the command line specifying how many numbers to produce (for
example, providing 5 on the command line means the producer process
will generate the first five numbers).



458 Chapter 9 Virtual Memory

Programming Projects

Designing a Virtual Memory Manager

This project consists of writing a program that translates logical to physical
addresses for a virtual address space of size 216 = 65,536 bytes. Your program
will read from a file containing logical addresses and, using a TLB as well as
a page table, will translate each logical address to its corresponding physical
address and output the value of the byte stored at the translated physical
address. The goal behind this project is to simulate the steps involved in
translating logical to physical addresses.

Specifics

Your program will read a file containing several 32-bit integer numbers that
represent logical addresses. However, you need only be concerned with 16-bit
addresses, so you must mask the rightmost 16 bits of each logical address.
These 16 bits are divided into (1) an 8-bit page number and (2) 8-bit page offset.
Hence, the addresses are structured as shown in Figure 9.33.

Other specifics include the following:

• 28 entries in the page table

• Page size of 28 bytes

• 16 entries in the TLB

• Frame size of 28 bytes

• 256 frames

• Physical memory of 65,536 bytes (256 frames × 256-byte frame size)

Additionally, your program need only be concerned with reading logical
addresses and translating them to their corresponding physical addresses. You
do not need to support writing to the logical address space.

Address Translation

Your program will translate logical to physical addresses using a TLB and page
table as outlined in Section 8.5. First, the page number is extracted from the
logical address, and the TLB is consulted. In the case of a TLB-hit, the frame
number is obtained from the TLB. In the case of a TLB-miss, the page table
must be consulted. In the latter case, either the frame number is obtained

offset

078151631

page 
number

Figure 9.33 Address structure.


