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Abstract 

The Monte Carlo approach has proved to be a valuable and flexible computational 
tool in modern finance. This paper discusses some of the recent applications of the Monte 
Carlo method to security pricing problems, with emphasis on improvements in efficiency. 
We first review some variance reduction methods that have proved useful in finance. 
Then we describe the use of deterministic low-discrepancy sequences, also known as 
quasi-Monte Carlo methods, for the valuation of complex derivative securities. We 
summarize some recent applications of the Monte Carlo method to the estimation of 
partial derivatives or risk sensitivities and to the valuation of American options. We 
conclude by mentioning other applications. 
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1. Introduction 

In recent years the complexity of numerical computation in financial theory 
and practice has increased enormously, putting more demands on computa- 
tional speed and efficiency. Numerical methods are used for a variety of pur- 
poses of finance. These include the valuation of securities, the estimation of their 
sensitivities, risk analysis, and stress testing of portfolios. The Monte Carlo 
method is a useful tool for many of these calculations, evidenced in part by the 
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voluminous literature of successful applications. For a brief sampling, the reader 
is referred to the stochastic volatility applications in Duan (1995), Hull and 
White (1987), Johnson and Shanno (1987) and Scott (1987);’ the valuation of 
mortgage-backed securities in Schwartz and Torous (1989); the valuation of 
path-dependent options in Kemna and Vorst (1990); the portfolio optimization 
in Worzel et al. (1994); and the valuation of interest-rate derivative claims in 
Carverhill and Pang (1995). In this paper we focus on recent methodological 
developments. We review the Monte Carlo approach and describe some recent 
applications in the finance area. 

In modern finance, the prices of the basic securities and the underlying state 
variables are often modelled as continuous-time stochastic processes. A deriva- 
tive security, such as a call option, is a security whose payoff depends on one or 
more of the basic securities. Using the assumption of no arbitrage, financial 
economists have shown that the price of a generic derviative security can be 
expressed as the expected value of its discounted payouts. This expectation is 
taken with respect to a transformation of the original probability measure 
known as the equivalent martingale measure or the risk-neutral measure. The 
book by Duffie (1996) provides an excellent account of this material. 

The Monte Carlo method lends itself naturally to the evaluation of security 
prices represented as expectations. Generically, the approach consists of the 
following steps: 
. Simulate sample paths of the underlying state variables (e.g., underlying asset 

prices and interest rates) over the relevant time horizon. Stimulate these 
according to the risk-neutral measure. 

. Evaluate the discounted cash flows of a security on each sample path, as 
determined by the structure of the security in question. 

. Average the discounted cash flows over sample paths. 
In effect, this method computes a multi-dimensional integral - the expected 
value of the discounted payouts over the space of sample paths. The increase in 
the complexity of derivative securities in recent years has led to a need to 
evaluate high-dimensional integrals. 

Monte Carlo becomes increasingly attractive compared to other methods of 
numerical integration as the dimension of the problem increases. Consider the 
integral of the functionf(x) over the d-dimensional unit hypercube. The simple 
(or crude) Monte Carlo estimate of the integral is equal to the average value of 
the functionfover n points selected at random2 from the unit hypercube. From 
the strong law of large numbers this estimate converges to the true value of the 

’ Wiggins (1987) also studies pricing under stochastic volatility but does not use Monte Carlo 
simulation. 

‘In standard Monte Carlo application the n points are usually not truly random but are 
generated by a deterministic algorithm and are described as pseudorandom numbers. 
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integrand as n tends to infinity. In addition, the central limit theorem assures us 
that the standard error3 of the estimate tends to zero as l/J%. Thus, the error 
convergence rate is independent of the dimension of the problem and this is the 
dominant advantage of the method over classical numerical integration ap- 
proaches. The only restriction on the function f is that it should be square 
integrable, and this is a relatively mild restriction. 

Furthermore, the Monte Carlo method is flexible and easy to implement and 
modify. In addition, the increased availability of powerful computers has 
enhanced the attractiveness of the method. There are some disadvantages of 
the method but in recent years progress has been made in overcoming them. 
One drawback is that for very complex problems a large number of replications 
may be required to obtain precise results. Different variance reduction 
techniques have been developed to increase precision. Two of the classical 
variance reduction techniques are the control variate approach and the 
antithetic variate method. More recently, moment matching, importance samp- 
ling, and conditional Monte Carlo methods have been introduced in finance 
applications. 

Another technique for speeding up the valuation of multi-dimensional inte- 
grals uses deterministic sequences rather than random sequences. These deter- 
ministic sequences are chosen to be more evenly dispersed throughout the 
region of integration than random sequences. If we use these sequences to 
estimate multi-dimensional integrals we can often improve the convergence. 
Deterministic sequences with this property are known as low-discrepancy se- 
quences or quasi-random sequences. Using this approach one can in theory 
derive deterministic error bounds, though the practical use of the bounds is 
problematic. In contrast, standard Monte Carlo yields simple, useful probabilis- 
tic error bounds. Although low-discrepancy sequences are well known in com- 
putational physics they have only recently been applied in finance problems, 
There are different procedures for generating such low-discrepancy sequences 
and these procedures are generally based on number theoretic methods. We 
describe some of the recent developments in this area. We also discuss applica- 
tions of this approach to problems in finance and conduct some rough compari- 
sons between standard Monte Carlo methods and two different quasi-random 
approaches. 

Until recently, the valuation of American style options was widely considered 
outside the scope of Monte Carlo. However, Tilley (1993), Broadie and Glasser- 
man (1997), and Barraquand and Martineau (1995) have proposed approaches 
to this problem, and there has been other related work as well. We provide 
a brief survey of the recent research progress in this area. 

3 We can readily estimate the variance of the Monte Carlo estimate by using the same set of 

n random numbers to estimate the expected value off’. 
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The layout of the paper is as follows. Variance reduction techniques are 
described in the next section, The ideas behind the use of low-discrepancy 
sequences and brief numerical comparisons with standard Monte Carlo 
methods are given in Section 3. Price sensitivity estimation using simulation is 
discussed in Section 4. Various approaches to pricing American options using 
simulation are briefly described in Section 5. Other issues are touched on briefly 
in Section 6. 

2. Variance reduction techniques 

In this section, we first discuss the role of variance reduction in meeting the 
broader objective of improving the computational efficiency of Monte Carlo 
simulations. We then discuss specific variance reduction techniques and illus- 
trate their application to pricing problems. 

2.1. Variance reduction and efJiciency improvement 

The reduction of variance seems so obviously desirable that the precise 
argument for its benefit is sometimes overlooked. We briefly review the underly- 
ing justification for variance reduction and examine it from the perspective 
improving computational efficiency. 

Suppose we want to compute a parameter 8 - for example, the price of 
a derivative security. Suppose we can generate by Monte Carlo an i.i.d. sequence 
{ei, i ~1~2, . . . }, w h ere each ei has expectation 8 and variance t?. A natural 
estimator of 13 based on n replications is then the sample mean 

By the central limit theorem, for large n this sample mean is approximately 
normally distributed with mean 8 and variance o’/n. Probabilistic error bounds 
in the form of confidence intervals follow readily from the normal approxima- 
tion, and indicate that the error in the estimator is proportional to G/G. Thus, 
decreasing the variance a2 by a factor of 10, say, while leaving everything else 
unchanged, does as much for error reduction as increasing the number of 
samples by a factor of 100. 

Suppose, now, that we have a choice between two types of Monte Carlo 
estimates which we denote by {$“, i = 1,2, . . . } and {@“, i = 1,2, . . . }. Suppose 
that both are unbiased, so that E[$“] = E[8~2’] = 8, but o1 < a2, where 
aj’ = Var[@],j = 1,2. From our previous observations it follows that a sample 
mean of n replications of 8(l) gives a more precise estimate of 8 than does 
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a sample mean of n replications of 8 . A(2) But this analysis oversimplifies the 
comparison because it fails to capture possible differences in the computational 

eflort required by the two estimators. Generating n replications of @‘) may be 
more time-consuming than generating n replications of Qt2); smaller variance is 
not sufficient grounds for preferring one estimator over another. 

To compare estimators with different computational requirements as well as 
different variances, we argue as follows. Suppose the work required to generate 
one replication of 0’j’ IS a constant bj, j = 1,2. (In some problems, the work per 
replication is stochastic; assuming it is constant simplifies the discussion.) With 
computing time t, the number of replications of e(j) that can be generated is 
Lt/bj j; for simplicity, we drop the L . j and treat the ratios t/bj as though they 
were integers. The two estimators available with computing time t are, therefore, 

For large t, these are approximately normally distributed with mean 8 and with 
standard deviations 

Thus, for large t, the first estimator should be preferred over the second if 

Eq. (1) provides a sound basis for trading-off estimator variance and com- 
putational requirements. In light of the discussion leading to (l), it is reasonable 
to take the product of variance and work per run as a measure of efficiency. 
Using efficiency as a basis for comparison, the lower-variance estimator should 
be preferred only if the variance ratio ~:/a$ is smaller than the work ratio b2/b,. 
By the same argument, a higher-variance estimator may actually be preferable if 
it takes much less time to generate. 

In its simplest form, the principle expressed in (1) dates at least to Hammersley 
and Handscomb (1964, p. 22). More recently, the idea has been substantially 
extended by Glynn and Whitt (1992). They allow the work per run to be random 
(in which case each bj is the expected work per run) and also consider efficiency 
in the presence of bias. 

2.2. Antithetic variates 

Equipped with a basis for evaluating potential efficiency improvements, we 
can now consider specific variance reduction techniques. One of the simplest 
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and most widely used techniques in financial pricing problems is the method of 
antithetic variates. We introduce it with a simple example, then generalize. 

Consider the problem of computing the Black-Scholes price of a European 
call option on a no-dividend stock. Of course, there is no need to evaluate this 
price by simulation, but the example serves as a useful introduction. In the 
Black-Scholes model, the stock price follows a log-normal diffusion. Indepen- 
dent replications of the terminal stock price under the risk-neutral measure can 
be generated from the formula 

SF’ = Soew/2'"2)T+afiZ, , i=l,..., n, (2) 

where S,, is the current stock price, r is the riskless interest rate, cr is the stock’s 
volatility, T is the option’s maturity, and the {Zi} are independent samples from 
the standard normal distribution. See, e.g., Hull (1997) for background on this 
model, and see Devroye (1986) for methods of sampling from the normal 
distribution. Based on n replications, an unbiased estimator of the price of an 
option with strike K is given by 

C =i ,il Ci E f ,$ e-‘rmax{O, S:’ - K). 
t l-1 

In this context, the method of antithetic variates4 is based on the observation 
that if Zi has a standard normal distribution, then so does -Zi. The price 
$ obtained from (2) with Zi replaced by -Zi is thus a valid sample from the 
terminal stock price distribution. Similarly, each 

Ci = e-‘rmax{O, 3: - K} 

is an unbiased estimator of the option price, as is, therefore, 

A heuristic argument for preferring c ,.,v notes that the random inputs ob- 
tained from the collection of antithetic pairs {(Zi, - Zi)} are more regularly 
distributed than a collection of 2n independent samples. In particular, the 
sample mean over the antithetic pairs always equals the population mean of 0, 
whereas the mean over finitely many independent samples is almost surely 
different from 0. If the inputs are made more regular, it may be hoped that the 

4Thi~ method was introduced to option pricing in Boyle (1977), where its use was illustrated in the 
pricing of a European call on a dividend-paying stock. 
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outputs are more regular as well. Indeed, a large value of S$’ resulting from 
a large Zi will be paired with a small value of s”:’ obtained from -Zi. 

A more precise argument compares efficiencies. Because Ci and ei have the 
same variance, 

Var ci + ci 

i 1 ~ 
2 

= 5 (Var[CJ + COV[Ci, z’i]). 

Thus, we have Var[CAv] I Var[C] if Cov[C;, Ci] I Var[CJ. However, 
C,v uses twice as many replications as C, so we must account for differences in 
computational requirements. If generating the Zi takes a negligible fraction of 
the work per replication (which would typically be the case in the pricing of 
a more elaborate option), then the work to generate C,v is roughly double the 
work to generate C. Thus, for antithetics to increase efficiency, we require 

2Var[C’Av] I Var[C], 

which, in light of (4), simplifies to the requirement that Cov[Ci, Ci] 5 0. 
That this condition is met is easily demonstrated. Define 4 so that Ci = I; 

4 is the composition of the mappings from Zi to the stock price and from the 
stock price to the discounted option payoff. As the composition of two increas- 
ing functions, 4 is monotone, so by a standard inequality (e.g., Section 2.2 of 
Barlow and Proschan, 1975) 

E[4(Zi)4(- Zi)] I EC$(Zi)lEC4(- Zi)I, (5) 

i.e., COV[Ci, Ci] z E[-(Zi)4(- Zi)] - El-4(Zi)]E[4(- Zi)] I 0, and we may 
conclude that antithetics help. 

This argument can be adapted to show that the method of antithetic variates 
increases efficiency in pricing a European put and other options that depend 
monotonically on inputs (e.g., Asian options). The notable departure from 
monotonicity in some barrier options (e.g., a down-and-in call) suggests that the 
use of antithetics in pricing these options may sometimes be less effective. 

In computing confidence intervals with antithetic variates, it is essential that 
the standard error be estimated using the sample standard deviation of the 
n averaged pairs (Ci + Ci)/2 and not the 2n individual observations 

C1, L ... 3 C,, e,,. The averaged pairs are independent but the individual 
observations are not. This is a case (we will see others shortly) in which the use of 
a variance reduction technique affects the estimation of the standard error and, 
in particular, requires some ‘batching’ of observations to deal with dependence. 

It is worth noting that the method of antithetic variates is by no means 
restricted to simulations whose only stochastic inputs are standard normal 
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variates. The most primitive stochastic input in most simulations is a sequence 
{ Un} of independent variates uniformly distributed on the unit interval. In this 
case, 1 - U,, has the same distribution as U,, and the pair (U,,, 1 - U,,) are called 
antithetic because they exhibit negative dependence. If the simulation output 
depends monotonically on the input random numbers, then the output obtained 
from{l-Ui,l-U,, . . . } will be negatively correlated with that obtained from 
{U, , U2, . . . }, resulting in increased efficiency compared with independent repli- 
cations. 

For further general background on antithetic variates and other methods 
based on correlation induction, see Bratley et al. (1987), Hammersley and 
Handscomb (1964), Glynn and Iglehart (1988), and references therein. For some 
examples of application in finance, see Boyle (1977), Clewlow and Carverhill 
(1994), and Hull and White (1987). 

2.3. Control variates 

The method of control variates is among the most widely applicable, easiest to 
use, and effective of the variance reduction techniques5 Simply put, the principle 
underlying this technique is ‘use what you know’. 

The most straightforward implementation of control variates replaces the 
evaluation of an unknown expectation with the evaluation of the difference 
between the unknown quantity and another expectation whose value is known. 
A specific illustration can be found in the analysis of Boyle and Emanuel (1985) 
and Kemna and Vorst (1990) of Asian options. Let PA be the price of an option 
whose payoff depends on the arithmetic average of the underlying asset. Let PG 
be the price of an option equivalent in every respect except that a geometric 
average replaces the arithmetic average. Most options based on averages use 
arithmetic averaging, so PA is of much greater practical value; but whereas PA is 
analytically intractable, PG can often be evaluated in closed form. Can know- 
ledge of PC be leveraged to compute PA? 

It can, through the control variate method. Write PA = E[p,J and 
PC = E[po], where pA and po are the discounted option payoffs for a single 
simulated path of the underlying asset. Then 

in other words, PA can be expressed as the known price PC plus the expected 
difference between pA and po. An unbiased estimator of PA is thus provided by 

5 The earliest application of this technique to option pricing is Boyle (1977) 



This representation6 suggests a slightly different interpretation; pr adjusts the 
straightforward estimator PA according to the difference between the known 
value PC and the observed value PG. The known error (PC - pG) is used as 
a control in the estimation of PA. 

If most of the computational effort goes to generating paths of the underlying 
asset, then the additional work required to evaluate po along with P, is minor. It 
therefore seems reasonable to compare variances alone. Since 

Var[PrJ = Var[P,J + Var[Po] -2Cov[P*, Po], 

this method is effective if the covariance between PA and po is large. The 
numerical results of Kemna and Vorst indicate that this is indeed the case. Fu, 
Madan, and Wang (1995) have investigated the use of other control variates for 
Asian options, based on Laplace transform values. These appear to be less 
strongly correlated with the option price. 

A closer examination of (6) reveals that this estimator does not make optimal 
use of the relation between the two option prices. Consider the family of 
unbiased estimators 

parameterized by the scalar /?. We have 

Var[Pi] = Var[P,J + /?’ Var[Po] -2fl cov[PA, Po]. 

The variance-minimizing b is, therefore, 

p* = 
cov [P*, PG.] 

Var[Po] ’ 

Depending on the application, p* may or may not be close to 1, the implicit 
value in (6). In using an estimator of the form (6), we forgo an opportunity for 
greater variance reduction. Indeed, whereas (6) may increase or decrease vari- 
ance, an estimator based on p* is guaranteed not to increase variance, and will 
result in a strict decrease in variance so long as PA and pG are not uncorrelated. 

In practice, of course, we rarely know /3* because we rarely know 
Cov[p,, po]. However, given n independent replications {(PA,, PGi), 
i = 1, . . , n} of the pairs (p,, po) we can estimate fi* via regression. At this point 

6To go from (6) to Boyle’s (1977) example, let Po be the price of a European call option on 
a no-dividend stock and let PA be the corresponding option price in the presence of dividends. 
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we face a choice. Using all n replications to compute an estimate b of /3* 
introduces a bias in the estimator 

and its estimated standard error because of the dependence between p^ and the 
PGi. Reserving nl replications for the estimation of /I* and the remaining n - n, 
replications for the sample mean of the PGi (typically with n, < n) eliminates the 
bias but may deteriorate the estimate of fi*. Neither issue significantly limits the 
applicability of the method, because the possible bias vanishes as n increases and 
because the estimator of /?* need not be very precise to achieve a reduction in 
variance. 

The advantage of working with (7) over (6) becomes even more pronounced 
when further controls are introduced. For example, when the asset price is 
simulated under risk-neutral probabilities, the present value e-‘rE[Sr] of the 
terminal price must equal the current price Se. We can, therefore, form the 
estimator 

PA + pl(PG - PO) + /lz(So - emrTST). 

The variance-minimizing coefficients (/I:, Bz) are easily found by multiple re- 
gression. This optimization step seems particularly crucial in this case; for 
whereas one might guess that BT is close to 1, it seems unlikely that fir would be. 
Optimizing over the ps also allows us to exploit controls that are negatively 
correlated with the option payoff. 

For further general background on control variates see Bratley et al. (1987), 
Glynn and Iglehart (1988), and Lavenberger and Welch (1981). For examples of 
control variate applications in finance, see Boyle (1977), Boyle and Emanuel 
(1985), Broadie and Glasserman (1996), Carverhill and Pang (1995), Clewlow 
and Carverhill (1994), Duan (1995), and Kemna and Vorst (1990). 

2.4. Moment matching methods 

Next, we describe a variance reduction technique proposed by Barraquand 
(1995), who termed it quadratic resampling. His technique is based on moment 
matching. As before, we introduce it with the simple example of estimating the 
European call option price on a single asset and then generalize. 

Let Zip i = 1, . . . , n, denote independent standard normals used to drive 
a simulation. The sample moments of the n Z’s will not exactly match those of 
the standard normal. The idea of moment matching is to transform the Z’s 
to match a finite number of the moments of the underlying population. 
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For example, the first moment of the standard normal can be matched by 
defining 

Zi=Zi-2, i=l, . . . . n, 

where Z = Cr= I Zi/n is the sample mean of the Z’s, Note that the 2;s are 
normally distributed if the Zi’s are normal. However, the 2;s are not indepen- 
dent. As before, terminal stock prices are generated from the formula 

s,(i) = Soe(r-(1/2)UZ)T+a~~, i = 1 
) . . . , n. 

A moment-matched estimator of the call option price is the average of the 
n values Ci = e-‘rmax(&(i) - K, 0). 

In the standard Monte Carlo method, confidence intervals for the true value 
C could be estimated from the sample mean and variance of estimator. This 
cannot be done here since the n values of 2 are no longer independent, and 
hence the values c”i are not independent. This points out one drawback of the 
moment matching method: confidence intervals are not as easy to obtain.’ 
Indeed, for confidence intervals it appears to be necessary to apply moment 
matching to independent batches of runs and estimate the standard error from 
the batch means. This reduces the efficacy of the method compared with 
matching moments across all runs. 

Eq. (8) showed one way to match the first moment of a distribution with mean 
zero. If the underlying population does not have a zero mean, transformed Z’s 
could be generated using z”i = Zi - 2 + pz, where pz is the population mean. 
The idea can easily be extended to match two moments of a distribution. In this 
case, an appropriate transformation is 

Ei=(Zi-Z)~+/JZy ,...,Tl, i=l 

where sz is the sample standard deviation of the Zts and cz is the population 
standard deviation. Of course, for a standard normal, pz =0 and crz = 1. An 
estimator of the call option price is the average of the n values cr. 

Using the transformation (9), the 2:s are not normally distributed even if the 
Zi’s are normal. Hence, the corresponding ci are biased estimators of the true 
option value. For most financial problems of practical interest, this bias is likely 
to be small. However, the bias can be arbitrarily large in extreme circumstances 

’ This point is not merely a minor technical issue. The sample variance of the c;s is usually a poor 

estimate of Var [CJ. 
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(even when only the first moment of the distribution is matched).8 The depend- 
ence and bias in the moment matching method makes it difficult to quantify the 
improvement in general analytical terms. 

The moment matching method is another example of the idea to ‘use what 
you know’. In this simple European option example, the mean and variance of 
the terminal stock price ST is also known. So the moment matching idea could 
be applied to the simulated terminal stock values S,(i). In this case, to match the 
first moment, define 

where ps, = SOerr and s”, is the sample mean of the ST(i)‘s. To match the first 
two moments, define 

Wi) = (ST(~) - h-1 T + fiST, 
% 

where cs7 = Se,,/- d an ssT is the sample standard deviation of the 
ST(i)%. Duan and Simonato (1995) use a related method. They apply a multipli- 
cative transformation to asset prices to enforce the martingale property over 
a finite set of paths.g They apply their method to GARCH option pricing. 

Comparisons of various moment matching strategies are given in Table 1. For 
this comparison, n = 100 simulation trials were used to estimate the European 
call option price. Standard errors were estimated by re-simulation. That is, 
m = 10,000 simulation trials were conducted, each one based on n replications of 
the estimator. The sample standard deviation of the m simulation estimates gives 
an estimate of the standard error of a single simulation estimate. Root-mean- 
squared errors are not reported because they are identical to the standard errors 
for the number of digits reported. 

The results in Table 1 show that matching two moments can reduce the 
simulation error by a factor ranging from 2 to 10. Matching two moments 
dominates matching one moment, but there is not a clear choice between 
transforming the original standard normals using (9) or the terminal stock prices 

‘For example, let Z take the values + 1 or - 1 with probability one-half. Consider a security 
which pays + $1 if Z = 1 and - $x if Z # 1. The expected payoff of the security is (1 - x)/2. To 
estimate this expected payoff by Monte Carlo simulation, draw n samples Zi according to the 
prescribed distribution. Then use Eq. (8) to define 2;s which match the first moment. For almost all 
samples for any large n, the estimated expected payoff is -x and the bias is (1 + x)/2. This bias does 
not decrease as n increases. Care must be taken when using Eqs. (8) or (9) when the support of the 
random variable is not the entire real line. For example, applying (8) or (9) to uniform or exponential 
random variables could cause the transformed values to fall outside of the relevant domain. 

‘This is equivalent to enforcing put-call parity. 
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Table I 
Standard errors for European call option 

No variance MMI MM2 MM1 MM2 
r7 So/K reduction Eq. (8) Eq. (9) Eq. (10) Eq. (1 I) 

0.2 0.9 0.24 0.19 0.1 I 0.19 0.09 
1.0 0.62 0.29 0.09 0.26 0.10 
1.1 0.93 0.19 0.09 0.15 0.11 

0.4 0.9 0.80 0.55 0.24 0.51 0.17 
1.0 1.22 0.66 0.19 0.56 0.23 
1.1 1.61 0.63 0.17 0.48 0.28 

0.6 0.9 1.40 0.95 0.38 0.84 0.28 
1.0 1.93 1.10 0.31 0.91 0.39 
1.1 2.38 1.13 0.25 0.85 0.49 

All results are based on n =lOO simulation trials. The option parameters are: K =lOO, r =O.lO, 
T =0.2, with So and cr varying as indicated. Standard error estimates are based on m = 10,000 
simulations. 

using (11). Further computational results, not included in Table 1, indicate that 
the improvement factor with moment matching is essentially constant as n in- 
creases. This may seem counterintuitive, since the moment matching adjustments 
converge to zero as n increases. But the progressively smaller adjustments are 
equally important in reducing the estimation error as the number of simulation 
trials increases. For example, the standard error for n = 10,000 simulation trials is 
one-tenth of the corresponding number for n = 100 reported in Table 1. 

The moment matching method can be extended to match covariances. For 
options that depend on multiple assets, the entire covariance structure is 
typically a simulation input. Barraquand (1995) suggests a method to match the 
entire covariance structure and reports error reduction factors ranging from two 
to several hundred for this method applied to pricing options on the maximum 
of k assets. 

The moment matching procedure could be applied to matching higher order 
moments as well. In addition to different methods for transforming random 
outcomes to match specified moments, additional points could be added as 
another way to match moments. 

Whenever a moment is known, it can be used as a control rather than for 
moment matching. In an appendix, we give a theoretical argument favoring the 
use of moments as controls rather than for matching. 

2.5. Stratijed and Latin hypercube sampling 

Like many variance reduction techniques, stratified sampling seeks to make 
the inputs to simulation more regular than random inputs. In particular, it 
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forces certain empirical probabilities to match theoretical probabilities, just as 
moment matching forces empirical moments to match theoretical moments. 

Consider, for example, the generation of 100 normal random variates as 
inputs to a simulation. The empirical distribution of an independent sample 

z1, ... 9 ZlOO will look only roughly like the normal density; the tails of the 
distribution - often the most important part - will inevitably be underrep- 
resented. Stratified sampling can be used to force exactly one observation to lie 
between the (i - 1)th and ith percentile, i = 1, . . . , 100, and thus produce a better 
match to the normal distribution. One way to implement this generates 100 
independent random variates Ui, . . . , Uloo, uniform on [O, I] and sets 
Zi = N-‘((i + Vi -l)/lOO), i =l, . . . , 100, where N- ’ is the inverse of the 
cumulative normal distribution. This works because (i + Vi - l)/lOO falls be- 
tween the (i - 1)th and ith percentiles of the uniform distribution, and percentiles 
are preserved by the inverse transform. 

Ofcourse,P,, . . . _ , Zloo are highly dependent, complicating the estimation of 
standard errors. Computing confidence intervals with stratified sampling typi- 
cally requires batching the runs. For example, with a budget of 100,000 replica- 
tions we might run 100 independent stratified samples each of size 1000, rather 
than a single stratified sample of size 100,000. To estimate standard errors we 
must therefore sacrifice some variance reduction, just as with moment matching. 

In principle, this approach applies in arbitrary dimensions. To generate 
a stratified sample from the d-dimensional unit hypercube, with n strata in each 
coordinate, we could generate a sequence of vectors Uj = (Uj”, ._. , Uy’), 
j=l,2, . ..) and then set 

v, = uj + (4, . . . , id) 
J 9 ik =O, . . . , n -1, k =l, . . . , d. 

n 

Exactly one J’j will lie in each of the nd cubes defined by the product of the 
n strata in each coordinate. 

The difficulty in high dimensions is that generating even a single stratified 
sample of size nd may be prohibitive unless n is very small. Latin hypercube 
sampling can be viewed as a way of randomly sampling n points of a stratified 
sample while preserving some of the regularity from stratification. The method 
was introduced by McKay et al. (1979) and further analyzed in Stein (1987). It 
works as follows. Let x1, . . . , nd be independent random permutations of 
{ 1, . . . , n}, each uniformly distributed over all n! possible permutations. Set 

VJk’ = @’ + nkt.8 - 1 
J n 

, k=l,..., d, j=l,..., n. 

The randomization ensures that each vector I’j is uniformly distributed over 
the d-dimensional hypercube. At the same time, the coordinates are perfectly 



stratified in the sense that exactly one of I/j”), , V,,‘“’ falls between (j - l)/rz and 
j/n, j = 1, , n, for each dimension k = 1, .., , cl. As before, the dependence 
introduced by this method implies that standard errors can be estimated only 
through batching. 

These methods can be viewed as part of a hierarchy of methods introducing 
additional levels of regularity in inputs at the expense of complicating the 
estimation of errors. Some, like stratified sampling, fix the size of the sample 
while others leave flexibility. The extremes of this hierarchy are straightforward 
Monte Carlo (completely random) and the low-discrepancy methods (com- 
pletely deterministic) discussed in Section 3. Owen (1994, 1995) discusses these 
and other methods and introduces a hybrid that combines the regularity of 
low-discrepancy methods with the simple error estimation of standard Monte 
Carlo. Shaw (1995) uses an extension proposed by Stein (1987) to handle 
dependent inputs in a novel approach to estimating value at risk. 

2.6. Some numerical comparisons 

The variance reduction methods discussed thus far are fairly generic, in the 
sense that they do not rely on the detailed structure of the security to be priced. 
This contrasts with the remaining two methods that we discuss - importance 
sampling and conditional Monte Carlo. These methods must be carefully 
tailored to each application. It therefore seems appropriate to digress briefly 
into a numerical comparison of the generic methods on some option pricing 
problems. 

We first examine the performance of these methods in pricing Asian options. 
The payoff of a discretely sampled arithmetic average Asian option is 
max(S” - K, 0), where g = If= 1 Silk, Si is the asset price at time ti = iT/k, and 
T is the option maturity. The value of the option is E[e-‘rmax(S - K, O)]. 
There is no easily evaluated closed-form expression for this option 
value. Various formulas to approximate the Asian option price have been 
developed, but simulation is usually used to test the accuracy of the approx- 
imations. 

For this Asian option, k random numbers are needed to simulate one option 
payoff, and nk random numbers are needed in total. Moment matching (MM2, 
for two moments) was applied k times to the n numbers used to generate each Si 
at time ti. Latin hypercube sampling (LHS) was applied to sample n points from 
the k-dimensional unit cube. The discretely sampled geometric average Asian 
price was used as a control variate (see Turnbull and Wakeman (1991) for 
a closed-form solution for this price). Results appear in Table 2. 

The results in Table 2 indicate that matching two moments can reduce the 
simulation error by a factor ranging from 1 to 10. Using the geometric average 
Asian option price as a control variate reduces error by a factor ranging from 20 
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Table 2 
Standard errors for arithmetic average asian options 

No variance Antithetic Control 
0 W-0 reduction method variate MM2 LHS 

0.2 

0.4 

0.6 

0.9 0.053 0.052 0.003 0.048 0.049 
1.0 0.344 0.231 0.004 0.162 0.161 
1.1 0.566 0.068 0.006 0.052 0.058 

0.9 0.308 0.297 0.014 0.240 0.248 
1.0 0.694 0.506 0.017 0.352 0.354 
1.1 1.017 0.388 0.021 0.281 0.289 

0.9 0.632 0.583 0.032 0.45 1 0.455 
1.0 1.052 0.817 0.038 0.566 0.578 
1.1 1.443 0.759 0.047 0.539 0.560 

All results are based on n = 100 simulation trials with k = 50 prices in the average. The option 
parameters are: K = 100, r = 0.10, T = 0.2, with Sa and e varying as indicated. Standard error 
estimates based on m = 10,000 simulations. The geometric average Asian option is used as the 
control variate. Moment mathcing (MM2) was applied to the ith price in the average, i = 1, . . , 
across replications. 

to 100, and is consistently the most effective method. LHS and MM2 
perform similarly. Antithetics are consistently dominated by the other 
methods. 

Next, we compare these variance reduction techniques in pricing down-and- 
out call options with discrete barriers. The payoff of this option at expiration is 
the standard call option payoff if the asset price Si exceeds the barrier H at all 
times ti = iT/k, i =i = 1, . . . , k, otherwise the payoff is zero. The option is 
knocked out if Si s H at any time ti. As a control we use the Black-Scholes price 
of a standard call. Moment matching and LHS are implemented as with the 
Asian option. Results are given in Table 3. These are consistent with the pattern 
in Table 2, except that the superiority of the control variate method is less 
pronounced. 

Although it is always risky to draw conclusions from limited numerical 
evidence, we suggest the following broad conclusions. The antithetic method is 
easy to implement, but often leads to only modest error reductions. Moment 
matching is similarly easy to implement and often leads to significant error 
reductions, but the error estimation is more difficult and bias is a potential 
problem. LHS suffers from the same error estimation difficulty but does not 
introduce bias. The control variate technique can lead to very substantial error 
reductions, but its effectiveness hinges on finding a good control for each 
problem. 



Table 3 

Standard errors for down-and-out call options with discrete barrters 

No variance 

reduction 

Antithetic 

method 
Control 

variate MM2 LHS 

0.2 0.9 0.96 

1.0 0.62 

1.1 0.30 

0.2 0.9 1.59 

1.0 1.22 

1.1 0.88 

0.2 0.9 2.19 

1.0 1.86 

1.1 1.54 

0.44 0.37 

0.44 0.13 

0.28 0.03 

1.15 0.73 

1.00 0.45 

0.82 0.26 

1.83 1.07 

1.62 0.80 

1.40 0.58 

0.43 0.39 

0.31 0.30 

0.22 0.22 

0.95 0.88 

0.76 0.74 

0.61 0.61 

1.44 1.36 

1.25 1.23 

1.09 1.09 

All results are based on n = 100 simulation trials. There are k = 5 points in the discrete barrier at 95. 

The other option parameters are: So = 100, r = 0.10, T = 0.2, with K and cr varying as indicated. 

Standard error estimates are based on m = 10,000 simulations. The standard European call option 

(Black-Scholes formula) is used as the control variate. Moment matching (MM2) was applied to the 

ith return, i = 1, , 5, across replications. 

2.7. Importance sampling 

This technique builds on the observation that an expectation under one 
probability measure can be expressed as an expectation under another through 
the use of a likelihood ratio or Radon-Nikodym derivative. This idea is familiar in 
finance because it underlies the representation of prices as expectations under 
a martingale measure. In Monte Carlo, the change of measure is used to try to 
obtain a more efficient estimator. We present some examples using this tech- 
nique; for general background see Bratley et al. (1987) or Hammersley and 
Handscomb (1964). 

As a simple example, consider the evaluation of the Black-Scholes price 
of a call option, i.e., the computation of emrTE[max{S, - K, 0}] with ST 
as in (2). A straightforward approach generates samples of the terminal 
value ST consistent with a geometric Brownian motion having drift r and 
volatility 0, just as in (2). But we are in fact free to generate ST consistent 
with any other drift p, provided we weight the result with a likelihood ratio. 
For emphasis, we subscript the expectation operator with the drift parameter. 
Then 

E,{maxC& - K O}] = E,{max& - K, o}L], 
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where the likelihood ratio L is the ratio of the log-normal densities with 
parameters r and p evaluated at Sr, given by 

Indeed, ST need not even be sampled from a log-normal distribution. The only 
requirement is that the support of the importance sampling measure contain the 
support of the original measure so that the likelihood ratio is well-defined; this is 
an absolute continuity requirement. In the example above, this means that any 
distribution for ST whose support includes (0, co) is admissible. 

Ideally, one would like to choose the importance sampling distribution to 
reduce variance. In the example above, one obtains a zero-variance estimator by 
sampling ST from the density 

f(x) = c- I max(x - K, O}e-‘Tg(x), 

where g is the (log-normal) density of ST and c is a normalizing constant 
that makes f integrate to 1. The difficulty is that c is the Black-Scholes price 
itself, so this method requires knowledge of the solution for its implementation. 
Nevertheless, it gives some indication of the potential gain from importance 
sampling. 

Reider (1993) has investigated the impact of importance sampling based on 
a change of drift and volatility. (Changing the volatility is consistent with 
absolute continuity in a discrete-time approximation of a diffusion though not 
in the continuous-time limit.) He finds that choosing the importance sampling 
distribution to have higher drift and volatility provides substantial variance 
reduction in pricing deep out-of-the-money options. He also investigates the 
combination of importance sampling with antithetic variates and control vari- 
ates, and the use of put-call parity for indirect estimation. Nielsen (1994) has 
explored some related importance sampling ideas in sampling from a binomial 
tree. 

Andersen (1995) has developed a powerful application of importance 
sampling for simulating interest rates and has applied it to nonlinear 
stochastic differential equation models. We briefly describe his approach. 
Let r, be the instantaneous short rate described, e.g., by a diffusion model. 
Then 

B(T) = E[exp(- jO’rtdt)] 



is the price today of a zero-coupon bond with face value $1, maturing at time T. 

In, for example, the Cox-Ingersoll-Ross and Vasicek models,” B(T) is available 
in closed form. We may therefore define a new probability measure Ij by setting 

r, dt - log B(T) 

for any event A, where lA denotes the indicator of the event A. Let I? denote 
expectation with respect to P. Then for any random variable X, 
ECX] = E[XL,] where the likelihood ratio LT is given by 

LT =exp rz dt + log B(T) . 

In particular, if we take X = exp(- ST o Y, dt), we know that E[X] = B(T) and, 
therefore, B(T) is the expectation under I? of XLT; i.e., of 

But this simplifies to B(T) itself, meaning that we obtain a zero-variance 
estimator of the bond price by switching to the new probability measure. 
Moreover, Andersen shows that sample paths of rr can be generated under 
P simply by applying a change of drift to the original process. 

As described above, the method would appear to require knowledge of the 
solution for its implementation. Nevertheless, the method has two important 
applications. The first is in the pricing of contingent claims. Because P eliminates 
the variance of bond prices, it should be effective in reducing variance for 
pricing, e.g., European bond options expiring at time T. Andersen’s numerical 
results bear this out. A second application is in the pricing of bond models with 
no closed-form solutions: Andersen’s results show that the change of drift 
derived from a tractable model (like CIR or Vasicek) remains effective when 
applied to an intractable model, and this significantly expands the scope of the 
method. 

Importance sampling is frequently used to make rare events less rare; this is 
already suggested in Reider’s (1994) application to out-of-the-money options. 
Our next example further highlights this aspect through a new application to 
barrier options. We consider a knock-in option far from the barrier and use 
importance sampling to increasing the probability of a payout. 

“See e.g. Hull (1997, Chapter 17) for background on these models 1 , 
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Suppose the barrier is monitored at discrete times n At, n =O, 1, . . . , m, with 
AT = T/m. Set the barrier at H = See-* and the strike at K = SOec, with 
b, c > 0. A down-and-in call pays ST - K at time T if ST > K and Sndr < H for 
some n =l, . . . , m. We can write the price of the underlying at monitoring 
instants as 

S ndf = C+, Upj = i Xi, 
i=l 

with the Xi i.i.d. normal having mean (r - +a2) At and variance o2 At. Let z be 
the first time U, drops below -b; then the probability of a payout is P(r < m, 
U, > c). If b and c are large, this probability is small, and most simulation runs 
return zero. Through importance sampling, we can increase this probability and 
thus get more information out of each run. 

Consider alternative probability measures PpI,p2 that give U,, a drift of pi At 
until r and then switch the drift to p(z At. Intuitively, we would like to make 
pl < 0 to drive the asset price to the barrier and then make p2 > 0 to drive it 
above the strike. For any pi, ,u2, we have 

W cm, urn > 4 = E,,,,,CL,,.,,l{,,,,“,>,,l. 

The likelihood ratio is given by 

L p,,82 = exp(- ~IU, + WI)~ - &(U, - U,) + vW(m - 4), 

where 8i = (pi - r + +c’)/cI’, i = 1,2, and I/J(~) = (I - +cJ~)A~~ + $g’At d2. 

This follows from algebraic simplification of the product of the ratios of the 
densities of the Xi under the original and new means. 

It remains to choose pl, p2. Intuitively, most of the variability in L,, , 82 comes 
from r (the time of the barrier crossing): for large b, c, in the event of a payout we 
expect to have U, x - b and U,,, z c so these terms should contribute less 
variability. If we choose pl, pz so that ll/(e,) = +(e,), the likelihood ratio 
simplifies to 

L pI.p2 = ev(- (0, - e,)u, - e,k + m$(&)), 

which depends on z only through U, E -b. The condition $(6,) = $(0,) trans- 
lates to p1 = - p2 = - p, so it only remains to choose this drift parameter. We 
choose it so that the time to traverse the straight line path from 0 to -b and 
then to c at rate p equals the number of steps m: 

b 
-+ 

(b + 4 

IrAt 
- = m; 

PAt 



Table 4 

Standard errors for down-and-in calls: importance sampling 

No variance Importance Efficiency 
H K reduction sampling ratio 

92 100 0.00309 

92 105 0.00129 

88 96 0.00110 

85 90 0.00084 

92 105 0.01418 

85 105 0.00328 

75 96 0.00030 

75 85 0.00148 

0.00069 20 
0.00014 85 

0.000 1 1 96 
0.00008 116 

0.00541 7 

0.00038 75 
0.00001 1124 
0.00010 222 

All results are based on n = 100,000 simulation trials. The parameters are: So = 95, 0 = 0.15, and 

r = 0.05, with the barrier H and strike K varying as indicated. The first four cases have T = 0.25 and 

M = 50; the last four have T = 1 and m = 250. 

i.e., p = (26 + c)/T. Interestingly, this change of drift does not depend on the 
original mean increment (r - icr’) At. 

Table 4 illustrates the performance of this method. The computational effort 
with and without importance sampling is essentially the same, so the efficiency 
improvement is just the ratio of the variances. The improvement varies widely 
but shows the potential for dramatic gains from importance sampling, parti- 
cularly when the barrier is far from the current price of the underlying.” 

In recent work, Andersen and Brotherton-Ratcliffe (1996) and Beaglehole, 
Dybuig, and Zhou (1997) show how to eliminate the bias caused by using 
a simulation at a discrete set of times to price continuous options on extrema, 
e.g., barrier or lookback options. 

2.8. Conditional Monte Carlo 

This approach to efficiency improvement exploits the variance reducing 
property of conditional expectation: for any random variables X and Y, 
Var[E[X( Y]] I Var[X], with strict inequality except in trivial casesi In 
replacing an estimator by its conditional expectation we reduce variance essen- 
tially because we are doing part of the integration analytically and leaving less to 
be done by Monte Carlo. 

r’ The standard errors in the table are all quite small, but so are the associated option values. 
Hence, the relative error without importance sampling is quite significant. 

I2 This is a direct consequence of Jensen’s inequality for conditional expectations. 



Hull and White (1987) use this idea to price options with stochastic volatities. 
Consider a model in which an asset price and its variability evolve as follows: 

dS = rS dt + vS d W, , dv2 = t(v2 dt + <v2 dW 21 

with WI, W2 independent. Suppose we want to price a standard European call 
on S. A straightforward approach simulates sample paths of v and S up to time 
T and averages max{S, - K, 0} over all paths. An alternative notes that, 
conditional on the path of v, in [0, T], the asset price S, may be treated as 
having a time varying but deterministic volatility. Thus, conditional on the 
volatility path, the option can be priced by the Black-Scholes formula: 

e-‘TE[max{S, - K, 0} Iv,, 0 5 t I T] = BS(&, K, Y, T, A), 

where 

VT =f vf dr 

is the average squared volatility over the path, and BS(S, K, T, r, a) is the Black- 
Scholes price of a call with constant volatility 0 and the other parameters as 
indicated. Using this conditional expectation as the estimator is sure to reduce 
variance and may even reduce computational effort since it obviates simulation 
of S. It is worth emphasizing that both straightforward Monte Carlo and 
conditional Monte Carlo would have to be applied to discrete-time approxima- 
tions of the continuous processes above. Also, the applicability of conditional 
Monte Carlo in this setting relies critically on the fact that the evolution of the 
asset price does not influence the volatility path. See Willard (1996) for an 
extension to the case of correlated W, and W,. 

As a further illustration of the use of conditional Monte Carlo, we give a new 
illustration in the pricing of a down-and-in call with a discretely monitored 
barrier. Let 0 = to < t1 < ... < t, = T be the monitoring instants and S,, the 
price of the underlying at the ith such instant. The option price is 
E[e-‘Tmax(ST - K, O}l llH s T ,I, where iY is the barrier and zH is the first 
monitoring time at which the barrier is breached. 

Straightfoward simulation generates paths of the underlying and evaluates 
the estimator 

e -‘Tmax{ST - K o}& I I)- 

Our first alternative conditions on {So, . . . , S,,,}, the path of the underlying until 
the barrier crossing; i.e., 

ECe-‘Tmax(ST -K O}$,, I ~11 

=e -‘TE~E[max{ST-K,O}l~,,~~)llS~, . . . ,S.ll 

=e -‘TWW&,, K I, T - TH, o)l{,, I T)]* 



This yields the estimator 

CMCl = e-'TBS(S,,,, K, r, T - To, o)l:,,, I T:. 

This says: simulate until the barrier is crossed or the option expires; if the barrier 
was crossed, return the Black-Scholes price starting from price S,, with maturity 

T -rH. 
Our second alternative conditions one step earlier, at each monitoring instant 

evaluating the probability that the barrier will be breached for the first time at 

the next monitoring instant: 

E[e-‘rmax{Sr - K, O} lf+ 5 T ;I 

=e -rTE max(Sr -K,O} i l,,,=,“~ 
n=l 1 

=e -‘rE 
[ 

f E[max{Sr -K,O}lirH=fnI I&,, . . . > &_,I 
I?=1 1 TH- 1 

=e -‘r E c BS2(S,, K, H, r, t,+ 1 - t,, T - t,, a) n=O 1 
where BS2(S, K, H, I, t, T, a) is the price of a down-and-in call that knocks in 

only if the underlying is below H at time t. We thus arrive at the estimator 

r”-1 

CMCz = e-* c BS2(&“, K K r, r,+ 1 - t,, T - t,, a), 
n=O 

with 

BSWC K K r, 1, T, 4 = SN&, h, P) - emrTKN2(a2, b, P), 

where p = - m, Nz is the bivariate cumulative normal distribution with 

correlation p, and 

a, = 
log(S/K) + (r + id) T 

CJJT ’ 
u2=a,-i7 fi, 

b 
1 

= log(H/S) - (r + +d)t 

OJi ’ 
bt=bl+oJi. 
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Table 5 
Comparison of CMC estimators for down-and-in call 

Method 
Standard Computation 
error (s) time (t) 

Base 0.108 0.133 0.039 
CMC, 0.034 0.117 0.012 
CMCz 0.021 3.233 0.038 
CMC’ 0.014 3.367 0.026 

Results based on n = 10,000 replications wth u = 0.4, r = 0.10, So = K = 100, H = 95, T = 0.5, and 
10 equally spaced monitoring times. 

(The derivation of this formula is fairly standard and therefore omitted.) The 
CM& estimator can be expected to have lower variance than the CMCi 
estimator because it conditions on less information and thus does more integra- 
tion analytically. In fact, CMCz is not a conditional Monte Carlo estimator in 
the strict sense because it conditions on different information at different times, 
making it more precisely a jiltered Monte Carlo estimator in the sense of 
Glasserman (1996). 

Because the two estimators above have the same expectation, their difference 
has mean 0 and can be used as a control variate to form a further estimator 

CMC’ = CMCi + P(CM& - CMCi). 

With B optimized, this has lower variance than either individual estimator. 
Numerical results appear in Table 5. As expected, each level of conditioning 

further reduces variance, and the combined estimator achieves the lowest 
standard error of all. However, repeated evaluation of the function BS2 turns 
out to be time-consuming, making CMCl overall the most efficient estimator. 

3. Low-discrepancy sequences 

For complex problems the performance of the basic Monte Carlo approach 
may be rather unsatisfactory because the error is O(l/&). We can sometimes 
improve convergence by using pre-selected deterministic points to evaluate the 
integral. The accuracy of this approach depends on the extent to which these 
deterministic points are evenly dispersed throughout the domain of integration. 
Discrepancy measures the extent to which the points are evenly dispersed 
throughout a region: the more evenly dispersed the points are the lower 
the discrepancy. Low-discrepancy sequences are often called quasi-random 



sequences even though they are not at all random.13 We shall use both terms in 
this paper. 

Low-discrepancy methods have recently been used to tackle a number of 
problems in the finance area. These applications are more fully described in 
papers by Birge (1994) Joy et al. (1996) and Paskov and Traub (1995); the use of 
quasi-Monte Carlo is also proposed in Cheyette (1992). In this section we 
describe how the approach works and review some of the recent applications. 
The book by Press et al. (1992) provides an intuitive introduction to low- 
discrepancy sequences and quasi-Monte Carlo methods. Spanier and Maize 
(1994) provide a recent overview of quasi-random methods and how they can be 
used to evaluate integrals with medium sized samples. Niederreiter (1992) and 
Tezuka (1995) provide in-depth analyses of low-discrepancy sequences. Mos- 
kowitz and Caflisch discuss recent developments in improving the convergence 
of quasi-random Monte Carlo methods. In earlier work, Haselgrove (1961) 
describes a method for multivariate integration that can be applied to security 
pricing. Haselgrove’s method is developed for problems of eight dimensions or 
less and our numerical experiments suggest that it is competitive with the 
low-discrepancy sequences investigated in this section for problems of this size. 

The basic idea behind the approach is quite intuitive and is readily explained 
in the one-dimensional case. Suppose we wish to integrate a functionf(x) over 
the interval [0, l] using a sequence of n points. Rather than pick a random 
sequence suppose we pick a deterministic sequence of points that are, in some 
sense, evenly distributed. With this choice, the accuracy of the estimate will be 
higher than that obtained using the crude Monte Carlo approach. If we use an 
equally spaced grid we obtain the trapezoidal method of numerical integration 
which has an error of O(n-‘). However, the more challenging task is to evaluate 
multi-dimensional integrals. Without loss of generality, we can assume that the 
domain of integration is contained in the d-dimensional unit hypercube. The 
advantages of the uniformly spaced grid in the one-dimensional case do not 
carry over to higher dimensions. The principal reason is that the error bound for 
the d-dimensional trapezoidal rule is O(n -2’d). In addition, if we use an evenly 
spaced Cartesian grid, we would have to decide the number of points in advance 
to achieve uniformity. This is restrictive because, in numerical applications, we 
would like to be able to add points sequentially until some termination criterion 
is met. 

Low-discrepancy sequences have the property that as successive points are 
added the entire sequence of points still remains more or less evenly dispersed 
throughout the region. Niederreiter (1992) gives a detailed analysis of the 
discrepancy of a sequence. Here, we just briefly recall the definition. Suppose we 

L3Thu~, the name quasi-random is very misleading since these sequences are deterministic. 

However, it seems to be sanctioned by usage. 
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have a sequence of n points (xi, x2, . . . , x,,] in the d-dimensional half-open unit 
cube, Id = [0, l)d and a subset J of Id. We define 

A(J; 4 
D(J; n) = - - V(J)> 

n 

where A(J; n) is the number of k, 1 < k I n, with xk E J and V(J) is the volume of 
J. The discrepancy, D,, of the sequence is defined to be the supremum of 
1 D(J; n) 1 over all J. The star discrepancy D,*, is obtained by taking the suprem- 
urn over sets J of the form 

In the one-dimensional case there is a simple explicit form for the (star)i4 
discrepancy of a sequence of n points. If we label the points so that, 
0 5 xi I ... 5 x, I 1, then the discrepancy of this sequence is 

D.*=&+ max 
I=I,...,Jxk -%I(. 

We can see that the star discrepancy is at least I/(24 and that the lowest value is 
attained when 

2k -1 
xk=----, l<k<n. 

2n 

In higher dimensions there is no simple form for the discrepancy of a sequence. 
There are several examples of low-discrepancy sequences, including the se- 

quences proposed by Halton (1960), Sobol’ (1967), Faure (1982), and Nieder- 
reiter (1988).‘5 For these sequences the asymptotic form of the star discrepancy 

i4 For the rest of the paper we simply use the term discrepancy rather than star discrepancy to 
refer to D.*. 

is Interestingly, linear congruential generators - frequently used to generate the pseudo-random 
numbers that drive ordinary Monte Carlo - produce sets of points with low-discrepancy over the 
entire period of the generator; see Niederreiter (1976). This suggests the possibility of choosing such 
a generator with period roughly equal to the total number of points required as a type of 
quasi-Monte Carlo method. In ordinary Monte Carlo, one prefers instead that the period be many 
orders of magnitude larger than the number of points required. We thank Peter Hellekalek of the 
University of Salzburg for this observation. 
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has been shown to be 

. 

This bound for the discrepancy involves a constant which, in general, depends 
on the dimension d of the sequence. These constants are very difficult to estimate 
accurately in high dimensions. For large values of d the constants ‘are often 
ridiculously large for reasonable values of n’ according to Spanier and Maize 
(1994, p. 23). Furthermore for high dimensions it may take a long time before the 
discrepancy reaches its asymptotic level. Morokoff and Caflisch (1995) note that 

for intermediate values of n the discrepancy may be O(G). They suggest that 
the transition to O(n- ‘(log n)d) occurs at around values of n = ed. For large 
d this will be an enormous number. 

The error in numerical integration using a low-discrepancy sequence admits 
a deterministic bound. The bound reflects both the discrepancy of the sequence 
of points used to evaluate the integral as well as the regularity of the function. 
The result is contained in the following theorem. 

Theorem (Koksma-Hlawka). Let Id = [O, l)d and let f have bounded variation 
V(f) on [O, 11” in the Hardy-Krause’6 sense. Then for any x1, x2, . . . , x, E Id, 

we have 

The error bound provided by this theorem, while it is of theoretical interest, is 
of little help in most practical situations. The theoretical bound normally 
overestimates the actual error by a wide margin and V(f) may be difficult to 
evaluate or even approximate. We have noted that the constants buried in the 
bounds for the discrepancy are large. Another reason for the coarseness of the 
bound is that the Koksma-Hlawka theorem does not reflect additional smooth- 
ness in 1: Intuitively we would expect the approximation to be better as 
f becomes smoother. In finance applications the payoffs are normally continu- 
ous functions of the variables (with some important exceptions - payoffs on 
digital and barrier options are discontinuous), but may not be sufficiently 
smooth to have finite variation because of functions like ‘max’ embedded in the 
payoffs. Hlawka (1971) provides an alternative bound under weaker smoothness 
requirements. 

I6 For a more complete discussion of the Hardy-Krause definition of variation and details on this 
theorem see Niederreiter (1992). 



1294 P. Boyle et al. /Journal oJ’Economic D.vnamics and Conlrol 21 (1997) 1267-1321 

To date, studies using low-discrepancy sequences in finance applications find 
that the errors produced are substantially lower than the corresponding errors 
generated by crude Monte Carlo. Joy et al. (1996) used Faure sequences to price 
several complex derivative securities. They found that the quasi-Monte Carlo 
approach resulted in significantly smaller errors than the standard Monte Carlo 
approach. They confirmed that the actual error bound (for cases in which it 
could be computed precisely) was dramatically less than the bound computed 
from the Koksma-Hlawka inequality. Paskov and Traub (1995) used both 
Sobol’ sequences and Halton sequences to evaluate mortgage-backed security 
prices. Their work involves the evaluation of integrals with dimensions up to 
360; they find that Sobol’ sequences are more efficient than Halton sequences 
and that the quasi-random approach outperforms the standard Monte Carlo 
approach for these types of problems. ” Paskov and Traub’s results stand in 
contrast to the claim that is sometimes found in the literature’* that the 
superiority of low-discrepancy algorithms vanishes for intermediate values of 
d around 30. Bratley et al. (1992) conducted practical numerical experiments 
using low-discrepancy sequences and conclude that standard Monte Carlo is 
superior to quasi-Monte Carlo for high dimensions, say greater than 12. They 
used Sobol’ and Niederreiter sequences in their tests. They conclude that in high 
dimensions, ‘quasi-Monte Carlo seems to offer no practical advantage over 
pseudo-Monte Carlo because the discrepancy bound for the former is far larger 

than & for n = 230, say’. (In a personal communication, Fox adds that the 
crossover probably depends a lot on the sequence.) The reason for the difference 
between this verdict and the results of the finance applications may be that the 
integrands typically found in finance applications behave better than those used 
by numerical analysts” to compare different algorithms. Another important 
consideration is that financial applications typically involve discounting, and 
this may effectively reduce dimensionality; for example, some of the 360 months 
in the life of a mortgage may have little influence on the value of a mortgage- 
backed security. Nevertheless, the experience of Bratley et al. (1992) serves as 
a useful caution against assuming that quasi-Monte Carlo will outperform 
standard Monte Carlo in all situations. 

“Bratfey et al. (1992) note that the Niederreiter sequence they tested theoretically beats Sobol’s 
sequences in dimensions higher than seven. 

‘* See, for example, Rensburg and Torrie (1993) or Morokoff and Caflisch (1995). 

tg For example, one of the integrals used by Bratley et al. (1992) was 

1 s s l 5 kcos(kx,) dx, ..’ dx,. 
0 0 L=* 

This integrand is highly periodic for large values of d. 
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Some theoretical differences among low-discrepancy sequences can be under- 
stood through the concepts of (t, m, s)-nets and (t, s)-sequences; these are dis- 
cussed in detail in Niederreiter (1992). Briefly, an elementary interval in base b in 
dimension s is a set of the form 

with kj, aj nonnegative integers and aj < bkl. A (t, m, $-net (with 0 I t 5 m) is 
a set of b” points in the s-dimensional hypercube such that every elementary 
interval of volume b’-” contains b’ points. Speaking loosely, this means that the 
proportion of points in each sufficiently large box equals the volume of the box. 
Smaller t implies greater uniformity. An infinite sequence forms a (t, s)-sequence 
if for all m 2 t certain finite subsequences of length b” form (t, m, s)-nets in base 
b. Sobol’ points are (t, s)-sequences in base 2 and Faure points are (0, s) se- 
quences in prime bases not less than s. Thus, Faure points achieve the smallest 
value of t, but at the expense of a large base. A smaller base implies that 
uniformity holds over shorter subsequences. 

An important issue in the use of quasi-Monte Carlo concerns the termination 
criterion, since Koksma-Hlawka bound is often of little practical value. Various 
heuristics are available. Birge (1994) suggests that a rough bound may be 
obtained by tracking the maximum and minimum values over a period that 
shows equal numbers of increases and decreases. For instance, the criterion 
could be to stop at the first set of two thousand observations in which the 
number of increases and decreases are within 10% of each other. He suggests 
that the maximum and minimum realized values could be used as bounds on the 
true value. Fox (1986) suggests that we compare the estimate of the integral 
based on a sample of 2n points with the estimate based on n points and stop if 
the answer lies within some tolerance level. Paskov and Traub (1995) use 
a similar termination criterion based on successive errors: stop when the differ- 
ence between two consecutive approximations using lO,OOOi, i = 1,2, . . . , 1000, 
sample points falls below some threshold. Owen (1994, 1995) proposes a hybrid 
of Monte Carlo and low-discrepancy methods which provides error estimates 
and has good convergence properties. In addition to these approaches, one can 
also run standard Monte Carlo at the outset and use the probabilistic error term 
to assess when enough low-discrepancy points have been used in the quasi- 
random calculation. This benchmarking with standard Monte Carlo would be 
useful if the same set of calculations were being carried out frequently with only 
slightly different input values. This situation is common in finance applications. 
There is often a need to perform the same set of calculations frequently; e.g., the 
risk analysis of a book of business at the end of each day. In these cases one can 
conduct experiments to see which sets of low-discrepancy sequences provide the 
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best results. The right number of low-discrepancy points could be determined 
just once at the outset. 

Before leaving this section, we should mention some recent advances and new 
techniques to improve the performance of quasi-random Monte Carlo, Nieder- 
reiter and Xing (1995) and Ninomiya and Tezuka (1994) have proposed new 
low-discrepancy sequences that appear to have the potential to perform sub- 
stantially better than previous methods. We have noted that the efficiency of 
quasi-random Monte Carlo improves as the integrand becomes smoother. 
Moskowitz and Caflisch (1995) illustrate procedures that can be used for this 
purpose. It is sometimes possible to enhance the performance of quasi-random 
sequences by reducing the effective dimension of the problem. Moskowitz and 
Caflisch also indicate how this can be accomplished in the discretization of 
a Wiener process and in the solution of the Feynman-Kac equation. This is 
relevant for finance applications since the prices of derivatives securities have 
a Feynman-Kac representation. See Aiworth, Broadie and Glasserman (1997), 
Berman (1996), and Caflisch, Morokoff and Owen for recent work applying low- 
discrepancy sequences with alternative constructions of Wiener processes. Span- 
ier and Maize (1994) discuss a battery of techniques that can be used to improve 
the performance of quasi-Monte Carlo methods for relatively small sample sizes. 

Next we compare the Monte Carlo method using pseudo-random numbers 
with the Faure, Halton, and Sobol’ low-discrepancy methods. 

3.1. Numerical results 

For an initial comparison, we test the methods on the problem of pricing 
a European option on a single underlying asset with the usual Black-Scholes 
assumptions. In this framework, the Black-Scholes formula can be evaluated to 
give the true option values in order to compare alternative methods. Rather 
than using a single option, we evaluate the methods on a random sample of 500 
options. The probability distribution of the parameters is chosen to represent 
a reasonable range of values in practical applications.*’ The error measure that 
we use is root-mean-squared (RMS) relative error defined by 

RMS=/m> (12) 

where i is the index of the m = 500 options in the test set, Ci is the true option 
value, and ci is the estimated option value. The results are given in Fig. 1. 

Fig. 1 plots RMS relative error against the number of points, n. The Monte 
Carlo method (i.e., using pseudo-random numbers) displays the expected 

‘O The details of the distribution are given in Broadie and Detemple (1996). 
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n 

Fig. 1. RMS relative error vs. number of points. 

O(l/&) convergence: e.g., increasing n by a factor of 100 decreases the RMS 
error by a factor of 10. The low-discrepancy method using Faure sequences 
dominates the Monte Carlo method. Indeed, 129 Faure points gives an error 
lower than 1000 Monte Carlo points. The Sobol’ method is the best of the three 
methods tested. Using 192 Sobol’ points gives an error lower than 10,000 Monte 
Carlo points. 

A major consideration in the comparison of methods is the overall computa- 
tion time, not just the number of points. The Sobol’ sequence numbers can be 
generated significantly faster than Faure numbers (see, e.g., Bratley and Fox 
1988) and faster than most pseudo-random number methods. Hence, in the 
important RMS error versus computation time comparison, the relative advant- 
age of the Sobol’ method increases. 

A low-discrepancy sequence will often have additional uniformity properties 
at certain points in the sequence (see, e.g., Fox 1986 and Bratley and Fox 1988). 
For example, in the Sobol’ sequence the running average returns to 0.5 at the 
points n = 2k - 1 for k = 1,2, . . . One might expect that choosing n to be one of 
these ‘favorable’ points would lead to better option price estimates. For large 
values of n, the advantage of using favorable points becomes negligible, but for 
small n the effect can be quite significant. Indeed, in the experiment above, using 
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the Sobol’ points l-254 gives an RMS error of lo%, while using the points 
i-255 gives an RMS error of 4%. 21 Better results are often obtained by ignoring 
an initial portion of a low-discrepancy sequence. For example, using the Sobol’ 
points 1-63 gives an RMS error of 13%, while using the Sobol’ points 64-127 
gives an RMS error of 2%. In the results in Fig. 1, the Sobol’ sequence was always 
started at point 64, so the label 192 in Fig. 1 corresponds to the 192 Sobol’ points 
from 64 to 255. Similarly, the Faure sequence was always started at point 16, so 
the label 129 in Fig. 1 corresponds to the 129 Sobol’ points from 16 to 144. 

3.2. One-dimensional vs. higher-dimensional sequences 

It is sometimes asserted that low-discrepancy methods can be implemented in 
existing simulation programs by simply replacing the pseudo-random number 
generator with a low-discrepancy sequence generator. This naive approach can 
lead to disastrous results as the following example shows. 

Consider pricing a European option on the maximum of two nondividend 
paying assets with the parameters: Si = S2 = K = 100, crl = rr2 = 0.2, p = 0.3, 
r = 0.05, and T = 1. Under the usual Black-Scholes assumptions, a formula for 
the price of the option can be derived (see, e.g., Johnson 1987 or Stulz 1982) and 
gives a price of 16.442. Running one Monte Carlo simulation with 1000 points 
(hence 2000 random numbers) gave an estimated price of 16.279 with a standard 
error of 0.533. Using 2000 one-dimensional low-discrepancy values gave a price 
estimate of 4.320 using the Sobol’ sequence and an estimate of 1.909 using the 
Faure sequence (starting at point 16). The cause of the problem can be seen by 
examining Figs. 2-5. 

Figs. 2 and 3 show 1000 two-dimensional Faure and Sobol’ points, respective- 
ly. The figures illustrate how the sequences fill the two-dimensional space in 
regular but different ways, By contrast, Figs. 4 and 5 show 2000 one-dimensional 
Faure and Sobol’ points, respectively, plotted in two dimensions. The plots are 
created by taking successive points in the l-dimensional sequence to be the (x, y) 
coordinates in two-dimensional space. In neither figure are the points filling the 
two-dimensional space (note that the axes do not extend from 0 to 1) and this 
explains why the price estimates do not converge to the correct values. Even in 
the quarter of the unit square where the points fall, the points do not uniformly 
fill the space. This problem is reminiscent of the well-known ‘collinearity’ or 
‘hyperplane’ problem of some pseudo-random number generators, but is even 
more serious with these low-discrepancy sequences. 

A similar problem can occur if a high-dimensional low-discrepancy sequence 
is used for a problem of low dimension. Fig. 6 shows the 49th and 50th 
dimension of 1000 50-dimensional Faure points. Using the last two dimensions 

“We take the first point of the Sobol’ sequence to be 0.5, not 0.0. 
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Fig. 2. 1000 two-dimensional Faure points. 
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Fig. 3. 1000 two-dimensional Sobol’s points. 

of the 50-dimensional sequence to price a two-dimensional option will give very 
poor results. 

3.3. Higher-dimensional test 

To test the effect of problem dimension, we price options in dimensions 
d = 10,50, and 100. We price discretely sampled geometric average Asian 
options, because the problem dimension is easily varied and a closed form 
solution for the price is available (see Turnbull and Wakeman, 1991). The price 
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Fig. 4. 2000 one-dimensional Faure points. 
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Fig. 5. 2000 one-dimensional Sobol’s points. 

of a geometric average Asian option is given by 

C = E[e-‘T(S” - K)+], 

where s” = (@= I Si)l’d and Si is the asset price at time iT/d. 
We test standard Monte Carlo, Monte Carlo with antithetic variates, and the 

low-discrepancy sequences of Faure, Sobol’, and Halton.” For each dimension, 

22 We thank Spassimir Paskov and Joseph Traub for providing their code for the Sobol’s 
sequences. 
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Fig. 6. Coordinates 49 and 50 of 1000 50-dimensional Faure points. 
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Fig. 7. Results with 50,000 points. 

we select 500 option parameters at random, and compute RMS relative error 
(see Eq. (12)) for each method. 23 Results for 50,000 and 200,000 sample points 
are given in Figs. 7 and 8, respectively. (The antithetic method uses 25,000 and 
100,000 independent pairs of points, respectively). 

23 The details of the distribution are given in Broadie and Detemple (1996). 
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Fig. 8. Results with 200,000 points. 

Results for the Halton sequence were not competitive and are suppressed. 
RMS error for standard Monte Carlo is nearly independent of the problem 
dimension. The antithetic method gives minimal variance reduction. The rela- 
tive advantage, in terms of RMS error, of the low-discrepancy sequences 
decreases with the problem dimension. For this test problem, the crossover 
point is beyond dimension 100. 

4. Estimating price sensitivities 

Most of the discussion in this paper centers on the use of Monte Carlo for 
pricing securities. In practice, the evaluation of price sensitioities is often as 
important as the evaluation of the prices themselves. Indeed, whereas prices for 
some securities can be observed in the market, their sensitivities to parameter 
changes typically cannot and must therefore be computed. Since price sensitivi- 
ties are important measures of risk, the growing emphasis on risk management 
systems suggests a greater need for their efficient computation. 

The derivatives of a derivative security’s price with respect to various model 
parameters are collectively referred to as Greeks, because several of these are 
commonly referred to with the names of Greek letters.24 Perhaps the most 
important of these - and the one to which we give primary attention - is delta: 
the derivative of the price of a contingent claim with respect to the current price 

24 See, e.g., Chapter 14 of Hull (1997) for background. 
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of an underlying asset. The delta of a stock option, for example, is the derivative 
of the option price with respect to the current stock price. An option 
involving multiple underlying assets has multiple deltas, one for each underlying 
asset. 

In the rest of this section, we discuss various approaches to estimating price 
sensitivities, especially delta. We begin by examining finite-difference approxi- 
mations and show that these can be improved through the use of commun 

random numbers. We then discuss direct methods that estimate derivatives 
without requiring resimulation at perturbed parameter values. 

4.1. Finite-difSerence approximations 

Consider the problem of computing the delta of the Black-Scholes price of 
a European call; i.e., computing 

where C is the option price and SO is the current stock price. There is, of course, 
an explicit expression for delta, so simulation is not required, but the example is 
useful for purposes of illustration. A crude estimate of delta is obtained by 
generating a terminal stock price 

(see (2) for notation) from the current stock price SO and a second, independent 
terminal stock price 

S&) = (S, + E)e(‘-w2)a~)T+~J?;Z’ 
(14) 

from the perturbed initial price SO + E, with Z and Z’ independent. For each 
terminal price, a discounted payoff can be computed like this: 

t(&,) = emrT max{o, ST -K}, c(& + &) = emrTmax{o, ST(&) - K} 

(see (3) for notation). A crude estimate of delta is then provided by the finite- 
difference approximation 

d” = E-l [C(S, + E) - Q&s,)]. (15) 

By generating n independent replications of Tr and ST(&) we can calculate the 
sample mean of n independent copies of A. As n +03, this sample mean 
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converges to the true finite-difference ratio 

8-l two + 4 - W,)l, (16) 

where C( .) is the option price as a function of the current stock price. 
This discussion suggests that to get an accurate estimate of d we should make 

E small. However, because we generated ST and ST(s) independently of each 
other, we have 

Var[d”] = s-‘(Var[QS, + E)] + Var[C(S,)]) = O(E-‘), 

so the variance of 2 becomes very large if we make E small. To get an estimator 
that converges to A we must let E decrease slowly as n increases, resulting in slow 
overall convergence. A general result of Glynn (1989) shows that the best 
possible convergence rate using this approach is typically n- 1’4. Replacing 
the forward difference estimator in (15) with the central difference 
(2&)-l [C(S, + E) - C(S, - E)] typically improves the optimal convergence rate 
to ,-i/3. These rates should be compared with n- ‘/‘, the rate ordinarily 
expected from Monte Carlo. 

Better estimators can generally be improved using the method of commun 
random numbers, which, in this context, simply uses the same 2 in (13) and (14). 
Denote by d” the finite-difference approximation thus obtained. For fixed E, the 
sample mean of independent replications of d” also converges to (16). The 
variance parameter is given by 

VarCd] =a-*(Var[Z’(S,)] + Var[C(S, + E)] -2Cov[Q&), C(S, + a)]), 

because C(S,) and C(S, + E) are no longer independent. Indeed, if they are 
positively correlated, then d’ has smaller variance than d”. That they are in fact 
positively correlated follows from the monotonicity of the function mapping 
2 to C by the argument used in our discussion of antithetics in Section 3. Thus, 
the use of common random numbers reduces the variance of the estimate of 
delta. 

The impact of this variance reduction is most dramatic when E is small. 
A simple calculation shows that, using common random numbers, 

1 C(S, + E) - C&)1 I 1 ST(e) - ST/ S Ee(‘-(1t2)u2)T+a~z. 

Because this upper bound has finite second moment, we may conclude that 

E[I &Se -I- E) - C(S,)]*] = O(E*), (17) 
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and therefore that 

Var[s-‘{C(SO + E) - C(S,)}] = O(1); 

i.e., the variance of d” remains bounded as E +O, whereas we saw previously that 
the variance of J increases at rate E- *. Thus, the more precisely we try to 
estimate d (by making E small) the greater the benefit of common random 
numbers. Moreover, this indicates that to get an estimator that converges to 
A we may let E decrease faster as n increases than was possible with d”, resulting 
in faster overall convergence. An application of Proposition 2 of L’Ecuyer and 
Perron (1994) shows that a convergence rate of .-ij2 can be achieved in this 
case, and that is the best that can ordinarily be expected from Monte Carlo. For 
more on convergence rates using common random numbers see Glasserman 
and Yao (1992), Glynn (1989), and L’Ecuyer and Perron (1994). 

The dramatic success of common random numbers in this example relies on 
the fast rate of mean-square convergence of c(&, + E) to c(S,) evidenced by (17). 
This rate does not apply in all cases. It fails to hold, for example, in the case of 
a digital option25 paying a fixed amount B if ST > K and 0 otherwise. The price 
of this option is C = e -‘*BP(ST > K); the obvious simulation estimator is 

C(S,) = lts,,K,e-‘TB. 

Because e&J and c(S, + E) differ only when ST I K < ST(&), we have 

E[ I&, + E) - c(S,)12] = B2e-2’TP(Sr I K -c WE)) 

= B2e-2’TP(Sr I K -=z (1 + s/S,JSr) = O(E), 

compared with 0(.s2) for a standard call. As a result, delta estimation is more 
difficult for the digital option, and a similar argument applies to barrier options 
generally. Even in these cases, the use of common random numbers can result in 
substantial improvement compared with differences based on independent runs. 

Table 6 compares the performance of four types of delta estimates: forward 
and central finite-differences with and without common random numbers. The 
methods are compared at four values of the perturbation parameter E, and 
applied to the two options discussed above. The values in the table are estimated 
root mean square errors. The numerical results substantiate the analysis above. 
Much lower errors are obtained for the standard call than for the digital option, 
allowing for smaller a; central differences beat forward differences; common 
random numbers help, but it helps the standard call more than the digital 

*5Also called a ‘binary’ or ‘cash-or-nothing’ option; see Hull (1997, p. 463). 
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Table 6 
RMS errors for various delta estimation methods 

& 

Independent Common 

Forward Central Forward Central 

Standard 10 0.10 
call 1 0.18 
option 0.1 1.78 

0.01 7.47 

Digital 20 0.51 
option 10 0.22 

5 0.16 
1 0.67 

0.01 0.100 0.009 
0.09 0.012 0.006 
0.87 0.006 0.006 
8.98 0.006 0.006 

0.37 
0.11 
0.07 
0.34 

0.51 
0.21 
0.11 
0.14 

0.37 
0.10 
0.05 
0.10 

Root mean square error of delta estimates for two options using four methods with various values of 
E. Both options have So = 100, K = 100, (r = 0.40, r = 0.10, and T = 0.2. The digital option has 
B = 100. Each entry is computed from 1,000 delta estimates, each estimate based on 10,000 
replications. The value of delta is 0.580 for the first option and 2.185 for the second. 

option. In several cases, the minimal error is obtained using a fairly large E. This 
reflects the fact that the bias resulting from a large E is sometimes overwhelmed 
by the large variance resulting from a small E. 

Although we have discussed common random numbers in only a limited 
context, it can easily be applied to a wide range of problems. If all stochastic 
inputs to a simulation are samples from the normal distribution, then common 
random numbers can be implemented by using the same samples at two 
different parameter settings. More generally, if the stochastic inputs are all 
drawn from a sequence of uniform random variates, then common random 
numbers can be implemented by using these variates at two different parameter 
settings. 

4.2. Direct estimates 

Even with the improvements in performance obtained from common random 
numbers, derivative estimates based on finite differences still suffer from two 
shortcomings. They are biased (since they compute difference ratios rather than 
derivatives) and they require multiple resimulations: estimating sensitivities to 
d parameter changes requires repeatedly running one simulation with all para- 
meters at their base values and d additional simulations with each of the 
parameters perturbed. The computation of lo-50 Greeks26 for a single security 

26 Sensitivities to various changes in the yield curve often account for several of these. 
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is not unheard of, and this represents a significant computational burden when 
multiple resimulations are required. 

Over the last decade, a variety of direct methods have been developed for 
estimating derivatives by simulation. Direct methods compute a derivative 
estimate from a single simulation, and thus do not require resimulation at 
a perturbed parameter value. Under appropriate conditions, they result in 
unbiased estimates of the derivatives themselves, rather than of a finite-differ- 
ence ratio. Our discussion focuses on the use of pathwise derivatives as direct 
estimates, based on a technique generally called injinitesimal perturbation 
analysis (see, e.g., Glasserman, 199 1). 

The pathwise estimate of the true delta dC/dS, is the derivative of the sample 
price C with respect to So. More precisely, it is 

de 
- = F-7 E-l [&s, + E) - QS,)], 
dSo 

provided the limit exists with probability 1. If C&J and C(S, + E) are computed 
from the same Z, then provided ST # K, we have 

dC de dSr -rT1 ST 

dS,=dS,zg=e 
{Sr'Ki s,' (18) 

We have used (13) to get 

dST W-(1/2)a*)T+a,/?Z _ ST 
-=e -- 

dS0 SO' 

and 

ST > K, 

ST < K. 

At ST = K, C fails to be differentiable; however, since this occurs with probabil- 
ity zero, the random variable de/d& is almost surely well defined. 

The pathwise derivative de/d& can be thought of as a limiting case of the 
common random numbers finite-difference estimator in which we evaluate the 
limit analytically rather than numerically. It is a direct estimator of the option 
delta because it can be computed directly from a simulation starting with So 
without the need for a separate simulation at a perturbed value Se. This is 
evident from the expression in (18). The question remains whether this estimator 
is unbiased; that is, whether 

E $ =$$E[C]. 
[ 1 0 0 
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The unbiasedness of the pathwise estimate thus reduces to the interchangeability 
of derivative and expectation. The interchange is easily justified in this case; see 
Broadie and Glasserman (1996) for this example and conditions for more 
general cases. Applying the same reasoning used above, we obtain the following 
pathwise estimators of three other Greeks for the Black-Scholes price: 

Rho(dC/dr): KTe-‘TII,T > ,+ 

Vega(dC/da): eerT1 pT 2 K} s, MW&) - (I - $a’)T ), 
a 

Theta(- dC/dT): re -‘Tmax{Sr - K, 0} - l,,, 2 KJe-fT Y$ (l@T/&) 

+(r-+a2)T). 

Each of these estimators is unbiased. 
Of course, Monte Carlo estimators are not required for these derivatives 

because closed-form expressions are available for each. The Black-&holes 
setting is useful for illustration, but the utility of the technique rests on its 
applicability to more general models. In Broadie and Glasserman (1996), path- 
wise estimates are derived and studied (both theoretically and numerically) for 
Asian options and a model with stochastic volatility. For example, the Asian- 
option delta estimate is simply 

e-rT_ ; 1 S>K}r 
0 { 

where .!? is the average asset price used to determine the option payoff. Evaluat- 
ing this expression takes negligible time compared with resimulating to estimate 
the option price from a perturbed initial stock price. The pathwise estimate is 
thus both more accurate and faster to compute than the finite-difference approx- 
imation. These advantages extend to a wide class of problems. 

As already noted, the unbiasedness of pathwise derivative estimates depends 
on an interchange of derivative and expectation. In practice, this generally 
means that the security payoff should be a pathwise continuous function of the 
parameter in question. The standard call option payoff eerT max (0, ST - K} is 
continuous in each of its parameters. An example where continuity fails is 
a digital option with payoff e-rTllST,K) B, with B the amount received if the 
stock finishes in the money. 27 Because of the discontinuity at Sr = K, the 

27 We used this example at the end of Section 3. The settings are related: problems for which 
common random numbers is particularly effective are generally problems to which the pathwise 
method can be applied even more effectively. 
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pathwise method (in its simplest form) cannot be applied to this type of 
option. 

The problem of discontinuities often arises in the estimation of gamma, the 
second derivative of an option price with respect to the current price of an 
underlying asset. Consider, again, the standard European call option. We have 
an expression for de/d&, in (18) involving the indicator l(S,,KJ. This shows that 
dc/dS, is discontinuous in Sr, preventing us from differentiating pathwise 
a second time to get a direct estimator of gamma. 

To address the problem of discontinuities, Broadie and Glasserman (1996) 
construct smoothed estimators. These estimators are unbiased, but not as simple 
to derive and implement as ordinary pathwise estimators. Broadie and Glasser- 
man also investigate another technique for direct derivative estimation called 
the likelihood ratio method. This method differentiates the probability density of 
an asset price, rather than the outcome of the asset price itself.‘s The domains of 
this method and the pathwise method overlap, but neither contains the other. 
When both apply, the pathwise method generally has lower variance. 

Overviews of these methods can be found in Glasserman (1991), Glynn (1987), 
and Rubinstein and Shapiro (1993). For discussions specific to financial applica- 
tions see Broadie and Glasserman (1996) and Fu and Hu (1995). 

5. Pricing American options by simulation 

European contingent claims have cash flows that cannot be influenced by 
decisions of the owner. Examples include European options, barrier options, 
and many types of swaps. By contrast, the cash flows of American contingent 
claims depend both on the price path of the underlying asset or assets and the 
decisions of the owner. Many types of American contingent claims trade on 
exchanges and in the over-the-counter market. Examples include American 
options, American swaptions, shout options, and American Asian options. They 
also arise in other contexts, for example as ‘real options’ in the theory of 
economic investment described in Dixit and Pindyck (1994). 

To be concrete, suppose that we wish to estimate the quantity 
maxr E[e-“h(S,)], where I is the constant riskless interest rate, h(S,) is the 
payoff at time z in state S,, and the max is taken over all stopping times r I T. 
This formulation of the American pricing problem will suffice to illustrate the 
major points. First, note that the state can be vector-valued and hence applies to 
pricing American options on multiple assets. Second, since simulation algo- 
rithms are discrete in nature, the continuous-time exercise decision must be 

“Though not presented in a Monte Carlo context, the expressions in Carr (1993) are potentially 

relevant to this approach. 
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approximated by restricting the exercise opportunities to lie in a finite set of 
times 0 = t,, < ri < ... < td = T. This is not always a serious restriction. For 
example, for a call option on a stock which pays dividends at discrete points in 
time, it can be shown that early exercise is only optimal just prior to the 
ex-dividend dates. In other cases, Richardson or other extrapolation techniques 
can be used to better approximate the price with exercise in continuous time 
from a finite set of exercise opportunities. ” However, we now restrict attention 
to estimating the quantity 

P 3 max E [e-“h(S,)], 
* (19) 

where the max is taken over all stopping times r in the set tip for i = 0, . . . , d. The 
need to estimate an optimal stopping time is the crucial distinction between 
American and European pricing problems. 

If the state space is of low dimension, say three or less, a discretization scheme 
together with a dynamic programming algorithm can often be used to numer- 
ically approximate the value in (19). Even in these cases, simulation can be used 
to estimate the expectation in the recursive step. Simulation-based methods 
become essential when the dimension of the state space is large. 

An obvious simulation-based algorithm for estimating the quantity in Eq. (19) 
is to generate a random path of states S,{, for i = 1, . . . , d, and form the path 
estimate 

jj = max e-"lh(S,,). 
i=O, . . ..d 

However, this estimator corresponds to using perfectforesight, and so it is biased 
high. That is, E[p] 2 P, which follows immediately from the inequality 

ma&O, _.. ,de -“ih(S,i) 2 e-“‘h(S,). A natural goal would be to develop an alter- 
native unbiased estimator. A negative result in this regard is provided in Broadie 
and Glasserman (1997): among a large class of estimators, there is no unbiased 
estimator of P. In particular, the estimators proposed in Tilley (1993), Grant et 
al. (1994), and Barraquand and Martineau (1995) are all biased. Unfortunately, 
they provide no way to estimate the extent of the bias or to correct for the bias in 
a general setting. Broadie and Glasserman (1997) circumvent this problem by 
developing two estimators, one biased high and one biased low (but both 
asymptotically unbiased), which can be used together to form a valid confidence 
interval for the quantity P. In the remainder of this section, we give brief 

” Geske and Johnson (1984) gave the first financial application of Richardson extrapolation. An 
extensive treatment of extrapolation techniques is given in Marchuk and Shaidurov (1983). 
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descriptions of the four methods mentioned and describe some strengths and 
weaknesses of each. 

4. I. Tilley ‘s bundling algorithm 

Tilley (1993) sparked considerable interest by demonstrating the potential 
practicality of applying simulation to pricing American contingent claims. Tilley 
describes a ‘bundling procedure’ for pricing an American option on a single 
underlying asset. To estimate P he suggests simulating n paths of asset prices 
denotedS,;(j)fori=l,..., d,andj=l,..., n in the usual way. Next partition 
the asset price space and call the paths which fall into a given partition at a fixed 
time a ‘bundle’. A dynamic programming algorithm is applied to bundles to 
estimate C. In particular, the estimated option price PZi(j) at time ti for path j is 
the maximum of the immediate exercise value, h(S,,(j)), and the present value of 
continuing. The latter value is defined to be the average of e-‘(‘8+‘-‘1)P,~+,(k) over 
all paths k which fall in the bundle containing path j at time ti. Details of the 
partitioning are given in Tilley (1993). 

In order to implement the algorithm, all paths must be stored so they can be 
sorted into bundles at each time step. Since simulation typically requires a large 
number of paths for good estimates, the storage and sorting requirements can be 
significant. More importantly, the algorithm does not easily generalize to 
multiple state variables. In higher dimensions, it is not clear how to define the 
bundles. Even then it is likely that most partitions will contain very few paths 
and lead to a large bias, or the partitions will be so large that the continuation 
values are poorly estimated. 

Because Tilley’s algorithm uses the same paths to estimate the optimal 
decisions and the value, the estimator tends to be biased high (although the 
bundling induces an approximation which is difficult to analyze). Tilley intro- 
duces a ‘sharp boundary’ variant which reduces the bias, but this variant does 
not easily generalize to higher dimensions. Carriere (1996) contains further 
analysis of Tilley’s algorithm and suggests a procedure based on spline functions 
to reduce the bias. It remains to be seen whether the spline procedure is practical 
for higher-dimensional problems. Nevertheless, for single state variable prob- 
lems, Tilley demonstrated the potential practicality of applying simulation to 
American-type pricing problems. 

4.2. Barraguand and Martineau ‘s stratijed state aggregation (SSA) algorithm 

Barraquand and Martineau (1995) propose a partitioning algorithm, but 
unlike Tilley’s bundling algorithm, they partition the payoff space instead of the 
state space. Hence, only a one-dimensional space is partitioned at each time 
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step, independent of the number of state variables3’ Their algorithm works as 
follows. 

First, partition the payoff space into K disjoint cells. Then simulate II paths of 
asset prices denoted S,(j) for i = 1, , . , dandj=l,...,nintheusualway.For 
each payoff cell k at time tit record the number of paths, a,,(k), which fall into the 
cell. For each pair of cells k and 1 at consecutive times ti and ti+ r, record the 
number of paths, b,(k, I), which fall into both cells. Also, for each cell k at time t;, 
record the sum of the payoff values, q(k) = C h(Sfi(j)), where the sum is over all 
paths j which fall into cell k at time ti. The transition probability from (ti, k) to 

tti+ 13 I) is approximated by p,,(k, I) = b,,(k, l)/a,Jk). The estimated option price 
P,,(k) at time ti in cell k is the maximum of the immediate exercise value and 
the present value of continuing. The immediate exercise value is approximated 
by cJk)/a,(k). The present value of continuing is approximated by 
e-r(“+l-fj)~;K=, p,,(k, l)P,+,(Z). This procedure can be applied backwards in time 
to determine the simulation estimate of the price P. 

Details of a payoff space partitioning scheme are given in Barraquand and 
Martineau (1995). Once a single path is generated and the summary information 
a, b, and c is recorded, the path can be discarded. Hence the storage require- 
ments with this method are modest: on the order of K’d. One drawback of this 
method is a possible lack of convergence, as the following example illustrates. 

Fig. 9 shows the evolution of two asset prices (S,, S,). The option payoff is 
h(Si , S,) = max(Si , S,) and for convenience the riskless rate is taken to be zero. 
Using the risk-neutral probabilities in Fig. 9, the true value of the option at time 
to is 11, which at time t, involves exercise in state (8,4) but continuing in state 
(8,8). (Note that asset 1 pays a dividend of 4 and asset 2 a dividend of 2 after time 
tl.) When the states are partitioned by their payoffs, these two states are 
indistinguishable. As seen in the payoff evolution in Fig. 10, the best strategy at 
time tl in payoff state 8 is to continue. The apparent value of the option in 
Fig. 10 is 9 (= (l/2)14 + (l/2) 4). In this example, partitioning the payoff space 
leads to a significant underestimate of the option value. Hence, a simulation 
algorithm based on partitioning the payoff space cannot converge to the correct 
value. Although this example may seem contrived, Broadie and Detemple (1994) 
show that the payoff value is not a sufficient statistic for determining the optimal 
exercise decision for options on the maximum of several assets. Indeed, the 
payoff process h(S,) is hardly ever Markovian. 

There is currently no way to bound the error in the Barraquand and 
Martineau method. Without an error estimate, it is difficult to determine the 

3o In fact, they distinguish between partitioning the state space, which they term ‘stratified state 
aggregation’, and partitioning the payoff space, which they term ‘stratified state aggregation along 
the payoh’. The latter method is the only one that they test or specify in detail. Hence we focus our 
discussion on this variant of their method. 
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* 
64) (4, 2) 

t0 t1 

Fig. 9. State evolution. 

f2 t 

to t1 f2 7 
Fig. 10. Payoff evolution. 

appropriate number of paths to simulate or the appropriate number of parti- 
tions to use. Their method can be slightly modified to generate an option price 
estimate which is biased low as follows. Their procedure gives an exercise strategy 
based on the immediate exercise payoff. Using this strategy, a new (independent) 
set of paths can be simulated, and an option value can be estimated under the 
exercise strategy previously estimated. The resulting option price estimate will 
be biased low because the exercise policy is not, in general, the optimal policy. 
With this modification, the average direction of the error is known. Raymar and 
Zwecher (1996) extend the Barraquand and Martineau approach by basing the 
exercise decision on a partition of two state variables, rather than one. 

4.3. Broadie and Glasserman ‘s algorithm 

Broadie and Glasserman (1997) propose an algorithm based on simulated 
trees. In order to handle the bias problem, they develop two estimators, one 
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biased high and one biased low, but both convergent and asymptotically 
unbiased as the computational effort increases. A valid confidence interval for 
the true value P is obtained by taking the upper confidence limit from the ‘high’ 
estimator and the lower confidence limit from the ‘low’ estimator. Briefly, their 
algorithm works as follows. 

First, simulate a tree of asset prices (or, more generally, state variables) using 
b branches at each node. Two paths emanating from a node evolve as indepen- 
dent copies of the state process. The high estimator, 0, is defined to be the value 
obtained by the usual dynamic programming algorithm applied to the 
simulated tree. Then repeat the process for n trees, and compute a point estimate 
and confidence interval for EC@]. A low estimator is obtained by modifying the 
dynamic programming algorithm at each node. Instead of using all b branches 
to determine the decision and value, bl branches are used to determine the 
exercise decision, and the remaining b2 = b - b, branches are used to determine 
the continuation value. Their actual low estimator, 0, includes another modifica- 
tion of this procedure which reduces the variance of the estimate. As before, 
estimates from n trees are combined to give a point estimate and confidence 
interval for E[O]. Details of the procedure can be found in Broadie and 
Glasserman (1997). 

For the 0 estimator, all of the branches at a given node are used to determine 
the optimal decision and the corresponding node value, and this leads to an 
upward bias, i.e., E[O] 2 P. For the 8 estimator, the decision and the continua- 
tion value are determined from independent information sets. This eliminates the 
upward bias, but a downward bias occurs, i.e., E[O] I P. The intuition 
for this result follows. If the correct decision is inferred at a node, the node 
value estimate would be unbiased. If the incorrect decision is inferred at a 
node, the node value estimate would be biased low because of the suboptimality of 
the decision. The expected node value is a weighted average of an unbiased 
estimate (based on the correct decision) and an estimate which is biased 
low (based on the incorrect decision). The net effect is an estimate which is biased 
low. Both estimators are consistent and asymptotically unbiased as b increases. 

The computational effort with this algorithm is order nbd and its main 
drawback is that d cannot be too large for practical computations. Broadie and 
Glasserman (1997) give numerical results for options with d = 4. As mentioned 
earlier, to approximate option values with continuous exercise opportunities, 
some type of extrapolation procedure is required. Special care is necessary to 
implement extrapolation procedures within a simulation context because of the 
randomness in the estimates. 

4.4. Other developments 

Grant et al. (1994) describe a method specially designed to price American 
arithmetic Asian options on a single underlying asset. In this application the 
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optimal exercise decision depends on the current asset price and the current 
value of the average. Using repeated simulation runs, they attempt to identify 
the form of an optimal exercise policy based on these two pieces of information. 
Once an exercise policy is specified, simulation is used to estimate the option 
value under this fixed policy. Since the fixed policy is a suboptimal approxima- 
tion to the optimal stopping rule, their procedure leads to a simulation 
estimator which is biased low. 

GVW perform extensive sensitivity analysis which indicates that their option 
value estimate is relatively insensitive to deviations in the chosen exercise policy. 
So, it may be that their method gives good option price estimates relative to 
some accuracy level, but it is not clear how to quantify their error. It is not clear 
how to improve their estimates to an arbitrary accuracy level as the simulation 
effort increases. Their procedure is specific to the case of American Asian 
options and does not at this point constitute a general approach to pricing 
American contingent claims. 

Bossaerts (1989) proposes two estimators of optimal early exercise, a moment 

estimator and a smooth optimization estimator, and studies their convergence 
properties. His method appears to require a parametric representation of the 
exercise boundary and may therefore face difficulties in higher dimension. The 
optimization approach described in Fu and Hu (1995) also requires a parametric 
representation. 

Rust (1995)31 studies the general problem of solving discrete decision prob- 

lems, which include optimal stopping problems as a special case. He develops 
a Monte Carlo method and shows that it succeeds in breaking the ‘curse 
of dimensionality’ in these problem. Rust’s focus is on computational 
complexity, but his approach appears to provide a promising direction for 
finance applications. 

4.5. Summary 

The valuation of securities with American-type features requires the 
determination of optimal decisions. High dimension versions of these problems 
arise from multiple state variables and/or path dependencies. Although 
simulation is a powerful tool for solving some higher-dimensional problems, 
conventional wisdom was that simulation could not be applied to American- 
style pricing problems. The algorithms described here represent the first at- 
tempts to solve these problems that were long thought to be computationally 
intractable. 

31 We thank A. Dixit for pointing us to this reference. 
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6. Further topics 

We conclude this paper with a brief mention of two important areas of current 
work in the application of Monte Carlo methods to finance, not discussed in this 
article. 

A central numerical issue in simulating interest rates, asset prices with 
stochastic volatilities, and other complex diffusions is the accurate approxima- 
tion of stochastic differential equations by discrete-time processes. Kloeden and 
Platen (1992) discuss a variety of methods for constructing discrete-time approx- 
imations with different orders of convergence. Andersen (1995) applies some of 
these to interest-rate models. In general, decreasing the time increment in 
a discrete approximation can be expected to give more accurate results, but at 
the expense of greater computational effort. Duffie and Glynn (1995) analyze 
this trade-off and characterize asymptotically optimal time steps as the overall 
computational effort grows. 

In this article we have focused almost exclusively on the use of Monte Carlo 
for pricing. A related, growing area of application is risk management - in 
particular, the use of Monte Carlo to assess value at risk, credit risk, and related 
measures. For some examples of recent applications in these areas see Iben and 
Brotherton-Ratcliffe (1994), Lawrence (1994), and Beckstrom and Campbell 
(1995). 

Appendix: Moment controls beat moment matching asymptotically 

As mentioned in Section 2.4, any time a moment is available for use with 
moment matching, it can alternatively be used as a control variate. In this 
appendix, we argue that moment matching is asymptotically equivalent to 
a control variate technique with suboptimal coefficients, and is therefore domin- 
ated by the optimal use of moments as controls. This asymptotic link applies in 
large samples. A related link between linear and nonlinear control variates is 
made in Glynn and Whitt (1989), but the current setting does not fit their 
framework. 

Let Z,, Zz, . . . be i.i.d. (not necessarily normal) with mean p and variance 
c2. Let s denote the sample standard deviation of Zi, . . . , Z, and 2 their 
sample mean. Suppose we want to estimate E[f(Z)] for some function j 
The standard estimator is n-lx:= ,f(Z,) and the moment matching 
estimator is n-l C:= rf(Zi) with z”i defined in (9). For each i, the scaled 
difference 

Jt;(z”i - Zi) = J; ( > 7 Zi - &[(OZ/S) - /A] 
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converges in distribution, by the central limit theorem for Z and s. 
Thus, (zi - Zi) = Op(n-ii2) (see, e.g., Appendix A of Pollard 1984 for O,, op 
notation). 

Suppose now that, with probability one,fis differentiable at Zi. Then 

f(Zi) =f(Zi) +f’(Zi)[Zi - Zi] + Op(?l-"2), 

suggesting that up to terms o,(n - 1’2) the moment matching estimator and 
standard estimator are related via 

i i$lf(ii) z k ,$ ftzi) + i ,$ f’(zi) lIzi - ziI 
l-l I-1 

=ii$lf(Zi) +i,if’(Zi) t-1 Z,-tZ+p] 
1-l K 1 

= i i$lf(zi) + (i .$ f’tZiJZi ’ -l 
I-1 )( ) s 

ZE i &f tzi) + B11 (; 1)+B,(+) - - 

wherepi+/?i,i=1,2,asn+a,with 

B1 = E Cf '(ZVI and P2 = ECf 'WI. 

Thus, moment matching is asymptotically equivalent to using 

(:-I) and (e-92) 

as controls (both quantities converge to zero almost surely) with estimates of 
coefficients bl, flz. In general, these do not coincide with the optimal coefficients 
at, /I:, so moment matching is asymptotically dominated by the control variate 
method. In addition, the controls in (20) introduce some bias (as does moment 
matching itself) because though they converge to zero they do not have mean 
zero for finite n. In contrast, the more natural moment control variates (s’ - a”) 
and (2 - p) have mean zero for all n and thus introduce no bias. 
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