3D Pipeline Segmentation (planar) Registration (using lines)

Feature-based range-range registration

- Pairwise registration between two scans.
- Automated method uses linear features.
- Features extracted at boundaries of SPAs.
- Two correctly matched lines between scans provide solution.
- If scan A contains N lines and scan B contains M lines
 Need to consider O(N²M²) pairs.
 - □ For each pair verification of registration needed.
- Naïve method is time consuming.
- Two efficient novel algorithms developed.
- Problems also induced by scene symmetry.
- User-interface for smart user interaction developed.

First efficient algorithm

- Problems to tackle:
 - □ Noise: Lines and normals do not match exactly.
 - □ Search space is large.
 - □ Verification of correct match expensive.
- Search for correct pairs of matched lines.
 Search first for one pair.
 - Proceed to search for second pair.
 - Grade each computed transform: # of matches.
 - □ Keep the transform with the highest grade.
 - □ At the end refine best transform using all lines.

Results

Pair	Line Pairs	Pre (%)	S2 % (#)	S3 % (#)	Matches	t (sec)	Error
1	301×303	16	1.7(1555)	0.38 (346)	35	15	10.99mm
2	303×290	17	2.8(2429)	0.84(735)	25	29	6.28mm
3	290×317	21	2.8(2572)	1.88 (1728)	36	52	2.77mm
4	317×180	19	3.4(1955)	1.15(656)	28	21	14.96mm
5	211×180	21	4.6 (1759)	2.1 (802)	31	19	9.26mm
6	180×274	17	2.6(1306)	0.34(168)	22	9	11.42mm
7	114×274	19	1.6(507)	2.2 (894)	33	6	-5.61mm
8	274×138	16	1.8(667)	1.5(557)	31	5	- 3.08mm
9	114×138	18	2.7(423)	3.8(593)	32	4	- 3.94mm
10	138×247	18	2.3(791)	1.3(429)	20	5	-1.36mm
		Cathedra	l - Results	(average erre	or 17.3mm	ι)	
1	406×464	7	0.9(1650)	0.3(615)	42	39	9.37mm
2	464×269	7	0.7(888)	0.3(443)	34	16	16.9mm
3	406×269	11	0.7 (794)	0.1 (104)	13	9	56.08 mm
4	151×406	21	1.1(668)	0.8(480)	16	7	5.34mm
5	269×387	11	0.7(702)	0.4(369)	19	9	15.8mm
6	326×197	10	0.9(597)	0.1 (49)	24	4	11.68mm
7	197×143	15	1.0 (290)	0.3 (82)	30	3	6.44mm
8	143×194	16	1.9(520)	0.1 (31)	11	3	29.24mm
9	194×356	15	2.0(1429)	0.1 (93)	19	11	30.82mm

Translation Estimation

Translation estimation

□ Pick robust line pairs to estimate translation

- Cluster all computed translations.
- Pick N most frequently appeared translations.
- For each of the N translations:
 - \square Apply an optimization routine on R and T.
 - $\hfill\square$ Count matched line pairs with optimized T.
- Pick the T with the largest number of matches.

Iterative Closest Point Algorithm

Before ICP

After ICP

