
Range Image Segmentation for Modeling and Object Detection in Urban Scenes∗

Cecilia Chao Chen Ioannis Stamos
Graduate Center / CUNY Hunter College / CUNY

New York, NY 10016 New York, NY 10021
cchen@gc.cuny.edu istamos@hunter.cuny.edu

Abstract

We present fast and accurate segmentation algorithms
of range images of urban scenes. The utilization of these
algorithms is essential as a pre-processing step for a vari-
ety of tasks, that include 3D modeling, registration, or ob-
ject recognition. The accuracy of the segmentation module
is critical for the performance of these higher-level tasks.
In this paper, we present a novel algorithm for extracting
planar, smooth non-planar, and non-smooth connected seg-
ments. In addition to segmenting each individual range im-
age, our methods also merge registered segmented images.
That results in coherent segments that correspond to urban
objects (such as facades, windows, ceilings, etc.) of a com-
plete large scale urban scene. We present results from ex-
periments of one exterior scene (Cooper Union building,
NYC) and one interior scene (Grand Central Station, NYC).

1. Introduction

We present fast and accurate segmentation algorithms of
range images of urban scenes. The utilization of these al-
gorithms is essential as a pre-processing step for a variety
of tasks, that include 3D modeling, registration, or object
recognition. The accuracy of the segmentation module is
critical for the performance of these higher-level tasks. The
major challenges in this direction have to do with a) over- or
under-segmentation, and b) generation of disconnected seg-
ments due to occlusions or incomplete information. In this
paper, we present a novel algorithm for extracting planar,
smooth non-planar, and non-smooth connected segments,
and then merging all these extracted segments from a set
of overlapping range images. Our input is a collection of
registered range images. Our output is a number of seg-
ments that describe urban entities (e.g. facades, windows,
ceilings, architectural details). In this work we detect dif-
ferent segments, but we do not yet identify (or recognize)

∗Supported in part by NSF CAREER IIS-0237878 and NSF MRI/RUI
EIA-0215962.

them. Previous work [6] also segments range image into
distinct surfaces (e.g. walls, chairs, lamps), utilizing recur-
sive graph cut approach. Our approach, however, is more
efficient, and more accurate at planar surface extraction.

The first step of most range image segmentation algo-
rithms (either edge- or region-based [7][8][9][10][11]) is
the surface normal computation at every 3D range point.
This is a critical step for precise region extraction, as inac-
curate normal of range points near region boundaries might
cause inaccurate segmentation results (details in Sec. 2.1).
Our algorithm calculates local surface normals for all planar
points with high accuracy, and extracts precise boundaries
of planar regions. Additionally, the algorithm accurately ex-
tracts smooth non-planar regions with gradually changing
surface normals, since these regions appear almost planar
at every point’s local neighborhood. Finally, the remaining
points are clustered into connected components.

In addition to segmenting each individual scan, our
methods also merge registered segmented images. The
merging results in coherent segments that correspond to ur-
ban objects (e.g. facades, windows, ceilings) of a complete
large scale urban scene. Based on this, we generate a differ-
ent mesh for each object. In a modeling framework, higher
order processes can thus manipulate, alter, or replace indi-
vidual segments. In an object recognition framework, these
segments can be invaluable for detecting and recognizing
different elements of urban scenes.

We present experimental results of one exterior scene
(Cooper Union building, NYC) and one interior scene
(Grand Central Station, NYC). Our paper is organized as
follows: Section 2 presents the segmentation algorithm,
Section 3 the merging algorithm, Section 4 the experimental
results and conclusions.

2. Range Image Segmentation

The first step is to acquire a set of range scans Rm(m =
1, . . . , M) that adequately cover the 3D scene. The laser
range scanner used in our work is a Leica HDS 2500[1], an
active sensor that sweeps an eye-safe laser beam across the

scene. It is capable of gathering one million 3D points at a
maximum distance of 100 meters with an accuracy of 6mm.
Each 3D point is associated with four values (x, y, z, l)T ,
where (x, y, z)T is its Cartesian coordinates in the scanner’s
local coordinate system, and l is the laser intensity of the
returned laser beam.

In this section we present our range image segmentation
method. It consists of the following steps, the first one be-
ing the most critical: a) Normal computation on each 3D
point (Sec. 2.1), b) Extraction of planar and smooth non-
planar regions (Sec. 2.2), and c) Extraction of non-smooth
connected regions (Sec. 2.3).

2.1. Normal Computation

Each range scan Ri is represented as a two-dimensional
array of 3D points {r(k, l), k = 1 . . . N, l = 1 . . . M}1. We
take advantage of the adjacency of 3D points, gathered in a
regular two-dimensional grid by the range scanning equip-
ment, in order to speed up the normal computation and clus-
tering processes. We can thus estimate the local surface
normal of each 3-D point by fitting a local plane on the 3-
D points of its k × k neighborhood. We note, however, that
simply fitting a local plane within a k×k neighborhood will
result in inaccurate calculation of surface normals close to
surface boundaries, or in non-locally planar areas. We first
present several types of local k×k neighborhoods, and then
describe how our algorithm handles each case.

Fig. 1 shows several cases of point P (the black dot) and
its local neighborhoods (all the hollow dots). Without loss
of generality, we display 5× 5 neighborhoods. In each sub-
figure, the arrow shows the approximate scanning direction.
Regions S, S1 and S2 are real surfaces, while F is the fit-
ted local plane at P . In all cases except (f) S, S1 and S2

are approximately planar. In (f), S is a general surface. In
Figs. 1 (a) and (b), P is a locally planar point, but the angle
between its local plane and the scanning direction differs
between (a) and (b). In Fig. 1 (a), the angle is small. There-
fore, some of P ’s neighbors are farther away than others.
In Fig. 1 (b), the angle is large, i.e. the viewing direction
is almost vertical to P ’s local plane. Thus, all its neighbors
are almost evenly distributed. In Figs. 1 (c),(d), and (e), P
is an edge point. Fig. 1 (c) shows a jump edge with missing
neighbors; Fig. 1 (d) shows a jump edge between two sur-
faces; Fig. 1 (e) shows a fold edge. Finally, in Fig. 1 (f), P
is a non-planar point.

Previous methods [7][10][11][12] set a distance thresh-
old for selecting the neighbors of a point P for surface fit-
ting. The distance threshold is either a pre-selected con-
stant, or is calculated from the point distribution in the range
image. Although these approaches correctly calculate the

1The indices k, l define the position and orientation of the laser-beam
which produces the 3-D point r(k, l).

Figure 1. Different types of local surface.

surface normal for most locally planar points, they may fail
in the following cases.

In Fig. 1 (a), all of P ’s neighbors should be used to calcu-
late surface normal, while in Fig. 1 (d), only those neighbors
located on plane S2 should be used. If both such cases exist
in a range image and d1 > d2, then some surface normal
computations will be inaccurate, irrespective of the selected
distance threshold. Another difficult case is caused by fold
edges (Fig. 1 (e)). Neighbors from both S1 and S2 are used
to compute surface normal of P , resulting in plane F . Pre-
vious approaches including optimal scale selection [2] and
k-nearest neighbors [3] are not capable of computing P ′s
true local plane, S2, in this case. Methods with robust es-
timators [4][5] are possible solutions, but they have higher
time complexity comparing to our method.

In our algorithm, we carry out local plane fitting fol-
lowed by refining steps in order to achieve accurate calcu-
lation of surface normals for points in all the above cases.
During this process, points are categorized into four types:
Interior planar points (type 1), wide jump edge points (type
2), narrow jump edge and fold edge points (type 3), and
non-planar points (type 4). Interior planar points are used
to refine the surface normal calculation for edge points. Be-
low we describe the algorithm in more detail.

(1) First, we consider all existing neighbors in the k × k
neighborhood of every point P and fit a local plane. We set
k to be 5 in our experiments. During the plane fitting, the
maximum distance between any neighbor point to the fitted

plane, dmax, is used to measure the goodness of fit. By
setting a very small threshold θfit (in our algorithm θfit =
0.01m, which is slightly larger than the maximum expected
error of our range scanner 6mm), we identify planar points
(Figs. 1 (a)(b)) and edge points (Fig. 1 (c)). The almost
perfect fit assures us that only points of the same plane have
been used. These points are marked as type 1 points.

(2) Second, we recalculate the surface normal for some
points (i.e. points that fall into the case of Fig. 1 (d)). More
specifically, we consider points on relatively wide jump
edges. In this step, we discard neighbors of P by using a
dynamic threshold that depends on its depth, depthP , and
the average angle α̂ between neighboring scanning beams
in the range image, as explained below.

(a) (b)

Figure 2. (a) Distance estimation between
neighbors (see text). (b) Refinement of P ’s
surface normal with its neighbor N .

Assume point P ’s local surface plane is perpendicular
to the scanning direction (see Fig. 2(a)). The distance be-
tween P and its neighbor N is |PN | = distP = depthP ∗
tan(α) .= depthP ∗ α (see footnote2). This value is the
expected distance between neighboring points. Note, how-
ever, that the scanning direction may not be exactly per-
pendicular to surface normal. As the angle β between sur-
face line PN and scanning direction decreases, the distance
|PN | becomes larger. When β = 15◦, as the dashed line
PN ′ shows, the distance PN ′ ≈ PN

sin(� PN ′N)
≈ PN

sinβ ≈
4 ·PN

.= 4 ·depthP ·α. In order to accommodate for cases
where β ranges between 15◦ and 90◦ (most surfaces in our
scans are within this range), we calculate 4 · depthP · α at
every point P and use it as a loose distance threshold for its
immediate neighbors.

Since the threshold derived above is a very loose one, it
can only be used to accurately compute surface normals for
points near wide jump edges (Fig. 1 (d)). Similarly to step 1,
we measure the goodness of local plane fitting by compar-
ing the fitting error dmax with θfit. Well-fitted points (i.e.

2We actually calculate depthP ∗ α for better performance, because
tan(α)

.
= α when α < 15◦. In our range image data, angle between

neighboring scanning beams is at most 0.002◦, and in most range images,
α is small enough to satisfy tan(α)

.
= α.

points with dmax < θfit) are categorized as type 2 points
(Fig. 1(d) with large d2). The processing of other narrow
jump edges is described in step 3 below.

(3) This step aims at correcting normal calculations (sur-
face fitting) for narrow jump edges (Fig. 1 (d)) as well as
fold edges (Fig. 1 (e)). The previous two steps identified
all planar points that are relatively far from planar region
boundaries. Points near boundaries would still have inaccu-
rate surface normals. Let us illustrate the calculation of sur-
face normals of these points using Fig. 2(b). P is not iden-
tified as planar due to the large plane fitting error. However,
it is at most k points away from an identified planar point N
that is on the same plane with it because N ’s surface normal
was accurately calculated with its k × k neighborhood. As
such, our method searches around a neighborhood slightly
larger than k × k, and locates the best neighbor point N so
that the distance from P to N ’s local plane is minimum.

Specifically, the algorithm considers every point P that is
neither of type 1 nor of type 2. We go through P ’s (k+2)×
(k+2) neighborhood, and compute the distances of P to the
fitted local planes of all type 1 or type 2 neighbors. Also,
we compute the distance between P and the center of its
own fitted local plane (if P has been fitted twice in steps 1
and 2, the one with smaller fitting error is selected). Among
these point-to-plane distances, the smallest one is selected.
If this is the distance of P to N ’s plane, and the distance
is smaller than threshold θfit, we then consider point P to
be belonging to N ’s local plane. In that case, P ’s local
surface normal is set to be the same as N ’s surface normal.
The planar points identified in this step are categorized to
be type 3 points (Fig. 1(d) with small d2 and Fig. 1(e)).

(4) All the remaining points are categorized as type 4
points (Fig. 1(f)), and their surface normal is calculated
from either step 1 or step 2, choosing the one that produces
the smallest surface fitting error.

2.2. Extraction of Planar and Smooth Non-
planar Regions

After the calculation of local surface normals, a region
growing procedure is implemented. That involves clus-
tering neighboring points using the following metric: two
neighboring points P and N are part of the same region if
a) they are spatially close, b) they have similar local surface
normals, and c) they have similar laser intensity. In previ-
ous algorithms, the distance threshold is static - either pre-
selected, or determined empirically. This, as we explained
earlier, may cause inaccurate segmentations. In our algo-
rithm, we replace the point-to-point distance threshold with
point-to-plane distance threshold. In particular, we deter-
mine if a point P ’s neighbor N belongs to the same local
plane as P by checking the distance from N to P ’s local
plane instead of distance between P and N . This is advanta-

geous because, for planar points, point-to-plane distance is
always very small, regardless of surface orientation. There-
fore, we may set a constant threshold in that case. The next
paragraph describes this step in more detail.

At the initial state of region growing, all points are un-
labelled. Starting from the upper-left corner of the range
image’s grid, we select the next unlabelled point as a seed
to grow a new region. Each time a new region is formed,
points in this new region are labelled with an integer as their
region label. The first region is labelled as region 0, and the
succeeding formed regions are labelled with 1, 2, 3, As-
suming the seed for a new region is point P , we test whether
each of its neighbor points, N , belongs to P ’s local plane.
If it does, N is labelled with P ’s region label, and N ’s
neighbors are further compared with N to continue region
growing. This recursive procedure continues until no more
neighbor points are found to belong to this region. When
comparing N with P , three thresholds are used: a) the dis-
tance between N to P ’s local plane should be smaller than a
threshold θpoint2plane; b) the intensity difference should be
smaller than a threshold θintensity; and c) the surface nor-
mal difference between P ’s and N ’s local planes should be
smaller than an angle threshold θangle. In our algorithm,
these three thresholds are 0.015m, 0.01, and 2◦ respec-
tively. Note that θintensity and θangle are not sensitive to
surface orientation. Varying the values for these thresholds
leads to coarser or finer segmentation, and the values in our
algorithm are selected empirically. The last step consists of
discarding regions containing very few points (in our algo-
rithm < 100) to avoid generating very small regions

2.3. Extraction of Non-smooth Regions

The previous region growing procedure calculates ma-
jor planar and smoothly varying surfaces (Fig. 3(c)). Based
on the unlabelled points remaining from the earlier region
growing phase, we carry out a second round of point clus-
tering, to cluster non-smooth regions. In urban areas, af-
ter large smooth surfaces are identified, the remaining non-
smooth regions are usually objects in the scene, such as win-
dows, lights, and furniture. In range images, these objects
have varying local surface normals on their points, and they
may be separated from each other by smooth background
regions. Therefore, the clustering criteria of non-smooth
region points is defined with higher emphasis on spatial
closeness and lower emphasis on surface normal similarity.
The process for clustering non-smooth regions is similar to
that of growing planar region. The difference is in the de-
tails of comparing neighboring points. Due to the reason
we described above, we compare intensity, point-to-point
distance, and angle between surface normals of two neigh-
boring points with thresholds θintensity , θpoint2point, and
θ′angle. The value for θpoint2point is distP ∗ r, r being an

empirically calculated constant larger than 1. The thresh-
old θ′angle is a large value (in our algorithm it is 65◦) to
avoid growing regions with the neighbors having large an-
gles between their surface normals. We assume that a large
angle between surface normals will appear at boundaries of
semantically different regions.

(a) (b)

(c) (d)

Figure 3. Segmentation results. (a) Seg-
mented regions as colored patches. (b) De-
tails at region boundaries. (c) Planar and
smooth regions. (d) Non-smooth regions.

Fig. 3 shows the segmentation result of a range image of
an interior scene. Each segmented smooth region and non-
smooth region is assigned to a random color computed with
its label. In Fig. 3 (d), some regions seem to be smooth,
but are clearly non-smooth when zoomed in. e.g., the long
curved stripe is in fact rosette pattern as shown in Fig. 3 (b).
Fig. 4 shows the segmentation result of a range image of an
exterior scene.

3. Merging Segmented Regions

Every range image is partitioned into sequentially la-
belled segmented regions, determined by the order of region
extraction. The next task is to merge these scans to recon-
struct a complete model of the urban structure and to gen-
erate a graphics model for it. Using range image registra-
tion systems in [12][8], partially overlapped range images
are registered to form a combined 3-D scene. In this com-
bined scene, overlapping areas between range images may

(a) (b)

(c) (d)

Figure 4. Segmentation results. (a) Seg-
mented regions as colored patches. (b) De-
tails at region boundaries. (c) Planar and
smooth regions. (d) Non-smooth regions.

have different region labels, thereby causing inconsistency
in displaying and modeling.

As seen from the previous figures, each segmented range
image is displayed with all points colored based on their re-
gion labels: points in the same region have the same color,
while points from different regions have different colors.
There are overlapping regions captured in multiple scans,
and their labels in different range image are assigned in each
individual segmentation procedure. This causes different
region labels for the same region, which is then displayed
with different colors in the combined view. The mixed col-
oring points lead to confusion when observing regions exist
in multiple scans, and result in false region boundaries for
large regions that spread across a few range images. It is
thus necessary to detect and unify overlapping regions.

Let us first introduce some notations and data structures
in order to describe the segment merging algorithm:

1) There are n segmented scans to merge, denoted as
Ii (i = 1..n). As mentioned earlier, we have computed
the transformation matrices that register these scans under
a common coordinate system of a pivot scan. The pivot
scan is one of the n range scans, denoted as Ip (1 ≤ p ≤
n). Let us further denote Mp

i as the matrix to transform
scan Ii to the coordinate system of scan Ip. With matrix
composition, we can also select another scan Iq as the pivot

scan, and calculate the transformation from all other scans
to Iq, denoted as Mq

i (1 ≤ p ≤ n, i = 1..n).
2) Each range scan Ii is associated with a Z-buffer Zi.

Zi is a 2D array defined based on the 2D rectangular area
covered by the scanning laser beams, separating the space
of scanning direction into bins (Fig. 5(a)). The dimension of
the array is the same as the scan’s resolution, ensuring that
no more than a few neighboring points fall into the same
bin. In each cell, a set of three values is recorded: depth,
region label, and surface normal of the point that falls into
this cell and is closer to the origin (Fig. 5(b)). To fill up
the z-buffer, every point in the range image finds its cor-
responding bin, and updates the value set in that bin with
its depth, region label and surface normal if the following
holds true: when the bin is not filled, or the point’s depth is
smaller than the current depth value stored in the bin.

(a) (b)

Figure 5. Generating z-buffer. (a) The range of
each cell of the z-buffer is determined by the
pivot scan. (b) O is the origin. P1, P2 and P3

are range points that fall into one bin. Since
P2 is closest to O, P2’s information is used.

3) We also generate a transformed z-buffer Zp
i for each

range image Ii with respect to a pivot scan Ip. Similar to
Zi, Zp

i is a 2D array where each bin is populated with point
depth, region label and surface normal. However, there are
two differences between Zp

i and Zi. First, the bins of Zp
i

are based on the 2D scanning area of Ip; second, all the
points in scan Ii are transformed to the coordinate system
of Ip, and the depth and surface normal of these transformed
points in Ip’s coordinate system (together with their original
region label) are used to filled into Zp

i . If one point falls out
of the range of Zp

i , the point is simply not considered; if
multiple points fall in one bin, the one with the smallest
depth is selected and its information is filled in that bin.
Note that Zi

i is equivalent to Zi from step 2. From this
point forward, we will refer to both as Zi

i .
In the following section we first describe how the over-

lapping regions between two range images are combined.
We then explain the merging procedure for overlapping re-
gions between more than two range images.

3.1. Merging Two Range Images

Assume that the two range images to be merged are I1

and I2. I1 is the pivot scan, and I2 is transformed to I1’s
coordinate system with transformation matrix M1

2 . Based
on the 2D grid of I1, we generate I1’s z-buffer Z1

1 , as well
as I2’s transformed z-buffer Z1

2 . Since the range scanning
captures the first surface point it reaches, each depth value
in Z1

2 ’s z-buffer should be equal toor larger than the depth
value in Z1

1 ’s corresponding bin[8][13]. If the depth and
surface normal in the corresponding bins of two z-buffers
are equal, we conclude that these points from two images
are overlapping. The corresponding regions that these two
points belong to have therefore the possibility of being one
same region. If a pair of regions are both smooth regions or
both non-smooth planar regions (this information was ob-
tained in segmentation process), and they overlap in suffi-
cient number of z-buffer bins, they are considered the same
region and should be merged and labelled with the same re-
gion label. In short, the methodology consists of first iden-
tifying and then merging all the region pairs that overlap
in significant number of bins. However, not all the overlap-
ping regions should be merged, as minor segmentation error
might result in small overlaps near region boundaries. With
these considerations, our algorithm of merging regions is as
follows:

1. Relabel image I2 so that its region label starts from the
largest region label in I1. This way, each region from either
of the two images has a unique label. Then, after generating
Z1

1 and Z1
2 , go through each bin, and compare the values in

Z1
1 and Z1

2 to find out all the bins that have same value sets,
thus forming overlapping region pairs. For each region pair,
keep a record of the number of bins that contain it.

2. Only retain region pairs with overlaps satisfying either
one of the following two conditions:

a) Condition 1: The number of overlapping bins reaches
a certain proportion (0.01%) of point numbers of both range
images; b) Condition 2: The overlapping bin count reaches
a certain proportion (5% in our algorithm) of the number of
bins occupied by the smaller region in the pair. Region pairs
with a large overlap will satisfy condition 1, while possibly
small regions, but with proportionally large overlap, will
satisfy condition 2.

3. Form overlapping region sets based on all overlapping
pairs. Assign a new label (the largest existing label plus
1) to each overlapping region set, resulting in overlapping
regions satisfying above conditions being labelled the same.

Fig. 6 shows a range image that overlaps with Fig. 4(a).
Note that the main overlapping area contains a few windows
and the large side wall. The wall in Fig. 6 is separated into
a few individual planes in Fig. 4(a). Fig. 7(b) shows the
merging result. The wall becomes a large region, and the
overlapping windows are also well merged.

Figure 6. This range image overlaps with
Fig. 7(a) at the area below the black line.

(a)

(b)

Figure 7. (a) Merging results of two range im-
ages; (b) details at overlapping area.

3.2. Merging Multiple Range Images

Merging multiple range images consists of multiple
processes of merging two range images, but with added so-
phistication. The increased complexity results from the fact
that multiple range images might overlap at the same area,
and their labels need to be changed altogether. Our algo-
rithm considers one range image as pivot at a time, and com-
putes overlaps within this pivot scan’s z-buffer area. After
all range images have been used as pivots, overlapping re-
gion labels are summarized and new labels are generated
for regions to be merged.

First, region labels from all range images are relabelled,
so that all labels are unique. The goal is then to detect over-
lapping region sets from all range images (similar to the
overlapping pairs in the context of merging two range im-
ages), and assign each set a new label. In order to generate
overlapping region sets, we first identify all overlapping re-
gion pairs, and then combine all mutually overlapping pairs
to form overlapping sets.

From the range image list I1, I2, ...In, let us first se-
lect I1 as the pivot scan. We generate n z-buffers Z1

i

(i = 1..n). By comparing corresponding bins in Z1
1 with

each of the transformed z-buffers Z1
t (t = 2..n), we accu-

mulate the overlapping bin counts for all region pairs that
overlap within the boundary of I1. Note that in any region
pair in this step, e.g. (R1, R2), one region R1 is always
from the pivot scan I1, and the other region R2 is from one
of the other range images It.

Then, the next image I2 is considered as the pivot scan.
Overlapping counts for region pairs are accumulated simi-
larly. After every image has been used as the pivot, all the
possible overlapping regions have been counted with their
overlapping size respectively. Note that for any region pair
(R1, R2), its overlapping size is counted once when R1’s
image is the pivot, and counted again when R2’s image is
the pivot. This is a redundant computation. Therefore, in
our algorithm, for any pivot scan It, we only compare Zt

t

with transformed z-buffers Zt
t+1, ..., Z

t
n.

All the overlapping region pairs are then combined to
form overlapping region sets. Using a new label for each
overlapping set, the segments are merged in all range im-
ages. Note that during the merging procedure, every two
scans are compared once. Therefore, the order of merg-
ing, which determines the later order of pivot selection and
z-buffer comparison, is arbitrarily determined. A different
order will not change the segment merging result.

4. Experiments and Conclusions

We used our method to merge two sets of range scans
of large-scale urban structures in NYC, generating 360 de-
gree interior and exterior views respectively. In this paper,

for clarity of display, we only show the results of merging a
subset of each set of range scans. Fig. 8 shows the merged
segments from 8 exterior scans of Cooper Union building,
and zoom-in details of the area where four images overlap.
The execution time for segmenting each image is 2 minutes,
and for merging is 4 minutes (2GHz Xeon Processor, 2GB
RAM). The merged segmentation contains 1760 smooth re-
gions and 382 non-smooth regions, and the average sur-
face fitting error for smooth regions is 3mm. We have also
generated surface mesh with Ball Pivoting Algorithm[14],
and we can see that the density difference across the image
boundaries diminished in the mesh surface. Fig. 9 shows
the merged segments from 15 interior scans of Grand Cen-
tral Station and generated surface meshes. The execution
time for segmenting each image is 2 minutes, and for merg-
ing is 10 minutes. The merged segmentation contains 1393
smooth regions and 787 non-smooth regions, and the aver-
age surface fitting error for smooth regions is 4mm.

(a)

(b) (c)

Figure 8. (a) 8 scans merged. (b) Enlarged
(a) at overlapping area. (c) Segment meshes
(rendered with random colors).

In this paper, we have introduced a novel segmentation
algorithm which accurately calculates the surface normal
of every point, and then segments range images into mean-

(a)

(b)

(c)

Figure 9. (a) 15 scans merged. (b) Segment
meshes. (c) Enlarged (b) at overlapping area.

ingful planar and non-planar regions. We further explained
our approach of merging segmented range images, which
results in a combined regions. Using these combined seg-
mented regions, we can build 3D models. These models
would enable us to represent large scale urban structures in
a more descriptive way.

This work, where we explore building the semantic
structures from the extracted planar and non-planar regions,
is the first step in the computer vision system we envision.
Our future work will be composed of two parts. The first
part would consist of the analysis of the spatial relationship
of extracted planar and non-planar regions, aiming at higher

level scene understanding. The second part would consist
of the feature extraction from each individual non-planar
region, for the purpose of 3D shape recognition and object
matching. This research has applications in urban planning,
virtual reality, and robotic vision.

References

[1] Leica Geosystems. http://hds.leica-geosystems.com/.

[2] R. Unnikrishnan, J. Lalonde, N. Vandapel, and M. Hebert.
Scale Selection for the Analysis of Point-Sampled Curves. 3rd
Int’l Symposium on 3D Processing, Visualization and Trans-
mission, June 2006.

[3] N. Mitra and A. Nguyen. Estimating surface normals in noisy
point cloud data. Proc. of the 9th Annual Symposium on Com-
putational Geometry, 2003.

[4] K. Lee, P. Meer and R. Park. Robust Adaptive Segmentation
of Range Images. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, February 1998.

[5] Ranjith Unnikrishnan and Martial Hebert. Robust Extraction
of Multiple Structures from Non-uniformly Sampled Data.
Proc. of the 2003 IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems, October 2003.

[6] Y. Yu, A. Ferencz and J. Malik. Extracting Objects from
Range and Radiance Images. IEEE Trans. on Visualization
and Computer Graphics, Oct.-Dec. 2001.

[7] O. R. P. Bellon and L. Silva. New Improvements to Range Im-
age Segmentation by Edge Detection. IEEE Signal Processing
Letters, Feb. 2002.

[8] C. Chen and I. Stamos. Range Image Registration Based on
Circular Features. 3rd Int’l Symposium on 3D Data Process-
ing, Visualization and Transmission, Jun. 2006.

[9] P. J. Besl and R. C. Jain. Segmentation Through Variable-
Order Surface Fitting. IEEE Trans. on Pattern Analysis and
Machine Intelligence, Mar. 1988.

[10] I. Stamos and P. K. Allen. Geometry and Texture Recovery
of Scenes of Large Scale. Journal of Computer Vision and
Image Understanding, Nov. 2002.

[11] P. F. U. Gotardo, O. R. P. Bellon, K. L. Boyer and L. Silva.
Range Image Segmentation Into Planar and Quadric Surfaces
Using an Improved Robust Estimator and Genetic Algorithm.
IEEE Trans. on Systems, Man, and Cybernetics, Dec. 2004.

[12] C. Chen and I. Stamos. Semi-automatic Range to Range
Registration: a Feature-based Method. The 5th Int’l Conf.
on 3-D Digital Imaging and Modeling, Jun. 2005.

[13] D. F. Huber and M. Hebert. Fully Automatic Registration of
Multiple 3D Data Sets. Image and Vision Computing, 2003.

[14] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G.
Taubin. The Ball-Pivoting Algorithm for Surface Reconstruc-
tion. IEEE Trans. on Visualization and Computer Graphics,
Oct.-Dec. 1999.

