
To appear in IJCV, merged with "rotation" paper.

Scalable, Absolute Position Recovery

for Omni-Directional Image Networks

Matthew Antone Seth Teller
MIT Computer Graphics Group

Abstract

We describe a linear-time algorithm that recovers absolute camera positions for
networks of thousands of terrestrial images spanning hundreds of meters, in outdoor
urban scenes, under varying lighting conditions. The algorithm requires no human
input or interaction. It is robust to up to 80% outliers for synthetic data. For real
data, it recovers camera pose which is globally consistent on average to roughly 0.1◦

and five centimeters, or about four pixels of epipolar alignment, expending a few CPU-
hours of computation on a 250MHz processor.

This paper’s principal contributions include an extension of Monte Carlo Markov
Chain estimation techniques to the case of unknown numbers of feature points, un-
known occlusion and deocclusion, and large scale (thousands of images, and hundreds
of thousands of point features) and dimensional extent (tens of meters of inter-camera
baseline, and hundreds of meters of baseline overall). Also, a principled method is given
to manage uncertainty on the sphere of directions; a new use of the Hough Transform
is proposed; and a method for aggregating local baseline constraints into a globally
consistent constraint set is described.

The algorithm takes intrinsic calibration information, and a connected, rotationally
registered image network as input. It then assembles local, purely translational motion
estimates into a global constraint set, and determines camera positions with respect
to a single scene-wide coordinate system. The algorithm’s output is an assignment of
metric, accurate 6-DOF camera pose, along with its uncertainty, to every image. We
assume that the scene exhibits local point features for probabilistic matching, and that
adjacent cameras observe overlapping portions of the scene; no further assumptions
are made about scene structure, illumination conditions, or camera motion.

We assess the algorithm’s performance on synthetic and real data, and demonstrate
several results. First, wide-FOV imagery makes registration fundamentally more robust
against failure, and more accurate, than ordinary imagery. Second, we show that by
combining thousands of noisy, gradient-based (point) features into a small number of
projective motion estimates (baselines), the algorithm achieves accurate registration
even in the face of significant lighting variations, low-level feature noise, and errors in
initial position estimates.
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1 Introduction

Extrinsically calibrated imagery is of fundamental interest in a variety of computer vision
and graphics applications, including sensor fusion, 3D reconstruction for model capture,
and image-based rendering for visual simulation of realistic scenes. In practice, registering
imagery can require substantial manual effort, for example to specify matching tie points
across multiple images as constraints to a bundle adjustment algorithm. Even for small
datasets, this manual component can absorb tens or hundreds of hours of human effort, and
is difficult or impossible to partition among several workers.

We have developed two automated camera registration algorithms as part of a system for
automated model capture in extended urban environments [52, 53]. In our system, a human
operator moves a sensor [11] to many viewing positions in and around the scene of interest.
At each position, the sensor acquires a high-resolution, high dynamic range image of some
portion of the scene, along with a rough estimate of the acquiring camera’s pose, or position
and orientation, in absolute (Earth) coordinates. The result is a set of omni-directional
images, each with a hemispherical or greater field of view, acquired 15 to 20 meters apart.

Images are grouped by optical center into single, wide-FOV mosaics called “nodes” [18].
Each node is subsequently treated as a rigid, super-hemispherical image with a single pose.
The use of wide-FOV imagery provides a significant advantage in practice, by reducing the
number of optimization parameters, and by eliminating classical bias and ambiguities in
camera motion estimation [26, 18, 22].

The sensor’s initial camera pose estimates are not sufficiently accurate for 3D recon-
struction, which requires epipolar geometry consistent to a few pixels across any image pair
viewing common geometry. Thus one critical component of our system is the refinement of
the sensor’s initial camera pose estimates to bring all cameras into registration. Since the
scale of the dataset rules out interactive techniques, our pose recovery algorithms must be
fully automated, and their running times must scale well with the number of images. How-
ever, most image pairs observe nothing in common due to occlusion; thus we can not apply
algorithmic techniques which assume that common scene structure is observed by all images.
Instead, we use the (rough) initial pose estimates to associate cameras which are likely to
have observed overlapping scene structure, then use an efficient local-to-global alignment
strategy to register all images.

Solving the general pose-recovery problem involves determining six parameters for each
camera: three of rotation and three of position. Our approach decouples the 6-DOF problem
into a pure rotation (3-DOF) and pure translation (3-DOF) component. This paper addresses
only position recovery; a companion paper [3] addresses the prior recovery of scene-relative
image orientations.

1.1 Algorithm Overview

The goal of our algorithm is to accurately register every camera (node) to a single, common
coordinate system. Our approach uses the fact that nodes are registered rotationally upon
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input, leaving only node positions to be determined. Also, it exploits the tendency of adjacent
(nearby) nodes to have observed overlapping scene structure. The algorithm first detects
shared structure across pairs of adjacent nodes, accurately estimating a local displacement
direction relating each pair. These local constraints are then propagated throughout the
node graph to assign a globally consistent position to each node.

More formally, the algorithm proceeds as follows. Point features are coupled across each
node adjacency to give a crude estimate of inter-image baselines. A Monte-Carlo expectation
maximization (MCEM) algorithm, based on a projective uncertainty model and initialized
with a Hough Transform, simultaneously refines the baseline estimate, deweights outliers,
and tests whether low-level match additions or deletions improve the current estimate. All
inter-node baseline estimates are assembled into a network-wide constraint set, and a global
optimization assigns node positions consistent with all pairwise baselines. Finally, a global
rigid transformation is applied to express the node pose in absolute coordinates, maximally
consistent with the input position estimates.

1.2 Input Requirements and Assumptions

To register a collection of images, our algorithm requires the following inputs:

• Accurate intrinsic calibration. Images have been corrected for radial distortion,
and pinhole camera parameters (i.e., focal length, principal point, skew) are given.

• Accurate extrinsic orientations. Scene-relative orientations and vanishing point
directions are supplied for each node [3].

• Rough camera locations. Absolute (GPS-based) position estimates for each node
are supplied by the image acquisition platform.

• Camera adjacency. For each node, a list of the node’s neighbors is given, identifying
cameras likely to have viewed overlapping portions of the scene.

• Point features. For each image, sub-pixel point features, produced by intersecting
pairs of gradient-based image edges [12], are supplied.

In practice, the algorithm achieves registration when the following conditions are met:

• Node field of view (FOV) is large. Our algorithm can be applied to images with
any FOV. However, wide-FOV images are fundamentally more powerful observations
than conventional images: they provide maximal observations of surrounding structure;
disambiguate small rotations from small translations; reduce bias in inference; and in
general enables more reliable convergence and higher accuracy.

• Nodes view overlapping scene features. The dataset has sufficient density that
adjacent nodes observe overlapping scene geometry (in this case, 3D points). The
inter-node distance in our datasets is typically about fifteen meters.
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1.3 Paper Overview

The remainder of the paper is structured as follows. Section 2 reviews projective feature
representations and geometric probability. Section 3 describes the translation recovery algo-
rithm, and Section 4 reports the result of applying the algorithm to various synthetic and
real datasets. Finally, Section 5 reviews previous work on image registration, and Section 6
summarizes our contributions and results.

2 Preliminaries

This section reviews the representations of coordinate transformations and uncertain projec-
tive features used by the position recovery algorithm.

2.1 Extrinsic Pose

A rigid transformation, consisting of a 3 × 1 translation t and orthonormal rotation R,
expresses points pw in world space as points pc in camera space. Its inverse specifies the
orientation and position of the camera with respect to the scene coordinate system. Formally,

pc = R>(pw − t); pw = Rpc + t (1)

where t is the position of the focal point, and the columns of R are the principal axes of the
camera coordinate system, both expressed in scene coordinates. These two quantities thus
summarize the external pose of the camera. The algorithm in this paper assumes that all
rotation matrices R (represented as unit quaternions) are known, and addresses the recovery
of t for each camera.

2.2 Projective Points

We represent points in the image plane as coordinate pairs (u, v). Although the Euclidean
plane is a convenient space for feature detection, it is not ideal for feature representation: it
implies non-uniform sampling with respect to the focal point, and can not stably represent
rays nearly parallel to the image plane. This leads to instability and poor conditioning in
inference tasks, especially when (as in our setting) the field of view is large.

Thus to represent point features we use the projective plane
� 2, a closed topological

manifold containing the set of all 3-D lines through the focal point. Points along any given
3-D line, except the focal point itself, constitute an equivalence class ∼:

p ∼ r ⇔ p = αr, (2)

where α is a real nonzero scalar value. Because of the relationship in (2), the projective plane
is a quotient space on � 3 (minus the focal point) and also on the surface of the unit sphere�

2, sometimes referred to in the literature as the Gaussian sphere [6]. The sphere’s surface is
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an ideal space for representation of projective features, just as it is an ideal space for image
projection: it is closed, compact, and symmetric, and it provides uniform treatment of rays
from all directions.

Points in the Euclidean image plane can be transformed to the sphere by augmentation
to homogeneous (projective) coordinates and normalizing:

(u, v) → p = (u, v, 1)> →
p

‖p‖
. (3)

We make use of the following duality between projective points and lines: a given image
point p can be viewed as a pencil of image lines which contain, and thus intersect at, that
point. The parameterizations l1, l2, . . . of such lines must satisfy p · li = 0. This relationship
is depicted in Figure 1; we will return to it in §3.2.1.

3-D
Line

Projective Line

Projective
Dual

Image
Plane

3-D
Point

Antipode

Projective
Point

(a) (b)

Figure 1: Projective Image Features
(a) A 3-D line can be represented by a 2-D line in planar projection or a great circle in spherical projection.
Any point on the line must be orthogonal to the line’s dual representation. (b) A 3-D point can be represented
as a unit vector on the sphere, or as a pencil of lines passing through its projection.

2.3 Bingham’s Distribution

Features viewed by a single camera are inherently projective, since no depth information
is available. We wish to represent projective features with suitable spherical probability
distributions.

Exponential distributions are useful for inference tasks [8], but the most commonly used
multi-variate Gaussian density is a Euclidean probability measure and is therefore not suit-
able for projective variables. Conditioning a zero-mean Gaussian variable x ∈ R3) on the
event that ‖x‖ = 1 results in Bingham’s distribution, a flexible exponential density defined
on the unit sphere [10, 32, 56].

This distribution can be generalized to arbitrary dimension, and is parameterized by
a symmetric n × n matrix M , and diagonalized into the product M = UκU>, where
U ∈ � n×n is a real unitary matrix whose columns ui represent the principal directions of
the distribution and κ ∈ � n×n is a diagonal matrix of n concentration parameters κi. The
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density is given by

p(x) =
1

c(κ)
exp(x>Mx) =

1

c(κ)
exp

(

n
∑

i=1

κi(u
>

i x)2

)

(4)

where c(κ) is a normalizing coefficient that depends only on the concentration parameters.
We denote this density by Bn(x; κ, U), or simply Bn(x; M), with the subscript n denoting
the dimension of the space. The matrix M is analogous to the information matrix (inverse
of the covariance) of a zero-mean Gaussian distribution [45].

The Bingham density is antipodally symmetric, or axial : the probability of any point x

is identical to that of −x. It is closed under rotations: if y = Rx, where R is a rotation
matrix and x has Bingham distribution Bn(x; κ, U), then y also has a Bingham distribution
given by Bn(y; κ, RU). Finally, the Bingham representation is expressive: the concentration
parameters can describe a wide variety of distributions, including uniform, bipolar, and
equatorial.

We represent projective image features on
� 2 as Bingham variables B3(·). In addition,

since unit quaternions are antipodally symmetric and defined on the surface of the unit
hypersphere

�
3, we represent rotational uncertainty by the Bingham variables B4(·).

3 Position Recovery

Recovery of structure and motion from image information encompasses several coupled prob-
lems: camera registration, feature correspondence, and determination of scene structure. In
our setting, the input cameras are rotationally registered. This simplifies the epipolar geom-
etry and reduces the dimension of the search space, but the coupling between correspondence
and translational pose remains. Our approach is to estimate both correspondence and pose as
probability densities, deferring commitment to deterministic values until global information
is assembled and propagated throughout the constraint network.

3.1 Overview

This section describes the position recovery algorithm; a high-level diagram of the algorithm
is shown in Figure 2 below [4]. First, translation directions are estimated for all node
adjacencies in the data set. A Hough transform efficiently finds the most likely motion
direction in a given pair by looking for consistency among all possible feature matches. This
approximate direction serves to initialize an expectation maximization method whose E-
step, which requires sampling from an extremely high-dimensional distribution, relies on a
Markov chain Monte-Carlo algorithm. This so-called MCEM algorithm, presented in §3.4,
determines the best motion direction by averaging over all possible correspondence sets.

Once all relevant pair-wise motion directions have been computed, they are assembled
into a global optimization that estimates the camera positions most consistent with these
directions (§3.5). A final step, described in §3.6, performs rigid 3-D to 3-D registration on
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the resulting set of cameras to find the best metric scale, position, and orientation given the
approximate initial pose estimates.

Global
Registration

Global
Registration

Position
Optimization

Position
OptimizationMCEMMCEM

Geometric
Constraints

Geometric
Constraints

Hough
Transform

Hough
Transform

Point
Features

Orientations

Approximate
Baselines

Accurate
Baselines

Pose
Configuration

Final
Positions

Plausible
Matches

Figure 2: Translational Registration
Determining consistent positions for all cameras without explicit correspondence. First, geometric constraints
are imposed to reduce the number of possible point matches. Next, a Hough transform determines approxi-
mate baseline directions, which are then refined probabilistically. A global optimization, constrained by the
pair-wise directions, produces consistent camera positions. Finally, the cameras are registered with the initial
pose to recover metric scale, orientation, and position.

3.2 Two-Camera Translation Geometry

Given two rotationally registered cameras A and B, and two sets of respective features
X = {x1, . . . , xN} and Y = {y1, . . . , yM}, the goal is to determine the direction of motion
b from A to B most consistent with the available data. This section describes the simplified
epipolar geometry resulting from known rotational pose and discusses geometric constraints
that may be used to reject physically unlikely point matches. Given a set of explicit matches
within this framework, estimation of the direction of translation between a given pair of
cameras reduces to a projective inference problem quite similar to that of single vanishing
point estimation.

3.2.1 Epipolar Geometry with Known Orientation

An epipolar plane P contains two camera centers and a 3-D point seen by both cameras.
Projections of the 3-D point onto each of the images, xi and yj respectively, must therefore
also lie in P (see Figure 3).

For rotationally registered cameras, the following relation holds:

(x × y) · b = 0. (5)

Intuitively, the cross product of x with y is orthogonal to P, and thus necessarily orthogonal
to the baseline b as well, since P contains b. Here, observations consist only of the 2-D
feature projections, and the baseline is unknown; however, (5) provides a constraint on b up
to unknown scale. This suggests that b can be inferred solely from two or more corresponding
pairs of features.
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Figure 3: Pair Translation Geometry
The epipolar geometry for two rotationally aligned cameras is similar to the geometry of vanishing points.
(a) A single 3-D point lies in an epipolar plane containing the baseline and any projective observations of
the point. The epipolar line is analogous to an image line feature. (b) The epipolar planes induced by a set
of 3-D points forms a pencil coincident with the baseline. The normals of these planes thus lie on a great
circle orthogonal to the baseline direction.

Define mij ≡ xi × yj. For the correct pairs of i and j—that is, for those (i, j) couplets
in which feature xi truly matches feature yj—the constraint in (5) becomes

mij · b = 0. (6)

If the mij are viewed as projective epipolar lines, then the baseline b can be viewed as
a projective focus of expansion, and its antipode the focus of contraction, the apparent
intersections of all epipolar lines.

3.2.2 Geometric Constraints on Correspondence

Both correspondence and the baseline are initially unknown, so the above construction seems
hopelessly underconstrained. There are NM possible individual feature matches, and more
importantly, a combinatorial number of possible correspondence sets that can be chosen,
making the search space enormous.

However, additional information can be used to drastically lower the dimension of the
search space [43] both by reducing the number of features N and M in each image, and by
eliminating many of the candidate correspondences. The constraints presented here rely on
two assumptions: first, that each point feature represents the intersection of two or more
2-D line features; and second, that the baseline is known to lie within some restricted region.
Bounds on this region can be obtained using the roughly-known initial pose.

Knowledge of 3-D line directions and classification of 2-D line features obtained from
rotational pose recovery both provide strong cues for feature culling and point correspondence
rejection. Presumably, objects consisting of parallel lines possess sufficient structure for
determination of translational offsets; thus, image features not associated with any parallel
line sets can be safely discarded. In particular, lines having high “outlier” probability, along
with any point features inferred by these lines, are deemed invalid. Points inferred from lines
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shorter than a given threshold in Euclidean image space can also be discarded, as such lines
are unreliable.

A set of all possible candidate matches is constructed from the surviving sets of point
features. Each match is kept or discarded according to the following criteria:

• Directions of constituent lines. If the 3-D point inferred by a given match truly
corresponds to the intersection of two or more 3-D lines, then the 3-D directions of
image lines forming a given image point xi should be identical to those forming the
point yj (Figure 4). Matches mij for which this condition does not hold are discarded.

• Baseline uncertainty bound. A given angular bound on the translation direction
induces a conservative equatorial band within which all correct epipolar plane normals
must lie (Figure 5); any mij outside this band is discarded, since it implies “sideways”
motion. Furthermore, any match for which yj is closer than xi to b is also discarded,
as such a match implies “backward” motion.

• Depth of 3-D point. If the angle between xi and yj exceeds a threshold, the 3-D
point inferred by the match (via triangulation) is too close to the camera or implies an
abnormally wide baseline. These matches are therefore discarded.

A B

C E

D

Figure 4: Line Constraints
Two images viewing the same building are shown, and possible matches for a particular point feature A in
the first image are considered. Point B is the true match, but C and D are also plausible because they are
formed by the intersection of lines whose directions match those of the lines forming A. The directions of the
lines forming E do not match those forming A, so E is rejected. Note that D is formed by the intersection
of three rather than two distinct line directions.

3.3 Inference of Translation Direction

This section describes methods for inferring the translation direction between a pair of
cameras, first assuming explicit correspondence is known, then relaxing this assumption. As
noted above, a given correspondence between features xi and yj constrains the inter-camera
baseline b according to (5), and a set of such correspondences can be used to estimate b.
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Figure 5: Direction Constraints
(a) Uncertainty in the baseline direction induces an equatorial band of uncertainty for epipolar lines. The
match between features x and y is plausible because it implies motion in the correct direction. (b) The
match between x and y

1
is rejected because it implies backward motion; the match with y

2
is also rejected

because its epipolar line does not lie in the uncertainty band.

One method is by minimization of an objective function such as

E =
∑

(i,j)∈F

mij · b; (7)

here, F is the set of F pairings (i, j) that represent the true matches. The optimal least-
squares baseline direction can be found by constructing an F × 3 matrix A whose rows
contain the feature cross products mij, then choosing the eigenvector associated with the
smallest eigenvalue of A>A.

Projective fusion techniques can be used to estimate the probability density of b. Recall
from §1.2 that each point feature in the image represents the intersection of two image lines,
each of which is an uncertain equatorially-distributed Bingham variable with known param-
eters. Bingham uncertainty in the intersection can be determined by fusing the two lines,
so that the parameters of each image point’s distribution are known. Each correspondence
between random variables xi and yj in turn induces an epipolar line mij, whose equatorial
Bingham distribution can be determined by fusion of xi and yj.

The problem that now remains is to determine the distribution of b given a set of epipolar
line observations mij (for (i, j) ∈ F) with known uncertainty.

3.3.1 Motion Direction from Known Correspondence

If true correspondences between the feature sets X and Y are known, the parameters M �

of the baseline distribution can be inferred according to the fusion equation

M � =
∑

(i,j)∈F

M ij + M 0 (8)

where M ij represents the uncertainty of the epipolar line mij, M 0 is the prior distribution
on b, and the sum is taken only over indices associated with the true matches. Equivalently,
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inference can be performed by associating a binary-valued variable bij with every possible

correspondence, where

bij =

{

1, if xi matches yj

0, otherwise.
(9)

The Bingham parameters of b can then be determined by

M � =
M
∑

i=1

N
∑

j=1

bijM ij + M 0, (10)

where the new sum is evaluated over every possible (i, j) pairing.

3.3.2 Motion Direction from Probabilistic Correspondence

Because motion directions and point features are uncertain quantities, and because of am-
biguities in epipolar geometry that may arise from particular viewpoints, hard or explicit

correspondence cannot always be determined. Thus, in the more general case, continuously-
valued variables wij ∈ [0, 1], rather than binary-valued variables bij ∈ {0, 1}, can be applied
to the observations mij, effectively representing the probability that feature xi matches
feature yj.

Inference of b in this weighted formulation becomes

M � =

M
∑

i=1

N
∑

j=1

wijM ij + M 0, (11)

with more emphasis given to matches with higher likelihood. Note that the binary variables
bij represent the deterministic limit of the wij in this probabilitic formulation.

3.3.3 Feature Match Weights

In reality, each feature observed in one image has at most one true match in the other image.
A true match exists only if the feature observation corresponds to a real 3-D point, and if its
counterpart in the other image is visible; otherwise, the feature has no matches—either it is
itself spurious, or its match is unavailable (e.g. occluded or otherwise missed by detection).

In the case of binary variables, the above condition can be enforced by requiring that at
most one bij for every i and at most one bij for every j is equal to one, and that the rest are
equal to zero. More formally,

N
∑

j=1

bij ≤ 1 ∀i
M
∑

i=1

bij ≤ 1 ∀j. (12)

Inequality constraints are mathematically inconvenient, however; thus, the “null” features
x0 and y0 are appended to X and Y, respectively, and the inequality constraints of (12)
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become equality constraints via the introduction of binary-valued slack variables bi0 and b0j

[16], which take value one if xi (or yj, respectively) matches no other feature, and zero
otherwise. Thus,

N
∑

j=0

bij = 1 1 ≤ i ≤ M

M
∑

i=0

bij = 1 1 ≤ j ≤ N. (13)

To ensure valid weights wij in the probabilistic case, an analogous condition must be
satisfied:

N
∑

j=0

wij = 1 1 ≤ i ≤ M
M
∑

i=0

wij = 1 1 ≤ j ≤ N. (14)

This condition enforces a symmetric (two-way) distribution over all correspondences: each
feature in the first image can match a set of possible features in the second image, with the
weights normalized so that they sum to one, and vice versa.

The set of weights can also be represented by an (M + 1)× (N + 1) matrix W (or B, in
the binary case), whose rows represent the features X , whose columns represent the features
Y, and whose individual entries are the weights themselves (Figure 6). The condition in (14)
is then equivalent to the requirement that the weight matrix be doubly stochastic, i.e. that
both its rows and its columns sum to one.

N

M

N+1

M+1

Matches

Outliers

Don't
Care

(a) (b)

Figure 6: Augmented Match Matrix
The match matrix encodes correspondences between features in two different images. (a) An example of
a binary match matrix. Rows represent features in the first camera, and columns represent features in the
second. There can be at most one non-zero entry per row and per column. (b) The augmented matrix, with
an extra row and column to account for outliers and missing features. In the augmented matrix, there must
be exactly one non-zero entry in each of the first M rows and N columns.

3.3.4 Initialization: Obtaining a Prior Distribution

Because motion direction and correspondence are tightly coupled, it is difficult to determine
these quantities without prior information. However, as this section will demonstrate, uti-
lization of initial pose estimates and the geometric constraints introduced in §3.2.2 allows
reasonably accurate estimates of b to be obtained without knowledge of correspondence.
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Let M represent the set of all plausible correspondences (epipolar lines) between X and
Y, and let the special subset M′ ∈ M contain only the F true matches. If all lines in M
are drawn on

� 2, those in M′ (in the absence of noise) will intersect perfectly at the motion
direction b, and the remainder (which represent false matches) will intersect at random
points on the sphere.

Figure 7: Hough Transform for Baseline Estimation
Two examples of Hough transforms for baseline estimation. Epipolar lines for all plausible matches are
accumulated; the transform peak represents the baseline direction.

In essence, the point of maximum incidence on
�

2 is the most likely direction of motion.
This point can be found by discretizing

�
2 and accumulating all candidate epipolar lines M

in a Hough transform. Since the motion direction is approximately known from initial pose
estimates, the transform need only be formulated over a small portion of the sphere’s surface
around this initial direction. Examples are shown in Figure 7.

The motion direction b0 can be determined as the peak in the transform with highest
magnitude. False correspondences greatly outnumber true correspondences, however, be-
cause there are MN possible matches and only F (at most min(M, N)) true matches. The
desired peak may therefore be obscured by spurious peaks arising from certain geometric
anomalies. For example, a point feature in one image lying very close to the initial direction
of motion can match many features in the other image, thus producing a perfectly sharp
false peak if all matches are equally weighted (Figure 8).

To solve this problem, a mutually consistent set of weights wij must be assigned to the
epipolar lines in M such that features having many possible matches are de-emphasized. In
order to ensure that the condition in (14) is satisfied, an iterative normalization procedure
proposed by Sinkhorn [47, 16] is utilized to transform an initial (invalid) match matrix into
a valid doubly stochastic matrix.

First, the matrix W is set to zero; entries for matches satisfying the geometric constraints
of §3.2.2, as well as all entries in row M + 1 and column N + 1, are then assigned an initial
value of one. Sinkhorn’s algorithm alternatively normalizes the rows and columns until
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Figure 8: False Hough Transform Peaks
(a) False peaks in the Hough transform can be caused by features too close to the direction of motion,
which have many matches and thus produce high-incidence regions. (b) An example in which false peaks
are evident. (c) The same example after normalization.

convergence as follows:

w′

ij = wij

/

N
∑

j=0

wij ∀i ∈ {1, . . . , M}; w′′

ij = w′

ij

/

M
∑

i=1

w′

ij ∀j ∈ {1, . . . , N}.

Each entry in the matrix is normalized by the sum of entries in its row; each entry in the
resulting matrix is then normalized by the sum of entries in its column, and so on. The
algorithm produces a provably unique factorization W ′ = D1WD2 [47], such that W ′ is
doubly stochastic. The new matrix does not represent the “correct” distribution, because it
is somewhat arbitrarily initialized, but it provides a useful approximation for the purposes
of the Hough transform technique described above.

For a planar accumulation space, each linear constraint of the form in (5) contributes
a single straight line to the transform. Thus, once a set of weights has been obtained by
the above method, the epipolar lines are accumulated, and when drawn, their accumulation
values are weighted by the appropriate value wij. This normalization to a valid probability
distribution over correspondences dramatically improves the coherence of the true motion
direction (Figure 8c).

Although accuracy is inherently limited by the discrete nature of the Hough transform,
the resulting motion direction estimate b0 can be used to initialize more accurate techniques.
Further, it can be used as a strong prior distribution (with parameters M 0 in the notation
of §3.3) in subsequent inference tasks. The matrix M 0 is obtained by using a bipolar scatter
matrix approximation on the region surrounding the peak.

3.4 Monte Carlo Expectation Maximization

In general, true feature correspondence is completely unknown; feature point measurements
and uncertainty serve as the only available information for inference of motion. This section
outlines a method for determining accurate motion estimates from this information alone,
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without requiring explicit correspondence, by employing an expectation algorithm in which
the posterior distribution is discretely sampled.

Using maximum likelihood notation,

b∗ = argmax � [p(b|M)] (15)

The conditional probability above can be expanded using Bayes’ rule:

p(b|M) =
∑

�

p(b, B|M) =
∑

�

p(b|B,M)p(B|M) (16)

where B is a valid binary-valued correspondence matrix, and p(B|M) is the prior distri-
bution on the correspondence set. This prior distribution is assumed to be uniform, but
can equally well incorporate the geometric match constraints of §3.2.2. Note also that the
likelihood is expressed as a summation rather than an integration, because the collection of
all possible correspondence sets is discrete.

3.4.1 Structure from Motion without Correspondence

The expression in (15) suggests that the optimal estimate of the motion direction b can be
found without using explicit correspondence, by maximizing p(b|M) alone [21]. Correspon-
dence sets can be treated as nuisance parameters in a Bayesian formulation, as illustrated
by (16), in which the likelihood is evaluated over all possible matrices B.

The expectation maximization algorithm lends itself well to this type of optimization
problem. The algorithm alternates between the M-step, in which a log likelihood function
is maximized given a posterior likelihood, and the E-step, in which the likelihood function
is evaluated given the current parameter estimate b. Convergence to the optimal solution is
guaranteed because of the initial estimate provided by the Hough transform approach above.

The log likelihood to be maximized is

L =
∑

�

p(B|b,M) log p(b|B,M). (17)

Substitution of (10) into (17) gives

L ∝
∑

�

p(B|b,M)

M
∑

i=1

N
∑

j=1

bijb
>M ijb + b>M 0b (18)

Now, define wij as the marginal posterior probability of match bij, regardless of the other
matches; that is,

wij ≡ p(bij = 1|b,M) =
∑

�

δ(i, j)p(B|b,M); (19)
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then (18) becomes

M
∑

i=1

N
∑

j=1

wijb
>M ijb + b>M 0b. (20)

Maximization of (20), given the set of weights wij, can be easily performed using the
technique described in §3.3.2; however, determination of the wij is not so straightforward.
Individual matches are not mutually independent, because knowledge about one match pro-
vides knowledge about others. For example, given that bij = 1, it must be true that

bik = 0 ∀k 6= j, (21)

which follows from the implicit constraints in (13). The condition for independence is thus
violated, because

p(bik = 1|bij = 1, b,M) = 0 6= p(bik = 1|b,M), (22)

and the joint likelihood p(B|b,M) cannot be factored. Precise evaluation of (20) apparently
requires evaluation of (18), a difficult task due to the combinatorial number of terms. How-
ever, the following sections demonstrate that the wij can be evaluated efficiently by Monte
Carlo sampling.

3.4.2 Sampling the Posterior Distribution

Markov chain Monte Carlo (MCMC) algorithms are useful for evaluating sums of the form
in (18). In this context, each possible binary match matrix Bk represents a distinct state;
random transitions between states occur until transitions equalize and steady state is reached.
If the transition likelihoods are appropriately chosen, then the steady-state probabilities
represent the distribution on correspondence matrices B.

Our approach combines Metropolis sampling [38], which ensures appropriate transition
probabilities, with simulated annealing [34], which allows relative likelihood maxima to be
avoided by visiting a larger portion of the sample space. The approach can be summarized
as follows:

Start with initial temperature T = T0

Loop until T ≤ 1 (E-step):
Set k = 0
Start with valid state B0

Compute initial parameter matrix M 0

Compute initial likelihood coefficient c(M 0)
Set A = 0
Loop until k sufficiently high (steady state):

Randomly perturb state to B̃
k

Evaluate the likelihood ratio β
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If β ≥ 1 then keep new state
Else keep new state with probability β1/T

If new state kept then

Set Bk+1 = B̃
k

Compute M k+1 and c(M k+1)
Else set Bk+1 = Bk

Set A = A + Bk+1

Set k = k + 1
Set W = A/k
Solve for new b given W (M-step)
Set T = αT (for 0 < α < 1)
Set n = n + 1

The likelihood function used to compute β (i.e., the ratio of the new likelihood to the
old) is

p(Bk|b,M) = c(M k) exp
[

b>Mkb
]

= c(M k) exp

[

b>

M
∑

i=1

N
∑

j=1

bk
ijM ijb

]

(23)

where b is taken as the polar direction of the current baseline distribution estimate. Efficient
calculation of β is described in §3.4.4.

In a particular E-step loop, A is an (M + 1)× (N + 1) accumulation matrix that counts
the number of visits to each state. W is a valid matrix of marginal probabilities (weights)
wij obtained by averaging all state visits. The initial temperature T0 is set to a relatively low
value; high initial temperatures serve to explore larger regions of the parameter space, which
is unnecessary because the Hough transform provides a reasonably accurate initial estimate
b0. The value of T0 is chosen according to uncertainty bounds on b0, and is typically between
1.5 and 2.0 in practice.

The MCMC algorithm requires a valid starting state, and random state perturbations
that satisfy detailed balance (meaning effectively that every valid state is reachable from
every other valid state). Thus perturbations must be defined which can visit the entire state
space. These perturbations are described in the following sections.

3.4.3 Match Perturbations

For the case where Bk is a square permutation matrix (i.e. all features are visible in all
images), Dellaert proposes simple swap perturbations, so that Bk+1 is identical to Bk except
for a single row (or, equivalently, column) swap. It can be proven that all states are reachable
using these perturbations. When the number of visible 3-D features is unknown, however,
and when outliers and occlusion are present, detailed balance is no longer satisfied by simple
match swapping, because such swapping preserves the number of valid matches; therefore,
states with greater or fewer matches than the current state are never reached.
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We generalize Dellaert’s technique, in the two-camera case, to handle an unknown number
of visible 3-D features, and also to handle outliers and occlusion. The state matrix B and
the probability matrix W are each augmented with an extra row and column (§3.3.3) to
represent an appropriate state space (i.e. to account for features having no matches). Novel
perturbations in addition to row and columns swaps are also introduced which allow all
states to be visited.

(a) (b)

Figure 9: Row and Column Swaps
(a) Two rows of the match matrix, including outliers, are interchanged. (b) Two columns are interchanged.

In particular, to allow the number of valid matches to change, two complementary oper-
ations are proposed. The split perturbation converts a valid match into two outlier features,
and the merge perturbation joins two outlier features into one valid match. Figure 10 depicts
these operations in terms of the correspondence matrix B.

(a) (b)

Figure 10: Split and Merge Perturbations
(a) A valid correspondence is split into two outliers, thus reducing the number of valid matches by one. (b)
Any two outliers can be merged into a valid correspondence to increase the number of valid matches by one.

3.4.4 Efficient Sampling

The sampling algorithm outlined above seems at first to be computationally expensive, espe-
cially for the large state matrices typical of real images containing many features. However,
three optimizations can be applied to significantly improve the algorithm’s performance. The
majority of any given state matrix is zero; in fact, out of MN possible entries, a maximum
of N + M − 1 are non-zero (this corresponds to the case where all features are outliers).
Thus the first optimization is to use sparse matrix representations for B and for state per-
turbations. Because of the geometric match constraints from §3.2.2, many configurations
B are invalid. Thus, the second optimization is to consider only those state perturbations

18



involving valid matches.
The final optimization involves computation of the likelihood ratios β. Each perturbation

represents only an incremental change in the state that involves at most four entries in B.
The exponential form of the likelihood function in (23) facilitates computation of ratios:

β =
p(B̃

k
|b,M)

p(Bk|b,M)
=

c(M̃
k
) exp

[

b>M̃
k
b
]

c(Mk) exp
[

b>Mkb
] =

c(M̃
k
)

c(M k)
exp

[

b>(M̃
k
− M k)b

]

. (24)

In the case of swapping two rows, say row m which contains a one in column n and row
p which contains a one in column q, most terms in the sum of (23) remain unchanged; only
the entries bmn, bpq, bmq, and bpn differ. The new parameter matrix is given by

M̃
k

= M k + Mmq + M pn − Mmn − M pq, (25)

which involves only four new terms that can be computed from the current parameter matrix.
Split and merge perturbations have equally simple incremental computations, since they

also involve only a few entries of Bk. If a valid correspondence bmn is split, then the new
parameter matrix becomes

M̃
k

= M k − Mmn; (26)

if two outliers are merged, the new parameter matrix is

M̃
k

= M k + Mmn. (27)

Incremental computation of the difference (M̃
k
− M k) in (24) is thus straightforward.

3.5 Multi-Camera Method

Translations recovered between camera pairs are merely directions, and thus can only be
determined up to unknown scale. This section illustrates how baseline directions can be as-
sembled into a set of constraints on camera positions and used to recover a globally consistent
pose configuration.

3.5.1 Baseline Constraints

Only the directions (not distances) between adjacent nodes and rough initial camera positions
are known. We employ an iterative algorithm that updates each node’s position pi using
constraints imposed by its associated baselines.

At each iteration, the list of all nodes is traversed in random order. For a given node i,
a set of constraints is assembled by constructing rays originating at the current positions pj

of its neighbor nodes and emanating in the direction of the estimated baselines bji (Figure
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Figure 11: Assembling Translation Directions
(a) After motion directions are estimated between all relevant camera pairs, camera positions are still un-
known. (b) A pose configuration consistent with all motion directions can be determined.
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b21
b31

b41

Figure 12: Single Node Baseline Constraints
A node’s position is constrained by adjacent positions and baselines.

12). The new position p′
i for node i is chosen to minimize the mean-square distance to each

baseline ray. In the absence of baseline uncertainty, p′
i can be determined according to

p′

i =
(

∑

j
(I − bjib

>

ji)
)−1 (∑

j
(I − bjib

>

ji)pj

)

. (28)

Uncertainty in baseline directions can be incorporated by replacing bjib
>

ji in (28) with the
second-moment matrix of the baseline’s Bingham density. Uncertainty in p′

i, in the form of
a 3 × 3 Euclidean covariance matrix, is approximated by the inverse matrix in (28).

3.6 Metric Registration

Pose estimates recovered using the methods of §3.5 are globally consistent relative to each
other. However, they reside in a locally defined and somewhat arbitrary coordinate system
that does not necessarily correspond to the metric space of the scene. A rigid transformation
consisting of translation, rotation, and scale can express camera pose with respect to any
desired coordinate system while preserving the local relationships among cameras.

The sensor produces pose estimates in an absolute (Earth-relative) coordinates [11].
These estimates provide a ground-truth reference frame to which the camera configuration is
finally registered. We assume that the sensor estimates are unbiased, so that the Euclidean
transformation that best fits recovered camera positions to initial camera positions produces
an optimal pose assignment.
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3.6.1 Absolute Orientation

This section outlines the approach to absolute orientation, or 3-D to 3-D registration, as
proposed by Horn [30]. The goal is to find the translation, rotation, and scale that best align
the N recovered camera positions, or source points xi, with the N initial positions, or target
points yi.

(a) (b) (c) (d)

Figure 13: Metric Registration Process
A two-dimensional depiction of metric registration. (a) The original configuration is shifted so that the two
centroids coincide. (b) Rays from the centroid to each camera rotationally aligned. (c) The optimal scale is
computed and applied. (d) The final configuration.

First, each point set is translated so that its centroid is coincident with the origin. A
new set of points is thus defined so that

x̃i = xi − x0, ỹi = yi − y0 (29)

where

x0 =
1

N

N
∑

i=1

xi, y0 =
1

N

N
∑

i=1

yi. (30)

This allows rotation and scale to be applied relative to the same origin, namely the centroid
x0 and y0 of the two 3-D point sets.

The source points are then rotated by a matrix R to optimally align the rays through the
points x̃i and ỹi originating at x0 and y0, respectively, as shown in Figure 13. The rotation
R is estimated using the deterministic two-camera rotation method described in [3]. Next,
the optimal scale factor s is computed as

s =

√

∑N
i=1 ỹi · ỹi

∑N
i=1 x̃i · x̃i

. (31)

Finally, the points are shifted from the origin back to the target points’ centroid y0. The
overall transformation acting on the source points is thus given by

g(xi) = sR(xi − x0) + y0

= sRxi + t (32)
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where t = y0 − sRx0. This is consistent with the derivation in [30].
Probabilistic transformations are not necessary here because the target positions are not

ground-truth quantities. However, the previously estimated pose uncertainty must undergo
a similar set of transformations, described in the next section.

3.6.2 Transforming Uncertainty

Modification of the camera pose necessitates appropriate modification of its uncertainty. Let
x be the position of a given camera before metric registration, with uncertainty described
by a Gaussian random variable with mean at x and with covariance matrix Λ � , and let y

represent the camera’s position after registration. From (32),

y = sRx + t. (33)

The new covariance is then given by

Λ � = 〈yy>〉 − 〈y〉〈y>〉

= 〈(sRx + t)(sx>R> + t>)〉 − (sR〈x〉 + t)(s〈x>〉R> + t>)

= s2R〈xx>〉R> − s2R〈x〉〈x>〉R>

= s2RΛ � R> (34)

and is therefore independent of the translation t.
Camera orientation is not affected by pure translation or scale; thus, rotational pose

uncertainty is altered only by the rotation R. A given camera’s orientation is represented
by a unit quaternion q, which is a Bingham random variable B4(q; κ, U). Intuitively, the
concentration parameters κ should remain unchanged by the rotation; however, the orthog-
onal columns of U , each of which is a distinct quaternion, should be transformed by R. A
quaternion acts on another quaternion as a matrix multiplication; thus, the new orientation
quaternion q̃ is then given by q̃ = Qq, where Q is a 4 × 4 matrix representing R. The
same matrix can be used to transform the columns of U , resulting in a new random variable
distributed as B4(q̃; κ, QU).

3.7 Asymptotic Running Time

The running time of the translational registration algorithm is O(n), or linear in the number
of input nodes n. Note that the number of adjacencies in the node graph is linear in n, since
every node has at most a constant number neighbors in the graph. The algorithm’s pairwise
baseline estimation stage therefore requires O(n) time per iteration. In practice a few dozen
iterations suffice for convergence.

3.8 Limitations

The algorithm has several limitations. It requires useable point features from a feature
detector. It relies on pairwise baseline estimates, so can be unstable for degenerate input

22



configurations, or incorrect node adjacencies. The algorithm’s assumption that nearby nodes
are likely to have observed overlapping scene structure may be faulty, for example when two
nodes lie on opposite sides of a thin building.

3.9 Summary of Position Recovery

This section presented a sequence of steps for the recovery of metrically aligned camera
positions given known orientations and scene-relative 3-D line directions. First, camera
adjacencies are determined from the approximately known initial pose. For each adjacent
camera pair, a direction of motion is determined. Geometric constraints are imposed which
drastically reduce the number of putative point feature matches, after which a Hough trans-
form determines the most likely motion direction by considering all matches simultaneously.
A MCEM algorithm then alternately refines the motion direction and computes probabilistic
correspondence by sampling over all correspondence sets.

All two-camera motion directions are assembled into a set of linear constraints on camera
positions, which is iteratively solved to produce a globally consistent pose configuration. Fi-
nally, this configuration is rigidly transformed for metric alignment with the original camera
pose using a classical 3-D to 3-D alignment technique. The end result is a set of consistent
camera positions and orientations, as well as estimates of their uncertainty.

4 Experiments

We implemented the position registration algorithm in roughly 5,000 lines of C++ code,
and instrumented its performance on a 250MHz SGI O2 with 1.5 Gigabytes of memory. This
section assesses the algorithm’s end-to-end performance using several objective metrics, on
both synthetic and real data. We give comparisons to ground truth for synthetic data, and
use a variety of application-specific consistency measures for real data (where no ground
truth is available).

4.1 Synthetic Data

This section describes a series of experiments on synthetic data.

4.1.1 Two-Camera Baseline Recovery

We assessed the algorithm’s recovery of pairwise baselines by randomly generating 3-D point
features and projecting them into the cameras. We introduced controllable projection noise
using bipolar Bingham distributions, and a number of random outlier observations.

Figure 14 plots the accuracy of baseline recovery as feature noise, outlier percentage,
rotation error, and the number of features are varied. We perturbed the true baseline by a
random angle with variance σ2 and used an uncertainty bound of 3σ.
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Figure 14: Accuracy of Baseline Estimation
Accuracy of baseline recovery with varying inputs. Error varies roughly linearly with feature noise (upper
left). Error is roughly insensitive to the number of outliers (upper right). Error increases rapidly with the
error in supplied node rotations (lower left), but eventually plateaus at the explicit bound imposed on the
baseline direction (§3.2.2). Error decreases with increasing number of sample points (lower right).

The recovered baseline estimates are robust even against extremely high outlier percent-
ages due to the Hough transform initialization. The technique does not fare so well with
error in supplied input rotations, because the epipolar formulation fundamentally depends on
accurate camera orientations. Intuitively, poor node rotations “scatters” the accumulation
of epipolar lines.

We assessed the MCEM component of the algorithm by visualizing the match probability
matrix (§3.4.2) at different stages of its evolution (Figure Figure 15). The match matrices
produced by MCEM do not perfectly capture feature correspondence when significant noise
is present. However, this correspondence is never explicitly required, since the end-to-end
performance measure is baseline accuracy (Figure 17).

Finally, we compared the baseline direction estimates obtained by the MCEM algorithm
to those produced by a deterministic Iterated Closest Point (ICP) method (Figure 16).
The ICP algorithm is identical to the MCEM algorithm, except that instead of estimating
probabilistic match weights at each E-step, ICP determines the set of “best” explicit (i.e.,
binary) matches given the current baseline direction. MCEM consistently outperforms ICP,
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(a)

(b)

Figure 15: Evolution of MCEM Match Probability Matrix
Evolution of the match matrix as the MCEM algorithm proceeds. (a) Successive iterations for point feature
noise of 0.05◦; correspondence is perfectly recovered. (b) Iterations for point feature noise of 0.5◦; a few
features are misclassified.

exhibiting less error as both feature noise and the number of outliers increases.
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Figure 16: Baseline Recovery with MCEM and ICP Methods
Baseline recovery error is plotted for the (stochastic) MCEM and (deterministic) ICP methods as a function
of increasing feature noise (left) and outlier percentage (right). MCEM outperforms ICP in both cases.

4.1.2 Global Registration

We assessed the accuracy of the global registration stage, which determines a consistent set
of node positions given all inter-camera baseline directions. We generated a collection of
camera positions (and thus known baselines) randomly, then perturbed the baselines by a
Bingham noise process with controllable parameters. We then recovered an end-to-end pose
assignment and compared the recovered and initial “true” node positions (Figure 17). As
expected, position recovery error grows with the amount of baseline perturbation. Recovery
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error does not decrease significantly with the total number of cameras, since only a constant
number of constraints (one for each adjacency) are used to determine each node position.
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Figure 17: Error in Global Position Recovery
Error in global position recovery, as a function of baseline error (left) and number of nodes (right).

4.2 Real Data

We assessed the end-to-end performance of the registration method for several real datasets
acquired as part of the overall model capture project. In lieu of ground truth, which is not
available in general and may be difficult or impossible to obtain, we formulated and evaluated
a variety of consistency metrics. We report the following quantities for each dataset:

• Data size. We tabulate the number of rectangular images (“Images”), the number
of omni-directional nodes (“Nodes”), and the number of images per node. We report
the average and total number of point features detected (“Points”). Finally, we report
the number of adjacent camera pairs (“Node Adjacencies”) and the average distance
between adjacent cameras.

• Computation time. We report average and total running times for each stage of
position recovery, excluding file I/O.

• Angular and positional offsets. We report the average and maximum difference
(“Trans Offset”) between each node’s initial position (from the input) and its output
position (assigned by our algorithm). These quantities allow us to assess both the
quality of the system’s initial pose estimates, and the robustness of the position recovery
methods to initial pose error.

• End-to-End position error. We report uncertainty estimates for the recovered node
positions (“Trans Bound”) by evaluating the average and maximum sizes at which 95%
confidence bounds are reached for the recovered Gaussian densities.

• Feature consistency. We assessed end-to-end feature consistency by converting each
MCEM match probability matrix to a binary match matrix. Each match probability
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exceeding a threshold (corresponding roughly to 80% probability) was interpreted as
an unambiguous match, and its constituent point features were examined using two
error measures. We tabulate the average and maximum 3-D distance (in centimeters)
between rays extruded from each node through the point feature (“3-D Ray Error”),
and the average and maximum 2-D distance (in pixels) between each point feature and
its epipolar line in the other node (“2-D Epi Error”).

4.2.1 Technology Square Data Set: Consistency of Pose Recovery

The Technology Square data set consists of 81 nodes spanning an area of roughly 285 by 375
meters (Figure 18). Our orientation alignment algorithm [3] registered 75 (or roughly 92%)
of the 81 nodes; 6 nodes were discarded due to insufficient vanishing point information. Of
these 75 nodes, the baseline recovery algorithm registered all 75 successfully.

Figure 18: TechSquare Node Configuration
Node positions and adjacencies for the Tech Square data set. The average baseline (for 5 nearest neighbors)
was 30.88 meters.

For this data set, our algorithm corrected initial translation errors of nearly seven meters,
producing node pose consistent on average to 0.072◦ of orientation, 5.6 cm of position, and
1.22 pixels. The maximum pose error for any node was 0.098◦ of orientation, 11.0 cm of
position, and 5.71 pixels. Total CPU time was just under three hours.

Data Per Per
Type Image Node Total

Images — 48 3899
Point

Features 227 10,958 887,598
Nodes — — 81

Node Ad-
jacencies — — 189

Per Pair Total

Baseline Hough 8.1 s 25 m 31 s
Baseline MCEM 45.3 s 2 h 23 m

Global Opt — 0 m 53 s

Total 53.4 s 2 h 49 m

Table 1: TechSquare Data Size, and Computation Times by Stage
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Average Maximum

Rot
Offset 1.53◦ 17.18◦

Rot
Bound 0.072◦ 0.098◦

Trans
Offset 0.70 m 6.70 m
Trans

Bound 5.6 cm 11.0 cm

Average Maximum Std. Dev.

3-D Ray
Distance 9.6 cm 12.4 cm 3.3 cm
2-D Epi
Distance 1.22 pixel 5.71 pixel 2.33 pixel

Table 2: Tech Square: 3-D and 2-D (Epipolar) Consistency

4.2.2 Technology Square Data: Comparison to Manual Pose Recovery

A manually generated pose solution was available for this dataset [18], enabling us to compare
manual and automatic pose recovery techniques. Entering five or more point matches by
hand for each of roughly 200 adjaciences, expending only one minute per match, would
require about 16 hours of human effort; thus the student operator omitted many point
matches, producing a merely convergent (but not stable) constraint set. Figure 19 compares
epipolar geometry for manual and automated pose recovery.

Manual Automatic

Figure 19: TechSquare Epipolar Geometry Comparison I
A point feature in one image and its corresponding epipolar line in another image, as computed using cameras
generated by manual correspondence (bottom middle) vs. our automatic method (bottom right). Note the
error in the manual solution, in this case due to insufficient manually-entered match constraints.

Figure 20 compares epipolar geometry for a window corner from a repeating series of
windows obscured by foliage. Again, the manual solution has poor epipolar geometry, since
the human user did not enter this particular match constraint. We observe that it is plainly
impossible to match these window corners given only this pair of images, due to the limited
camera FOV; even for the omni-directional image pair, human operators find it difficult or
impossible to match window corners due to the severe clutter from foliage obscuring most
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individual views. Our algorithm succeeds where the human fails by combining many omni-
directional observations of many point features, and iteratively reweighting match probabil-
ities until a self-consistent set emerges.

Manual Automatic

Figure 20: TechSquare Epipolar Geometry Comparison II
A feature whose match is difficult for a human operator to identify. Epipolar geometry is shown for manual
(bottom middle) and automated (bottom right) pose solutions. Note the error in the manual solution.

4.2.3 GreenBuilding Data Set (30 nodes)

We identified a small node set with particularly noisy initial pose, in order to test the
robustness of the automatic techniques with respect to initial pose error. These 30 nodes
spanned an area of roughly 80 by 115 meters (Figure 21); all were successfully registered
rotationally and translationally (i.e., end-to-end).

Figure 21: GreenBuilding Node Configuration
Node locations and adjacencies for the GreenBuilding data set. The average baseline was 15.61 meters.

The rotational registration stage corrected initial orientation errors of 6.83◦. For this
data set, our algorithm corrected initial translation errors of nearly six meters, producing
node pose consistent on average to 0.067◦ of orientation, 4.5 cm of position, and 2.21 pixels.
The maximum pose error for any node was 0.12◦ of orientation, 8.1 cm of position, and 4.17
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pixels. Total CPU time was just over one hour.
The Green Building node set had particularly noisy initial height estimates (Figure 22),

so we studied the algorithm’s ability to recover consistent node height (or z).

Figure 22: GreenBuilding Height Corrections
(a) A horizontal view of the node topology before pose refinement. All nodes were acquired at roughly the
same height above the ground; noisy GPS caused poor initial z estimates for the nodes. (b) After refinement,
most of the height variation has been corrected.

Even for nearby 3-D points, the initial epipolar error in this dataset is substantial, roughly
hundreds of pixels (Figure Figure 23). The registration algorithm finds accurate epipolar
geometry for these points.

Finally, we examined point features known to be very far from all nodes, to assess the
algorithm’s ability to recover consistent pose away from the immediate vicinity of the ac-
quiring cameras (Figure 24). With poor initial pose, and distant 3-D feature points, our
algorithm recovers both node and feature positions to within a few centimeters.

Data Per Per
Type Image Node Total

Images — 23 695
Nodes — — 30
Point

Features 257 5,967 179,030
Node Ad-
jacencies — — 80

Per Pair Total

Baseline Hough 6.2 s 8 16 m
Baseline MCEM 42.5 s 56 20 m

Global Opt — 0 21 m

Total 48.7 s 1 05 h

Table 3: Green Building: Data Size and Computation Times by Stage

Average Maximum

Rot
Offset 2.95◦ 6.83◦

Rot
Bound 0.067◦ 0.12◦

Trans
Offset 2.86 m 5.97 m
Trans

Bound 4.5 cm 8.1 cm

Average Maximum Std. Dev.

3-D Ray
Distance 10.2 cm 18.5 cm 5.3 cm
2-D Epi
Distance 2.21 pixel 4.17 pixel 1.43 pixel

Table 4: Green Building: 3-D and 2-D (Epipolar) Consistency
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Initial Refined

Figure 23: GreenBuilding Epipolar Geometry Comparison
Initial and refined epipolar geometry; the algorithm corrects significant initial pose error.

Figure 24: GreenBuilding Epipolar Geometry for Distant Points
Epipolar lines after registration are consistent to within a few pixels, even for distant 3-D points. Error in

initial pose is substantial; the same lines inferred from the this pose fail to intersect the image.

4.2.4 AmesCourt Data Set (100 nodes)

The Ames Court data set spans an area of 315 by 380 meters, representing a larger geo-
graphical region and a larger number of camera sites (Figure 25). Of the 100 nodes in this
set, the rotational stage registered 95 successfully. The translation stage registered all 95
nodes.

Initial pose was corrected by 5.59◦ and 6.18 m, achieving average consistency of 0.095◦,
5.7 cm, and 3.88 pixels. The maximum pose inconsistency was 0.21◦, 8.8 cm, and 5.02 pixels.
Total CPU time was just under four hours.

4.3 Benefit of Omni-Directional Imagery

There is substantial experimental evidence that wide-FOV (i.e., omni-directional) images
are fundamentally more powerful than narrow-FOV (i.e., planar) images in practice. Our
companion paper [3] showed evidence that vanishing point estimation becomes more robust
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Figure 25: AmesCourt Node Configuration
Node locations and adjacencies for the AmesCourt data set. The average baseline was 23.53 meters.

Per Per
Image Node Total

Images — 20 2,000
Nodes — — 100
Point

Features 257 4, 132 413,254
Node Ad-
jacencies — — 232

Per Pair Total

Baseline Hough 7.8 s 30 m 10 s
Baseline MCEM 52.6 s 3 h 24 m

Global Opt — 1 m 04 s

Total 60.4 s 3 h 55 m

Table 5: AmesCourt Data Size and Computation Times by Stage

Average Maximum

Rot
Offset 2.83◦ 5.59◦

Rot
Bound 0.095◦ 0.21◦

Trans
Offset 3.53 m 6.18 m
Trans

Bound 5.7 cm 8.8 cm

Average Maximum Std. Dev.

3-D Ray
Distance 14.9 cm 20.2 cm 5.6 cm
2-D Epi
Distance 3.88 pixel 5.02 pixel 2.10 pixel

Table 6: Ames Court: 3-D and 2-D (Epipolar) Consistency

and more accurate with increasing field of view. Here, we show analogous evidence for
position (baseline) recovery. We examined the Hough transform, and resulting baseline
direction estimate, for a node pair as a function of the number of planar images used.
Transform values are plotted in Figure 27. The sharpness of the peak, and the consistency
of the resulting baseline estimate, increases directly with field of view. Moreover, we observe
that narrow-FOV images do not provide sufficient feature overlap for convergence in any of
our datasets.
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Figure 26: AmesCourt Epipolar Geometry
Point features and corresponding epipolar lines for a typical node pair in the AmesCourt set.

1 Image 10 Images

20 Images 40 Images

Figure 27: Hough Transform Peak Coherence
The dependence of Hough transform peak coherence on field of view for nodes containing 47 images. Peaks
are shown for a baseline direction, for increasing numbers of images (1, 10, 20 and 40) in the node tiling.

4.4 Other Error Sources

The algorithm presented in this paper relies upon the outputs of a number of other algo-
rithms, including camera calibration and noisy feature detection. Without careful surveying
of ground-truth 3-D measurements, it is difficult to quantitatively judge the system’s end-to-
end performance on real data. However, the consistency measures above suggest that node
pose is recovered accurately.

5 Related Work

This section reviews prior work in 3-DOF baseline estimation and 6-DOF registration.

5.1 Interactive Pose Estimation Methods

Interactive tools can also be used to impose constraints on camera pose [7, 20, 46]. These tools
would require a prohibitive amount of manual effort to register a large image network. They
are also vulnerable to operator error, and to numerical instability: since human operators
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have a finite capacity for work, they will tend to specify as few constraints as possible to
achieve convergence.

5.2 Controlled Calibration

Many vision applications assume static cameras [49, 40], or a fixed spatial configuration of
two or more cameras [29]. Some systems recover relative pose through the use of known
targets [55, 14]. These techniques require 3-D to 2-D correspondence in each calibration
image, usually supplied by a human operator, or determined automatically as long as the
target remains in clear view. These methods have two principal disadvantages: they require
static camera configurations, and they require that known objects be present in the scene.

5.3 Structure from Motion

A class of structure from motion (SFM ) techniques recovers scene geometry and camera pose
for a moving camera [35, 42, 51]. These methods are sensitive to image noise, illumination
variations, and strong perspective or occlusion due to extended baselines.

Some methods recover pose only between consecutive image pairs or triples in a sequence
[24]; these local techniques are prone to bias and error accumulation. Azarbayejani [5]
addresses this issue by using an extended Kalman filter to update structure and motion
using all available data, incrementally improving the estimates as new data is introduced.

Projective reconstruction techniques avoid intrinsic camera calibration [39, 36, 28], recov-
ering structure and pose only up to an arbitrary projective transformation. Other linearized
versions of SFM have been formulated, based on SVD [41] or affine approximations [33].

5.4 Correspondence Methods

Nearly all registration algorithms rely on explicit knowledge of correspondence between fea-
tures. Low-level trackers [50] and dense texture trackers [31, 58] attempt to compute corre-
spondence under short or infinitesimal baselines (i.e., for situations in which scene brightness
and viewpoint change little across images, and there is little or no occlusion).

Robust statistical techniques have been developed to diminish the effects of outliers.
Examples include RANSAC (random sampling consensus) [23, 24], MLESAC [54], ROR
(rejection of outliers by rotations) [1], and LMS (least median of squares) [13, 49]. These
algorithms attempt to find consistent pose assignments by randomly choosing feature subsets
and examining remaining features for consistency. However, they can require exponential
time in the number of candidate features; they do not account for match ambiguities, or
feature noise; and they do not sample the space of all feature sets in a principled way.

Other authors formulate correspondence probabilistically rather than explicitly [44, 15,
21]. None of these techniques have been demonstrated for large numbers of features or ex-
tended camera motions. Correspondence-free pose estimation techniques have also emerged
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(e.g., [25]), but have not been demonstrated for scenes with significant occlusion or lighting
variation.

5.5 Measurement Uncertainty

Most authors who have treated measurement uncertainty have used additive Gaussian noise
[48, 2, 37, 27]. This noise model has no meaningful interpretation for projective variables. For
example, the units of the covariance of the fundamental matrix [19, 59] are not well-defined.
Bingham distributions have been shown to be more appropriate for projective variables [17].

5.6 Expectation Maximization Methods

Some authors have proposed EM or EM-like algorithms to solve coupled structure and camera
motion problems [57, 9, 15], but none have provided a principled treatment of measurement
noise and matching ambiguity. Recently, a probababilistic EM formulation has been pro-
posed [21], which handles multiple images and match ambiguity, but only when the number
of 3D features is known, and all features are visible in all images.

6 Contributions and Conclusions

The algorithm described in this paper makes use of a number of fundamental techniques from
computer vision and estimation theory, including: the use of gradient-based (point) features
for robustness against lighting variations and strong perspective; decoupling 6-DOF pose
estimation into two pure 3-DOF problems; probabilistic inference on the sphere; the Hough
transform (for efficiently establishing priors), Markov chain Monte Carlo methods (for effi-
ciently sampling from high-dimensional probability spaces), and expectation maximization
methods (for iterative solution of coupled classification and estimation problems).

This paper makes several contributions to the recovery of absolute positions for large
collections of cameras, and attainment of large-scale 6-DOF extrinsic calibration. First, we
propose the use of a priori absolute position estimates, and an image adjacency graph, to
limit inter-camera registration to those images which are likely to have observed common
scene structure. This enables O(n) rather than O(n2) asymptotic performance, and removes
the need for a human operator to supply matching constraints (for example to initialize
a bundle-adjustment optimization), or supply photogrammetric tie points to express the
resulting pose in an absolute (Earth) coordinate system.

Second, we show quantitative evidence that wide-FOV (omni-directional) images are
fundamentally more powerful observations than are narrow-FOV (planar) images for the
recovery of inter-image baselines and global positions. Omni-directional images are free of
the aperture problem and its attendant ambiguities; nearby clusters of wide-FOV images
generally observe more common scene structure than do clusters of narrow-FOV cameras.
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Third, we extend existing probabilistic feature correspondence methods to handle un-
known numbers of features, unknown occlusion, deocclusion, and outlier features, and to
correctly incorporate projective uncertainty.

Fourth, we combine Hough transform and MCMC techniques to address the limitations
of both methods. The HT is used in a discrete fashion simply to establish a prior probability
on the set of possible point matches. MCMC is used for stochastic optimization of the
baseline estimate under balanced match insertions, deletions, and swaps.

Fifth, we describe a method to incorporate a set of pairwise baseline direction constraints,
each with an attendant uncertainty, into a global, linear least-squares optimization which
produces accurate estimates of final node positions and an aggregate uncertainty for each.

Sixth, we assessed end-to-end error of the 6-DOF pose recovery system which incorpo-
rates the position estimation algorithm proposed in this paper. Even in the presence of
significant initial position and orientation error (several meters and several degrees), our
algorithms recover absolute pose accurately while requiring a few CPU-hours of computa-
tion. To our knowledge, the resulting datasets are the largest registered terrestrial image
datasets in existence, regardless of whether manual or automated calibration algorithms
are used. We estimate that producing equivalent datasets using manual photogrammetric
bundle-adjustment would require between tens and hundreds of hours of human effort.

Finally, the algorithm described in this paper expends time and space resources which
grow linearly in the number of input images, rather than quadratically or worse as in many
previous methods. This removes a fundamental barrier to the development of automated
registration techniques for very large numbers of images. In practice, we demonstrated the
algorithm’s performance on datasets containing roughly one, two, and four thousand images,
complexities which can not be attained with any other automated method, and which would
be difficult or impossible in an interactive system.

One perhaps unexpected advantage of working at this scaling regime is that of over-
constraints and data fusion to reduce uncertainty; our algorithms register images to within
four pixels of epipolar error, on average, outperforming manual bundle-adjustment due to
the human operator’s use of insufficient constraints. We emphasize that the image datasets
for which we report performance were acquired outdoors, over wide baselines, under un-
controlled and varying lighting conditions, and in the presence of significant occlusion and
visual clutter. Considered together, the algorithms presented here and in [3] represent a new
end-to-end capability for automated, absolute registration of terrestrial images.
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