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ABSTRACT

This paper presents a method for automatically regis-
tering multiple three dimensional (3D) data sets. Previous
approaches required manual specification of initial pose es-
timates or relied on external pose measurement systems. In
contrast, our method does not assume any knowledge of
initial poses or even which data sets overlap. Our auto-
matic registration algorithm begins by converting the input
data into surface meshes, which are pair-wise registered us-
ing a surface matching engine. The resulting matches are
tested for surface consistency, but some incorrect matches
may be locally undetectable. A global optimization process
searches a graph constructed from these potentially faulty
pair-wise matches for a connected sub-graph containing only
correct matches, employing a global consistency measure to
detect incorrect, but locally consistent matches. From this
sub-graph, the final poses of all views can be computed di-
rectly. We apply our algorithm to the problem of 3D digital
reconstruction of real world objects and show results for a
collection of automatically digitized objects.

1. INTRODUCTION

The advent of relatively low-cost, commercially available
laser range sensors has greatly simplified the process of ac-
curately measuring the 3D structure of a static environment,
driving the need to automate the processing of 3D data. One
problem frequently encountered in 3D data processing is
registration, the process of aligning multiple 3D data sets in
a common coordinate system. In existing applications, reg-
istration is accomplished either by hand or through the use
of an external position measurement device such as a global
positioning system (GPS). This paper introduces a third al-
ternative: automatic registration, which does not require any
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external measurements or manual intervention. Formally,
we want to solve the following problem:

Given an unordered set of overlapping 3D views
of a static scene and no additional informa-
tion, automatically recover the viewpoints from
which the views were originally obtained.

We do not assume any prior knowledge of the original view-
points such as initial pose estimates or even which views
contain overlapping scene regions (overlaps). This problem
is analogous to assembling a jigsaw puzzle in 3D. The views
are the puzzle pieces, and the problem is to correctly put the
pieces together without even knowing what the puzzle is
supposed to look like.

Three dimensional registration problems can be classi-
fied along two axes: the number of input data sets (views)
and whether initial pose estimates are known. A pose es-
timate is a rigid body transform (e.g., three rotations and
three translations) and can be specified for a single view in
world coordinates (absolute pose) or with respect to a pair
of views (relative pose). Along the first classification axis,
we use the term pair-wise registration when registering two
views and n-view registration when more than two views
are involved. Along the second axis, we use the term reg-
istration refinement when initial pose estimates are known,
and unconstrained registration when they are unknown.

With this naming convention, the relationship between
our registration algorithm and existing registration methods
is clear. For example, the well-known iterated closest point
algorithm (ICP) is a pair-wise registration refinement algo-
rithm [1]. Extensions of the ICP algorithm to more than two
views are n-view registration refinement algorithms [2][3].
Surface matching, a process often used in 3D recognition
systems, is an unconstrained pairwise registration algorithm
[4][5]. Our automatic registration algorithm occupies the
fourth corner of this taxonomy: unconstrained n-view reg-
istration.

Our solution to the unconstrained n-view registration
problem consists of two main phases: local registration
and global registration. In the local registration phase, the



Fig. 1. The 3D digitization application. Holding the object before a laser scanner (left), we obtain 3D data from various
viewpoints (center), and automatically construct a digital version of the original object (right).

N input views (Vi, i ∈ 1 . . .N ) are converted to surface
meshes (Si, i ∈ 1 . . . N), and a surface matching system [6]
performs unconstrained pair-wise registration on all view
pairs. The resulting matches are verified for surface con-
sistency, but some incorrect matches may be locally un-
detectable and potential correct matches may be missed.
The filtered matches are collected in an undirected graph
called the model graph, which encodes the connectivity be-
tween overlapping views. In the global registration phase,
we search this model graph for a connected sub-graph con-
taining only correct matches. We pose the search as a mixed
continuous and discrete optimization problem. The discrete
optimization performs a combinatorial search over the space
of connected sub-graphs, using a global surface consistency
criterion to detect and avoid incorrect, but locally consistent
matches, while the continuous optimization adjusts the ab-
solute pose parameters to minimize the distance between all
overlapping surfaces, distributing small pair-wise registra-
tion errors in a principled way. The final output, the abso-
lute poses of the input views, can be computed directly from
the resulting graph1.

We demonstrate and test our algorithm in the context of
3D object digitization, the purpose of which is to create a
3D digital reproduction of a real-world object (fig. 1). In
our application, the object to be digitized is held before a
laser scanner while range images are obtained from various
viewpoints. We call this hand-held modeling, and it is an
exceedingly easy data collection method, requiring no spe-
cialized hardware or training and only a few minutes to scan
an average object. Alternately, the model can be placed on a

1In practice, we express the poses with respect to one of the input views,
which is selected arbitrarily.

table during each scan, or a portable scanner can be moved
around while the scene remains stationary. Once data col-
lection is complete, our application produces a digital model
of the original object by automatically registering the input
views and then merging the registered views into a single
entity. Although we illustrate our algorithm with 3D object
digitization, the method is general and can be applied in any
situation where multiple 3D data sets must be registered.

In the remainder of this paper, we begin by summarizing
the related work (section 2). Section 3 provides the neces-
sary background on the model graph concept, and section 4
defines our surface consistency measures. Sections 5 and 6
give the details of the automatic registration algorithm, with
section 5 focusing on the local registration phase and sec-
tion 6 dealing with the global registration phase. Section 7
presents a comparison of three versions of our algorithm on
a set of test objects. Finally, in section 8 we discuss the
algorithm’s limitations and our future work.

2. RELATED WORK

Existing methods for multiple view registration rely on me-
chanical estimation of poses, manual assistance, or both.
One mechanical approach is to mount the scanner on a robot
equipped with an absolute positioning sensor. For example,
Miller used an autonomous helicopter with a differential
global positioning system (DGPS) to construct terrain mod-
els [7]. For smaller objects, absolute poses can be obtained
by mounting the sensor on a robot arm [8] or by keeping the
sensor fixed and moving the object on a calibrated platform
[9]. Relative poses can be estimated by mounting the sensor
on a robot equipped only with a relative positioning system
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Fig. 2. Example model graphs. A complete model (left) and
two partial models (right).

such as wheel encoders or inertial sensors [10][11][12].
A common manual registration method is to specify cor-

responding feature points in pairs of range images, from
which relative poses can be estimated [2]. In some systems,
corresponding feature points are automatically detected and
then manually verified for correctness [10]. Alternately,
the 3D data can be aligned directly through an interactive
method [3]. In more advanced approaches, a person in-
dicates only which views to register, and performs uncon-
strained pair-wise registration [5][13]. With this approach,
the user still must manually verify the registration results.

3. THE MODEL GRAPH

A model graph is an undirected graph G that encodes the
topological relationship between views (fig. 2). It contains
a node ni for each input view Vi and an edge ei,j for each
pair of overlapping views Vi and Vj . Associated with each
edge is a relative pose Ti,j and with each node is an absolute
pose Ti. The relative pose between two connected views Vi

and Vj can be computed by compounding the relative poses
along any path from Vi to Vj in G.

A connected model graph specifies a complete model
and a potential solution to our registration problem, since
every view can be transformed into a common coordinate
system by compounding relative poses. If, instead, G con-
tains several connected components, each component is
called a partial model. A spanning tree of G is the mini-
mum specification of a complete model. Additional edges
will create cycles in G, which can lead to conflicts because
compounding transforms along different paths between two
views may give different results. A model is pose consistent
if the relative pose of two views is independent of the path
in G used for the calculation. In practice, pose inconsisten-
cies arise from the accumulation of small errors in relative
poses along a path.

4. SURFACE CONSISTENCY

The automatic registration problem would be greatly sim-
plified if we could know with absolute certainty which pair-
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Fig. 3. Visibility consistency from the perspective of Ci: an
example of correct registration (left), free space violation
(center), and occupied space violation (right).

wise matches from our surface matching engine were cor-
rect. Such a goal is not attainable, but we can make an es-
timate by looking at the consistency of the underlying data
at the local as well as the global level. Surface consistency
is a measure of the degree to which the overlapping data
from two (or more) surfaces could represent the same phys-
ical surface. A threshold can be used to turn a consistency
measure into a classifier. At the local level, we use a contin-
uous valued surface consistency measure to rank pair-wise
registration results. At the global level, we use a surface
consistency classifier to verify that an entire model (or par-
tial model) is consistent.

4.1. Local surface consistency

For pairs of surfaces, one common measure of surface con-
sistency is the mean squared distance between the overlap-
ping regions (overlap distance). However, overlap distance
only takes into account the space close to the two surfaces,
and in some cases, obviously incorrect matches will have a
small overlap distance because the region where they over-
lap matches well.

For range sensors with a single point of projection, we
can develop more powerful measures that take advantage of
the sensor’s entire viewing volume by looking at the consis-
tency of the two surfaces along the line of sight from each of
the sensor viewpoints. We call this concept visibility consis-
tency. For example, consider the surfaces in figure 3 viewed
from the sensor position Ci. For a correct registration, the
two surfaces have similar range values wherever they over-
lap (fig. 3 left). For an incorrect registration, two types of
visibility inconsistencies can arise. A free space violation
(FSV) occurs when a region of Sj blocks the visibility of
Si from Ci (fig. 3, center), while an occupied space viola-
tion (OSV) occurs when a region of Sj is not observed by
Ci, even though it ought to be (fig. 3, right). Free space
violations are so named because the blocking surface vio-
lates the assumption that the space is clear along the line of
sight from the sensor to the sensed surface. Similarly, OSV
surfaces violate the assumption that range sensor detects oc-
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Fig. 4. An example of visibility consistency for an incor-
rect match. The z-buffers from each viewpoint (bottom row)
show the classification of pixels for the FSV fraction con-
sistency measure (eq. 8). The indicated FSV pixels in the
z-buffer for view 2 suggest an incorrect match.

cupied space. Here, we focus on FSV’s, but the potential of
OSV’s is discussed in section 8. Visibility consistency has
been used previously in other 3D vision contexts, including
hypothesis verification [14], surface registration [15], range
shadow detection [16], and multi-view integration [17][18].

We can detect FSV’s with respect to sensor position
Ci by projecting a ray from the center of projection of Ci

through a point p on Si. If the ray passes through Sj at a
point q which is significantly closer to Ci than p, then q is an
inconsistent point. We must test whether q is significantly
closer because even for correctly registered surfaces, p and
q will not have precisely the same range.

We can efficiently implement FSV detection using two
z-buffers [19]. To compute FSV’s for surfaces Si and Sj

with respect to Ci, both surfaces are projected into separate
z-buffers (Zi and Zj) using the coordinate system and pa-
rameters of Ci (e.g., focal length, viewing frustum). The
depth difference

Di,j(k) = Zj(k)− Zi(k) (1)

is then computed for each pixel x(k) where both z-buffers
are defined (fig. 4).

We have developed two local consistency measures based
on the FSV concept. The first one, which we call the FSV

likelihood, is a statistical measure based on the likelihood
ratio test. Given the two possible hypotheses, H+ (correct
match) and H− (incorrect match), and the set of depth dif-
ference measurements D = {Di,j(1), . . . , Di,j(K)}, we
estimate

L(Si, Sj) =
Pr(H+|D)

Pr(H−|D)
=

Pr(D|H+)Pr(H+)

Pr(D|H−)Pr(H−)
(2)

Assuming samples of D are independent and taking the log-
arithm, we have

ln(L(Si, Sj)) =
K

∑

k=1

ln Pr(Di,j(k)|H+)

−

K
∑

k=1

ln Pr(Di,j(k)|H−)

+ ln Pr(H+)− ln Pr(H−) (3)

An independent likelihood ratio L(Sj , Si) can be com-
puted with respect to sensor viewpoint Cj . Frequently, an
incorrect match will be detectable from only one viewpoint,
so we conservatively combine L(Si, Sj) and L(Sj , Si) to
form the FSV likelihood:

L(Si, Sj) = −min(ln(L(Si, Sj)), ln(L(Sj , Si)) (4)

The smaller the value of L(Si, Sj), the more likely it is
a correct match2. The corresponding FSV likelihood classi-
fier is:

LC(Si, Sj) =

{

1 if L(Si, Sj) < tl
0 otherwise

(5)

The probabilities in equation 3 can be estimated from
labeled training data. We use a set of hand-labeled matches
obtained from exhaustive unconstrained pair-wise surface
matching of the views of a typical object. First, we compute
separate histograms of the depth differences for the set of
correct matches (fig. 5, left) and the set of incorrect matches
(fig. 5, right). We then model Pr(D|H+) as a mixture of
two Gaussians, one for outliers and one for inliers, fitted to
the corresponding histogram. The process is repeated for
the incorrect matches to estimate Pr(D|H−). Mixtures of
two Gaussians are necessary because correct matches will
contain some outliers, primarily due to small registration
errors, and incorrect matches will contain inliers in the re-
gion that was matched during surface matching. Pr(H+)
and Pr(H−) are estimated using the frequency of correct
and incorrect matches in the training set.

2The sign change is introduced to make this measure consistent with
our other measures such as overlap distance.
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Fig. 5. The distribution of depth difference measurements D over a large set of correct matches (left) and incorrect matches
(right) from a test object. The predicted distributions, mixtures of two Gaussians learned from a separate training set, are
overlaid (thin black line).

For pair-wise matches, the likelihood ratio test is a good
measure of surface consistency, but for non-adjacent views
in a model graph, the accumulation of error when comput-
ing the relative transforms reduces the accuracy of this test.
For this situation, we use an alternative method for esti-
mating surface consistency, the FSV fraction (fig. 4). To
compute the FSV fraction, we apply a threshold, tSS , to
the depth difference measurements (eq. 1) to classify the
overlapping pixels into one of three categories: points on
the same surface (XSS), points that are FSV’s (XFSV ), and
“don’t care” points where Sj is behind Si (XDC):

x(k) ∈







XSS(i, j) if |Di,j(k)| ≤ tss

XFSV (i, j) ifDi,j(k) > tss

XDC(i, j) ifDi,j(k) < −tss

(6)

We then compute the fraction of points that are FSV’s,
ignoring “don’t care” points (class XDC):

F (Si, Sj) =
|XFSV (i, j)|

|XFSV (i, j)|+ |XSS(i, j)|
(7)

As with the FSV likelihood measure, we can perform
the computation with respect to sensor viewpoint Sj to get
F (Sj , Si). Combining the results gives the FSV fraction:

F (Si, Sj) = max(F (Si, Sj), F (Sj , Si)) (8)

The corresponding FSV fraction classifier is:

F C(Si, Sj) =

{

1 if F (Si, Sj) < tf
0 otherwise

(9)

4.2. Global surface consistency

Global surface consistency is the straightforward extension
of local surface consistency to an entire model. A model is

globally surface consistent if every pair of views is locally
surface consistent according to the FSV fraction classifier:

CM (G) =

{

1 if ∀(i,j)∈VC
F C(Si, Ti,jSj) = 1

0 otherwise
(10)

where VC the set of connected (not necessarily adjacent)
view pairs in G, and Ti,j is the relative pose computed by
compounding transforms along a connecting path between
ni and nj in G.

5. LOCAL REGISTRATION PHASE

Now that we have defined the model graph and the surface
consistency measures, we can fully explain our automatic
registration algorithm. The process will be demonstrated on
the angel2 test object (fig. 9g).

In the local registration phase, we attempt to register
all pairs of views using a surface matching algorithm. For
small numbers of views (≈ 20), this exhaustive registration
strategy is reasonable. For larger scenes, the combinatorics
make this approach infeasible, and view pairs must be se-
lectively registered (see section 8).

In preparation for surface matching, the views are pre-
processed as follows: The input range images are converted
to triangular surface meshes by projecting into 3D coordi-
nates and connecting adjacent range image pixels. Mesh
faces within range shadows (which occur at occluding bound-
aries in the range image) are removed by thresholding the
angle between the viewing direction and the surface normal.
For computational efficiency, the meshes are simplified us-
ing Garland’s quadric algorithm [20].

The surface matching algorithm performs unconstrained
pair-wise registration of two surfaces based on their shape.



We treat this process as a black box, which takes two meshes
as input and outputs a list of relative pose estimates. Details
can be found in [5]. If the two views overlap, the algo-
rithm often finds the correct relative pose, but it may fail
for a number of data-dependent reasons (e.g., not enough
overlap or insufficient complexity of the surfaces). Even
if the views do not contain overlapping scene regions, the
algorithm may nevertheless find a plausible, but incorrect,
match. Furthermore, symmetries in the data may result in
multiple matches between a single pair. The model graph
of pair-wise matches for the angel2 data set is shown in
figure 7a. For illustration, the matches have been hand-
classified, but these labels are, of course, not known by the
algorithm.

Next, the alignment of each match is improved by apply-
ing a pair-wise registration refinement algorithm. We have
implemented two algorithms for this – one based on the ICP
algorithm but extended to handle partially overlapping sur-
faces [21], and a second method that minimizes distances
between points and tangent planes in a manner similar to
that described by Chen and Medioni [22].

Finally, we perform a local surface consistency test
by applying the FSV likelihood classifier to the matches
(eq. 10). We classify the matches using a conservative
threshold chosen with the intention of eliminating obviously
incorrect matches without removing any correct ones. The
resulting model graph GLR is shown in figure 7b.

6. GLOBAL REGISTRATION PHASE

The global registration phase uses the locally consistent pair-
wise matches (GLR) to construct a pose consistent and glob-
ally surface consistent model from which the absolute poses
can be read directly. The connected sub-graphs of GLR rep-
resent the set of all possible model hypotheses for the given
pair-wise matches. To succeed, the global registration must
find a sub-graph containing only correct matches; a single
incorrect match generally results in a dramatically incorrect
solution (fig. 9p).

The global registration can be posed as a mixed dis-
crete and continuous optimization problem over the discrete
model sub-graph structure and the continuous valued pose
parameters within. We decompose the problem into two
nested sub-problems: an inner continuous optimization over
absolute poses for a fixed model graph and an outer dis-
crete optimization over model graphs for fixed poses. For
the discrete optimization, we sequentially construct a span-
ning tree from the edges in GLR using a modified version
of Kruskal’s minimum spanning tree algorithm [23]. Using
a spanning tree ensures that the graph is always pose con-
sistent and allows us to directly compute absolute pose esti-
mates. It also reduces the continuous optimization step to an
instance of the n-view registration refinement problem. Our

1: G← G0

2: for all edges ei,j ∈ GLR, sorted in increasing order
using eq. 4 do

3: if ni and nj are not connected in G then
4: G′ ← G ∪ ei,j

5: n view register(G′)
6: if G′ is globally surface consistent (eq. 10)

then
7: G← G′

Fig. 6. Pseudo-code for the full algorithm for the global
registration phase.

n-view registration refinement implementation, based on
Neugebauer’s [2], minimizes the squared distance between
points and their corresponding tangent planes. The corre-
spondences are established between all overlapping view
pairs, not just the edges from the current model graph. At
the end of each step, the graph is checked for global surface
consistency, which ensures the final solution will be surface
consistent and reduces the chances that the algorithm will
fall into a local minimum. The pseudo-code for this algo-
rithm is shown in figure 6.

Initially, G represents N partial models with one view
each (line 1). The edges of GLR are sorted by their FSV
likelihood measure and tested one at a time. In each itera-
tion through the loop, the best untested edge from GLR is
selected, and if it connects two components, a temporary
model graph G′ is formed, thereby joining two partial mod-
els (line 4). The alignment of the views in G′ is improved
using an n-view registration refinement algorithm (line 5).
If the resulting partial model is globally surface consistent
(line 6), the new edge is accepted, and G′ becomes the start-
ing point for the next iteration (line 7). Eventually, the al-
gorithm either finds a spanning tree of GLR, resulting in
a complete model, or the list of candidate matches is ex-
hausted, resulting in a set of partial models. Figure 7 shows
the model graph G at several stages, and the final model,
corresponding to the graph in figure 7f, is shown in figure 8.

In addition to the full algorithm described above (full
hereafter), we tested two simpler versions of our algorithm
to analyze the effects of the continuous optimization and
the global consistency check. The discrete only algo-
rithm omits the continuous optimization step (line 5), and
the min span algorithm skips the global consistency check
(line 6) as well.

The min span algorithm, which finds the minimum
spanning tree of GLR, has the advantage that it is simple,
fast, and always finds a solution, but the result may not be
globally surface consistent. The global consistency test can
be performed at the end as a verification, but it is not possi-
ble to correct the inconsistency.
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Fig. 7. Model graphs from the local registration phase (a-b) and global registration phase (c-f) for the angel2 test object.
Matches were hand-labeled for illustration: thick (blue) edges are correct matches, and thin (red) edges are incorrect matches.
a) The model graph from exhaustive pair-wise registration; b) after filtering the worst matches (GLR); c) empty model graph
(G0); d) after 5 steps of full; e) after 15 steps; f) the final model graph.

The discrete only algorithm integrates the global
surface consistency check into min span, effectively al-
lowing a single step of backtracking. However, the buildup
of small pair-wise errors leads to large discontinuities be-
tween some overlapping surfaces, which may cause a model
to be globally inconsistent even though it contains only cor-
rect matches. By incorporating n-view registration refine-
ment at each step, the errors are evenly distributed over the
entire model, allowing the full algorithm to find the cor-
rect solution in some cases where discrete only fails.

7. RESULTS

We tested our automatic registration algorithms by digitiz-
ing a collection of ten test objects (fig. 9). Using a Mi-
nolta Vivid 700 laser scanner, we obtained 15 to 20 views
of each object, scanning with the hand-held data collec-
tion method described in the introduction. A black back-
ground and glove allow simple, automatic segmentation of
the background by thresholding the intensity image. We
compared the performance of the three global registration
algorithms described in section 6. The results are shown in
table 1.

Overall, the results were very good – the full algo-

rithm found a qualitatively correct model in nine of the ten
test cases. For two test sets (angel2 and letter y), min span
failed where discrete only succeeded. This is because
one of the most consistent matches was actually an incor-

Fig. 8. The automatically registered views of the angel2 test
object.
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object min span discrete only full
angel1 + x (2 components) +
angel2 x (1 err.) + +
angel3 x (1 err.) x (1 err.) x (1 err.)
angel4 + + +
coder + + +
rabbit + + +
dwarf + + +
letter j + + +
letter y x (1 err.) + +
dino + + +

Table 1. Performance of the three algorithms on the test
models. + indicates a correct result (i.e., a complete model
with no incorrect matches); x indicates an incorrect result
(i.e., partial models or a graph with incorrect matches).

rect match, and the discrete only algorithm correctly
detected the incorrect match using the global consistency
test. For the angel1 test set, both min span and dis-
crete only failed but full succeeded. In this case, the
accumulation of pair-wise error preventeddiscrete only
from merging the last two components into a consistent model.
The components output by discrete only represented
the left and right sides of the object.

In one case (angel3), none of the algorithms succeeded.
This is because the pair-wise matching phase did not find
any correct matches between two clusters of views: one set
representing the front and sides of the object and the other
containing views of the back. The global registration pro-
cess cannot succeed in this situation, but one option is to
acquire more data sets that span the boundary region. An-
other approach is to feed the partial models back into the
pair-wise matching phase, treating each partial model as a
single view. The greater surface area of each partial model
can result in matches that would not have been found in the
initial matching phase.

8. FUTURE WORK

We have identified several aspects of our automatic regis-
tration method to be further developed. One problem that
can arise in the global registration phase occurs when an
incorrect match is added to the graph and the resulting par-
tial model is still globally consistent. Once the algorithm
proceeds to the next iteration, there is no hope of finding
the correct solution. This problem can be addressed in two
ways. One is to incorporate backtracking into the sequential
algorithm, turning it into a depth first search of the space of
all spanning trees. However, it may be necessary to search
nearly the entire space of spanning trees if the search chooses
an incorrect edge early in the process. A second solution is

to turn to a stochastic algorithm.
We have investigated using a RANSAC algorithm, in

which spanning trees are randomly sampled from GLR and
then evaluated using the global consistency test. Unfortu-
nately, depending on the number and arrangement of incor-
rect matches in GLR, a very large number of trials may be
required. Our next step is to experiment with other stochas-
tic methods such as simulated annealing. The min span
algorithm could be used to generate a starting solution for
such methods.

Figure 9p shows an example of a model that contains
a single incorrect match. Although obviously wrong, the
model is actually consistent according to our global consis-
tency test. This situation could be avoided with an enhanced
test that considered occupied space violations (OSV’s) as
well as FSV’s. Detecting OSV’s requires a more sophis-
ticated sensor model than FSV’s because surfaces may go
undetected for a number of reasons (e.g., the surface is out
of sensor range or the normal is too oblique to viewing di-
rection).

Finally, we must address the issue of view selection. To
scale automatic registration to a large number of views, we
need to be selective about which view pairs we attempt to
register. One approach is to use information inherent in each
view to sort the views based on the likelihood of a successful
match or to partition into groups that are likely to match
with each other.

9. CONCLUSION

We have presented a method for automatically registering
a set of 3D views of a scene. The procedure uses a com-
bination of discrete and continuous optimization methods
to construct a globally consistent model from a set of pair-
wise registration results. We compared three versions of
our algorithm, and demonstrated its utility by automatically
constructing 3D models of a number of objects.
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