
To appear in the SIGGRAPH conference proceedings

Unstructured Lumigraph Rendering

Chris Buehler Michael Bosse Leonard McMillan Steven Gortler Michael Cohen
MIT Computer Graphics Group Harvard University Microsoft Research

Abstract

We describe an image based rendering approach that generalizes
many image based rendering algorithms currently in use including
light field rendering and view-dependent texture mapping. In par-
ticular it allows for lumigraph style rendering from a set of input
cameras that are not restricted to a plane or to any specific mani-
fold. In the case of regular and planar input camera positions, our
algorithm reduces to a typical lumigraph approach. In the case of
fewer cameras and good approximate geometry, our algorithm be-
haves like view-dependent texture mapping. Our algorithm achieves
this flexibility because it is designed to meet a set of desirable goals
that we describe. We demonstrate this flexibility with a variety of
examples.
Keyword Image-Based Rendering

1 Introduction

Image-based rendering (IBR) has become a popular alternative to
traditional three-dimensional graphics. Two effective IBR meth-
ods are view-dependent texture mapping (VDTM) [3] and the light
field/lumigraph [10, 5] approaches. The light field and VDTM algo-
rithms are in many ways quite different in their assumptions and in-
put. Light field rendering requires a large collection of images from
cameras whose centers lie on a regularly sampled two-dimensional
patch, but it makes few assumptions about the geometry of the scene.
In contrast, VDTM assumes a relatively accurate geometric model,
but requires only a small number of textures from input cameras that
can be in general position.

We suggest that, at their core, these two approaches are quite
similar. Both are methods for interpolating color values for a desired
ray as some combination of input rays. In VTDM this interpolation
is performed using a geometric model to determine which pixel
from each input image “corresponds” to the desired ray. Of these
corresponding rays, those that are closest in angle to the desired ray
are appropriately weighted to make the greatest contribution to the
interpolated result.

Light field rendering can be similarly interpreted. For each de-
sired ray (s, t, u, v), one searches the image database for rays that
intersect near some (u, v) point on a “focal plane” and have a simi-
lar angle to the desired ray, as measured by the rays intersection on
the “camera plane” (s, t). In a depth-corrected lumigraph, the focal
plane is effectively replaced with an approximate geometric model,
making this approach even more similar to view dependent texture
mapping.

With this research, we attempt to address the following questions.
Is there a generalized rendering framework that spans all of these
various image-based rendering algorithms, having VDTM and lu-
migraph/light fields as extremes? Might such an algorithm adapt
well to various numbers of input images from cameras in general
configurations while also permitting various levels of geometric ac-
curacy?

In this paper we approach the problem by first describing a set of
goals that we feel any image based rendering algorithm should have.
We find that no previous IBR algorithm simultaneously satisfies all
of these goals. These algorithms behave quite well under appropri-

ate assumptions on their input, but can produce unnecessarily poor
renderings when these assumptions are violated.

In this paper we describe “unstructured lumigraph rendering”
(ULR), an approach for IBR that generalizes both lumigraph and
VDTM rendering. Our algorithm is designed specifically with our
stated goals in mind. As a result, our renderer behaves well with a
wide variety of inputs. These include source cameras that are not
on a common (s, t) plane, and even sets of source cameras taken by
walking forward into the scene.

It should be no surprise that our algorithm bears many resem-
blances to previously published approaches. The main contribution
of our algorithm is that, unlike all previously published methods, it
is designed to meet our listed goals and, thus, works well on a wide
range differing inputs, from a few images with an accurate geometric
model to many images with minimal geometric information.

2 Previous Work

The basic idea of view dependent texture mapping (VDTM) was put
forth by Debevec et al. [3] in their Facade image-based modeling
and rendering system. Facade was designed to estimate geometric
models consistent with a small set of source images. As part of this
system, a rendering algorithm was developed where pixels from all
relevant data cameras were combined and weighted to determine
a view-dependent texture for the derived models. In later work
Debevec et al [4] describe a real-time VDTM algorithm. In this
algorithm, each polygon in the geometric model maintains a “view
map” data structure that is used to quickly determine a set of three
data cameras that should be used to texture it. Most real-timeVDTM
algorithms use projective texture mapping [6] for efficiency.

At the other extreme, Levoy and Hanrahan [10] described the
light field rendering algorithm where a large collection of images
were used to render novel views of a scene. This collection of images
was captured from cameras whose centers lie on a regularly sampled
two-dimensional plane. Light fields otherwise make few assump-
tions about the geometry of the scene. Gortler et al. [5] described
a similar rendering algorithm called the lumigraph. In addition,
the authors of the lumigraph paper suggests many workarounds to
overcome limitations of the basic approach, including a “rebinning”
process to handle source images acquired from general camera posi-
tions, and a “depth-corrected” extension to allow for more accurate
ray reconstructions when there is an insufficient number of source
cameras.

Many extensions, enhancements, alternatives, and variations to
these basic algorithms have since been suggested. This includes
techniques for rendering digitized three-dimensional models in com-
bination with acquired images such as Pulli et al. [13] and Wood et
al. [18]. Shum et al. [17] has suggested alternate lower dimensional
lumigraph approximations that use only approximate depth correc-
tion. Heigl et al. [7] described an algorithm to perform IBR from an
unstructured set of data cameras where the projections of the source
cameras’ centers were projected into the desired image plane, trian-
gulated, and used to reconstruct the interior pixels. Isaksen et al. [9]
have shown how the common “image-space” coordinate frames used
in light-field rendering can be viewed as a focal plane for dynami-
cally generating alternative ray reconstructions. A formal analysis



To appear in the SIGGRAPH conference proceedings

of the trade off between number of cameras fidelity of geometry is
presented in [1].

3 Goals

We begin by presenting the following list of desirable properties that
we feel an ideal image-based rendering algorithm should have. We
also point out that no previously published method satisfies all of
these goals.

Use of geometric proxies: When geometric knowledge is
present, it should be used to assist in the reconstruction of a desired
ray (see figure 1). We refer to such approximate geometric informa-
tion as a proxy. The combination of accurate geometric proxies with
surface reflectance properties that are nearly Lambertian allows for
high quality reconstructions from relatively few source images. The
reconstruction process merely entails looking for rays from source
cameras that see the “same” point. This idea is central to all VDTM
algorithms. It is also the distinguishing factor in geometry-corrected
lumigraphs and surface light-field algorithms. Approximate prox-
ies, such as the focal-plane abstraction used by Isaksen [9], allow for
the accurate reconstruction of rays at specific depths from standard
light fields.

With a highly accurate geometric model, the visibility of any
surface point relative to a particular source camera can also be de-
termined. If a camera’s view of the point is occluded by some other
point on the geometric model then that camera should not be used in
the reconstruction of the desired ray. When possible, image-based
algorithms should compute visibility.

C1

C5

C4

C3

D

C2

C6

Figure 1: When available, approximate geometric information
should be used to determine which source rays correspond well to
a desired ray.

Epipole consistency: When a desired ray passes through the
center of projection of a source camera it can be trivially re-
constructed from the ray database (assuming a sufficiently high-
resolution input image and the ray falls within the camera’s field of
view) (see Figure 2). In this case, an ideal algorithm should return
a ray from source image. An algorithm with epipole consistency
will reconstruct this ray correctly without any geometric informa-
tion. With large numbers of source cameras, algorithms with epipole
consistency can create accurate reconstructions with essentially no
geometric information. Light field and lumigraph algorithms were
designed specifically to maintain this property.

Surprisingly, many real-time VDTM algorithms, do not ensure
this property and so will not work properly when given poor ge-
ometry. The algorithms described in [13, 2], reconstruct all of the

rays in a fixed desired view using a fixed selection of three source
images but, as shown by the original light-field paper, proper recon-
struction of a desired image may involve using some rays from each
of the source images. The algorithm described in [4], always uses
three source cameras to reconstruct all of the desired pixels for an
observed polygon of the geometry proxy. This departs from epipole
consistency if the proxy is coarse. The algorithm of Heigl et al. [7] is
an notable exception that, like a light field or lumigraph, maintains
epipole consistency.

C1

C5

C4

C3
C2

D

C6

Figure 2: When a desired ray passes through a source camera center,
that source camera should be emphasized most in the reconstruction.

Resolution sensitivity: In reality, image pixels are not really
measures of a single ray, but instead an integral over a set of rays sub-
tending some solid angle. This angular extent should be accounted
for by the rendering algorithm (See Figure 3). In particular, if a
source camera is far away from an observed surface, then its pixels
represent integrals over large regions of the surface. If these ray
samples are used to reconstruct a ray from a closer viewpoint, an
overly blurred reconstruction will result (assuming the desired and
reference rays subtend comparable solid angles). Resolution sen-
sitivity is an important consideration when combining source rays
from cameras with different fields-of-view, or when combining rays
from cameras located various distances from the imaged surface. It
is seldom considered in traditional light-field and lumigraph render-
ing, since the source cameras usually have common focal lengths
and are located roughly the same distance from any reconstructed
surface. However, when using unstructured input cameras, a wider
variation in camera-surface distances can arise, and it is important
to consider image resolution in the ray reconstruction process. Few
image-based rendering approaches have dealt with this problem.

Unstructured input: It is very desirable for an image-based ren-
dering algorithm to accept input images from cameras in general po-
sition. The original light-field method assumes that the cameras are
arranged at evenly spaced positions on a single plane. This limits the
applicability of this method since it requires a special capture gantry
that is both expensive and is difficult to use in many settings [11].

The lumigraph paper describes an acquisition system that uses
a hand-held video camera to acquire input images [5]. They then
apply a preprocessing step, called rebinning, that resamples the in-
put images from virtual source cameras situated on a regular grid.
The rebinning process adds in an additional layer of image qual-
ity degradation; a rebinned lumigraph cannot, in general, reproduce
its input images. The surface light-field algorithm suffers from the
same problem.



To appear in the SIGGRAPH conference proceedings

C1

C5

C4

C3

D

C2

C6

Figure 3: When cameras have different distances from the proxy,
their resolution differs. Care should be taken not to obtain an overly
blurry reconstruction

Equivalent ray consistency: Through any empty region of
space, the ray along a given line-of-sight should be reconstructed
consistently, regardless of the viewpoint position (unless dictated
by other goals such as resolution sensitivity or visibility) (See Fig-
ure 4). This is not the case for unstructured rendering algorithms
that use desired-image-space measurements of “ray closeness” [7].
As shown in figure 4, two desired cameras that share a desired ray
will have a different “closest” cameras, therefore giving different
reconstructions.

C1

C2

D2

D1

Figure 4: When ray angle is measured in the desired view, one can
get different reconstructions for the same ray. The algorithm of
Heigl et al would determine C2 to be the closest camera for D1, and
C1 to be the closest camera for D2.

Continuity: When one requests a ray with vanishingly small dis-
tance from a previous ray but intersects the same or nearby point
on the proxy, the reconstructed ray should have a color value that is
correspondingly close to the previously reconstructed color. Recon-
struction continuity is important to avoid both temporal and spatial
artifacts. For example, the weight used for a camera should drop to
zero as one approaches the boundary of its field of view [3], or as
one approaches a part of a surface that is not seen by a camera due
to visibility [14].

The VDTM algorithm of [4], which uses a triangulation of the
directions to source cameras to pick the “closest three” does not guar-
antee spatial continuity, even at high tesselation rates of the proxy.
Nearby points on the proxy can have different triangulations of the
“source camera view map” giving very different reconstructions.

While this objective is subtle, it is nonetheless important, since
lack of this continuity introduces significant artifacts.

Minimal angular deviation: In general, the choice of which
data cameras are used to reconstruct a desired ray should be based
on a natural and consistent measure of closeness (See Figure 5). In
particular, we use source image rays with the most similar angle to
the desired ray.

Interestingly, the light-field and lumigraph rendering algorithms
that select rays based on how close the ray passes to a source camera
manifold do not quite agree with this measure. As shown in figure 5,
the “closest” ray on the (s, t) plane is not the closest one measured
in angle.

C1 C2

D

q1

q2

Figure 5: Angle deviation is a natural measure of ray difference.
Interestingly, as shown in this case, the two plane parameterization
gives a different ordering of “closeness” Source camera C2’s ray is
closer in angle to the desired ray, but the ray intersects the camera
(s,t) plane closer to C1.

Real time: It is desirable that the rendering algorithm run at inter-
active rates. Most of the image-based algorithms that we considered
here achieve this goal.

Table 1 summarizes the goals what we would consider an ideal
rendering method. It also compares ULR to other published meth-
ods.

4 Algorithm

We present a lumigraph rendering technique that directly renders
views from an unstructured collection of input images. The input
to our algorithm is a collection of source images along with their
associated camera pose estimates.

4.1 Camera Blending Field

Our real-time rendering algorithm works by evaluating a “camera
blending field” at a set of vertices in the desired image plane and
interpolating this field over the whole image. This blending field
describes how each source camera is weighted to reconstruct a given
pixel; the calculation of this field should be based on our stated goals,
and includes factors related to ray angular difference, estimates of
undersampling, and field of view [13, 12].

We begin by discussing how angle similarity is best utilized. A
given desired ray rd, intersects the surface proxy at some frontmost
point p. We consider the rays ri that connect p to the centers ci of
each source camera i. For each source camera we denote the angular
difference between ri and rd as angDiff(i) (see figure 6).

One way to define a smooth blending weight “angBlend” based on
our measured angDiff would be to set a constant threshold, “angTh-
resh”. angBlend could then decrease from one to zero as angDiff
increases from zero to angThresh.

This approach proves unsatisfactory when using unstructured in-
put data. In order to account for desired pixels where there are no
angularly close cameras we would need to set a large angThresh.



To appear in the SIGGRAPH conference proceedings

lh96 gor96 deb96 pul97 deb98 pigh98 hei99 wood00 ULR
Use of Geometric Proxy n y y y y y y y y
Epipolar Consistency y y y n n n y y y
Resolution Sensitivity n n n n n n n n y
Unstructured Input n resamp y y y y y resamp y
Equivalent Ray Consistency y y y y y y n y y
Continuity y y y y n y y y y
Minimal Angular Deviation n n y n y y n y y
Real-Time y y n y y y y y y

Table 1: Comparison of algorithms according to our desired goals.

C1 C2

D

P

Ck

angDiff(2)
angThresh

...

Figure 6: The angle of the kth angularly furthest camera is used as
an angle threshold.

But using a large angThresh would blend unnecessary cameras at
desired pixels where there are many angularly close cameras. This
would result in an unnecessary loss of view dependence.

An adaptive way to compute an angBlend would be to always use
the k source cameras with smallest angDiff. In this case we must
take care that a particular camera’s angBlend falls to zero as it leaves
the set of “closest k”.

We can accomplish this by combining the ideas of “closest k” and
the use of an angular threshold. We define angThresh locally to be
the kth largest value of angDiff searching over the source cameras
and compute the blend as

angBlend(i) = max(0, 1 − angDiff(i)
angThresh

)

In order to have the blending weights sum to unity we normalize
as

normalizedAngBlend(i) =
angBlend(i)

∑k

j=1 angBlend(j)

This is well defined as long as not all k closest cameras are equidis-
tant. For a given camera i, normalizedAngBlend(i) is a smooth
function as one varies the desired ray along a continuous proxy sur-
face.

Resolution To reconstruct a given desired ray rd, we do not want
to use source rays ri that significantly undersample the observed
proxy point p. Given the positions of the cameras, their fields of
view, and p’s normal, we could compute an accurate prediction of
the degree of undersampling. For simplicity we perform this com-
putation as

resDiff(i) = max(0, ‖ p − ci ‖ − ‖ p − d ‖)

where d is the center of the desired camera.
Given the two difference measurements angDiff and resDiff, we

compute a combined difference measure as the weighted combina-
tion:

angResDiff(i) = α angDiff(i) + β resDiff(i)

Using this new distance measure, we can compute the k closest
cameras, define a “angResThresh” threshold and compute “angRes-
Blend(i)”

angResBlend(i) = max(0, 1 − angResDiff(i)
angResThresh

)

Field of view and visibility In our rendering, we do not want to
use rays that fall outside the field of view of the source camera. To
incorporate this, when searching for the k closest cameras as mea-
sured by angResDiff, we only look at cameras where ri falls within
its field of view. To incorporate this factor smoothly, we define
fovBlend(i) to be a “feathering” that goes to zero as ri approaches
the edge of the fov of ci.

By multiplying angResBlend(i) with fovBlend(i), we obtain

angResFovBlend(i) = angResBlend(i)fovBlend(i)

Normalizing over all the i gives us the final

normalizedAngResFovBlend(i) =
angResFovBlend(i)

∑k

j=1 angResFovBlend(j)

With an accurate proxy, we would in fact compute visibility be-
tween p and ci and only consider source rays that potentially see
p [4]. In our setting we have proxies with unit depth complexity,
so we have not needed to implement visibility computation. One
complication is how to incorporate visibility and smoothness to-
gether into one metric. A proper feathering approach would use an
algorithm like that described in [12, 14].

In figure 7 we visualize a camera blending field by applying this
computation at each desired pixel. In this visualization, each source
camera is assigned a color. These colors are blended at each pixel
to show how they combine to define the blending field.

4.2 Real time rendering

The basic strategy of our real time renderer is to compute the camera
blending only at a discrete set of points in the image plane, triangu-
late these points, and interpolate the camera blending over the image
(see figure 9).

To obtain a real time rendering algorithm we take advantage of
the fact that pixel correspondence over a planar region of the proxy
is projective. Our rendering can then use projective texture mapping
to map the source pixels onto the desired image.

Our strategy is to define a triangulation of the image plane using
the following steps (see figure 8).

• Only a single planar region of the proxy must be observed
through each triangle in the image plane. This will allow us
to use texture mapping hardware to assist our rendering. With
this property in mind, project all of the vertices and edges of
the proxy into the desired image plane. The edges are used to



To appear in the SIGGRAPH conference proceedings

Figure 7: A visualized color blending field. Camera weights are
computed at each pixel. This example is from the “hallway” dataset
shown in the results section.

C1

C2

D

e1

e2

Figure 8: Our real time renderer uses the projection of the proxy,
the projection of the source camera centers and a regular grid to
triangulate the image plane.

constrain the triangulation. 1 New vertices are inserted at all
edge-edge crossings.

• To maintain epipole consistency, we include a vertex at the
desired image plane projection of each source camera’s center.

• To obtain a sufficiently dense vertex set, needed to capture the
interesting spatial variation of the camera blending weights, we
include a regular grid of vertices on the desired image plane.
The edges of this regular grid are also added as constraints
in the triangulation. This static structure of edges helps keep
the computed triangulation from having triangle “flips” as the
desired camera is moved and the other vertices move relative
to each other.

• Given this set of vertices and edges, we create a constrained De-
launay triangulation of the image plane using the constrained
Delaunay code of [16].

1In our system we project all of the vertices and edges regardless of
visibility. This conservative algorithm can create more than the necessary
number of regions. More efficient approaches are certainly possible.

• At each vertex of the triangulation, we compute and store a set
of cameras and their associated blending weights. Recall that
at a vertex, these weights sum to one.

• Over the face of a triangle we interpolate these blending
weights linearly.

• We render the desired image as a set of projectively mapped
triangles as follows. Suppose that there are a total of m unique
cameras with nonzero blending weights at the three vertices
of a triangle. Then this triangle is rendered m times, using
the texture from each of the m cameras. When a triangle
is rendered using one of the source camera’s texture, each
of its three vertices is assigned an alpha value equal to its
weight at that vertex. The texture matrix is set up to properly
projectively texture the source camera’s data onto the rendered
proxy triangle. 2

Figure 9: A visualized color blending field from the real time ren-
derer. Camera weights are computed at each vertex of the triangu-
lation.

It is interesting to note that if rays are shot only at the projected
epipoles, then one gets a rendering algorithm similar to that of [7].

5 Results

We have collected a wide variety of data sets to test the ULR algo-
rithm. In the following, we describe how the data sets are created
and show some renderings from our real-time ULR algorithm. These
examples are also shown in the accompanying video.

Pond The pond dataset (Figure 11a) is constructed from a two
second (60 frame) video sequence that we captured with a digital
hand-held video camera. The camera is calibrated to recover the
focal length and radial distortion parameters of the lens. After run-
ning a feature tracker on the sequence, the camera’s positions are
recovered using structure-from-motion techniques borrowed from
computer vision.

We use a single plane for the geometric proxy. The position
of the plane is computed based on the positions of the cameras
and the positions of the three-dimensional structure points that are

2To properly do the projective texturing, we must know which plane is
observed through some particular triangle. There are many possible ways
to do this (such as using frame-buffer reading). In our system, we typically
have proxies of low depth complexity, so we actually render each triangle
ml times, where l is the depth complexity observed through the triangle, and
let the z-buffer toss out all but the frontmost rendering.



To appear in the SIGGRAPH conference proceedings

computed during the vision processing. Specifically, the plane is
oriented (roughly) parallel to the camera image planes and placed
at the average 1/z distance [1] from the cameras.

Since the cameras are arranged along a linear path, and the proxy
is a single plane, the pond dataset exhibits parallax in only one
dimension. However, the effect is convincing for simulating views
at about the height that the video camera was held.

Robot The Robot dataset (Figure 11b) was constructed in the
same manner as the pond dataset. In fact, it is quite simple to build
unstructured lumigraphs from short video sequences. The robot
sequence exhibits view-dependent highlights and reflections on its
leg and on the tabletop.

Helicopter The Helicopter dataset (Figure 11c) uses the ULR
algorithm to achieve an interesting hack: motion in a lumigraph.
To create this lumigraph, we exploit the fact that the motion in the
scene is periodic.

The lumigraph is constructed from a continuous 30 second video
sequence in which the camera is moved back and forth repeatedly
over the scene. The video frames are then calibrated spatially using
the structure-from-motion technique described above. The frames
are also calibrated temporally by measuring accurately the period
of the helicopter. Assuming the framerate of the camera is constant,
we can assign each video frame a timestamp expressed in terms of
the period of the helicopter. Again, the geometric proxy is a plane.

During rendering, a separate unstructured lumigraph is con-
structed and rendered on-the-fly for each time instant. Since very
few images occur at precisely the same time, the unstructured lu-
migraph is constructed over a time window. The current time-
dependent rendering program (an early version of the ULR algo-
rithm) ignores the timestamps of the images when sampling camera
weights. However, it would be straightforward to blend cameras in
and out temporally as the time window moves.

Knick-knacks The Knick-knacks dataset (Figure 11d) exhibits
camera motion in both the vertical and horizontal directions. In this
case, the camera positions are determined using a Faro digitizing
arm. The camera is synchronized with and attached to the Faro
arm. When the user takes a picture, the location and orientation of
the camera is automatically recorded. Again the proxy is a plane,
which we position interactively by “focusing” [9] on the red car in
the foreground.

Car While the previous datasets primarily occupy the light field
end of the image-based spectrum, the Car dataset (11e) demonstrates
the VDTM aspects of our algorithm. This dataset consists of only 36
images and a 500 face polygonal geometric proxy. The images are
arranged in 10 degree increments along a circle around the car. The
images are from an “Exterior Surround Video” (similar to a Quick-
timeVR object) database found on the carpoint.msn.com website.

The original images have no calibration information. Instead,
we simply assume that the cameras are on a perfect circle looking
inward. Using this assumption, we construct a rough visual hull
model of the car. We simultaneously adjust the camera focal lengths
to give the best reconstruction. We simplify the model to 500 faces
while maintaining the hull property according to the procedure in
[15]. Note that the geometry proxy is significantly larger than the
actual car, and it also has noticeable polygonal silhouettes. However,
when rendered using the ULR algorithm, the rough shape of the
proxy is largely hidden. In particular, the silhouettes of the rendered
car are determined by the images and not the proxy, resulting in a
smooth contour.

Note that in these renderings, the camera blending field is only
sampled at the vertices of the proxy. This somewhat sparse sampling

gives reasonable results when the complexity of the proxy is high
relative to the number of cameras.

Hallway The Hallway dataset (Figure 11f) is constructed from a
video sequence in which the camera moves forward into the scene.
The camera is mounted on an instrumented robot that records its
position as it moves. This forward camera motion is not commonly
used in lumigraph-style image-based rendering techniques, but it is
handled by our algorithm with no special considerations.

The proxy for this scene is a six sided rectangular tunnel that is
roughly aligned with the hallway walls [8]. None of the cabinets,
doors, or other features are explicitly modeled. However, virtual
navigation of the hallway gives the impression that the hallway is
populated with actual three-dimensional objects.

The Hallway dataset also demonstrates the need for resolution
consideration. In Figure 10a, we show the types of blurring artifacts
that can occur if resolution is ignored. In Figure 10b, we show
the result of using our simple resolution heuristic. Low resolution
images are penalized, and the wall of the hallway appears much
sharper, with a possible loss of view-dependence where the proxy is
poor. Below each rendering in Figure 10 appears the corresponding
camera blending field. Note that 10b uses fewer images on the left
hand side of the image, which is where the original rendering had
most problems with excessive blurring. In this case, the removed
cameras are too far behind the viewer.

6 Conclusion

We have presented a new image-based rendering technique for ren-
dering convincing new images from unstructured collections of input
images. We have demonstrated that the algorithm can be executed
efficiently in real-time.

Our technique is a generalization of the lumigraph and VDTM
rendering algorithms. We allow for unstructured sets of cameras as
well as variable information about scene geometry. Our real-time
implementation has all the benefits of real-time structured lumigraph
rendering, including speed and photorealistic quality, and it also
allows the use of geometric proxies, unstructured input cameras,
and variations in resolution and field-of-view.



To appear in the SIGGRAPH conference proceedings

(a) (b)

Figure 10: Operation of our scheme for handling resolution issues: (a) shows the hallway scene with no consideration of resolution and (b)
shows the same viewpoint rendered with consideration of resolution. Below each image is the corresponding camera blending field.



To appear in the SIGGRAPH conference proceedings

(a) (b) (c)

(d) (e) (f)

Figure 11: Renderings from the real-time unstructured lumigraph renderer. (a) Pond,(b) Robot, (c) Helicopter, (d) Knick-knacks, (e) Car, (f)
Hallway


