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Abstract

The standard methods for extracting range data from optical trian-
gulation scanners are accurate only for planar objects of uniform
reflectance illuminated by an incoherent source. Using these meth-
ods, curved surfaces, discontinuous surfaces, and surfaces of vary-
ing reflectance cause systematic distortions of the range data. Co-
herent light sources such as lasers introduce speckle artifacts that
further degrade the data. We present a new ranging method based
on analyzing the time evolution of the structured light reflections.
Using our spacetime analysis, we can correct for each of these arti-
facts, thereby attaining significantly higher accuracy using existing
technology. We present results that demonstrate the validity of our
method using a commercial laser stripe triangulation scanner.

1 Introduction

Active optical triangulation is one of the most common methods for
acquiring range data. Although this technology has been in use for
over twenty years, its speed and accuracy has increaseddramatically
in recent years with the development of geometrically stable imag-
ing sensors such as CCD’s and lateral effect photodiodes. The range
acquisition literature contains many descriptions of optical triangu-
lation range scanners, of which we list a handful [2] [8] [10] [12]
[14] [17] . The variety of methods differ primarily in the structure of
the illuminant (typically point, stripe, multi-point, or multi-stripe),
the dimensionality of the sensor (linear array or CCD grid), and the
scanning method (move the object or move the scanner hardware).

Figure 1 shows a typical system configuration in two dimen-
sions. The location of the center of the reflected light pulse imaged
on the sensor corresponds to a line of sight that intersects the illumi-
nant in exactly one point, yielding a depth value. The shape of the
object is acquired by translating or rotating the object through the
beam or by scanning the beam across the object.

The accuracyof optical triangulation methods hinges on the abil-
ity to locate the “center” of the imaged pulse at each time step. For
optical triangulation systems that extract range from single imaged
pulses at a time, variations in surface reflectance and shape result
in systematic range errors. Several researchers have observed one
or both of these accuracy limitations [4] [12] [16]. For the case
of coherent illumination, the images of reflections from rough sur-
faces are also subject to laser speckle noise, introducing noise into
the range data. Researchers have studied the effect of speckle on
range determination and have indicated that it is a fundamental limit
to the accuracy of laser range triangulation, though its effects can
be reduced with well-known speckle reduction techniques [1] [5].
Mundy and Porter [12] attempt to correct for variations in surface
reflectance by noting that two imaged pulses, differing in position or
wavelength are sufficient to overcome the reflectance errors, though
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Figure 1: Optical triangulation geometry. The angle � is the trian-
gulation angle while � is the tilt of the sensor plane needed to keep
the laser plane in focus.

some restrictive assumptions are necessary for the case of differ-
ing wavelengths. Kanade, et al, [11] describe a rangefinder that
finds peaks in time for a stationary sensor with pixels that view fixed
points on an object. This method of peak detection is very similar
to the one presented in this paper for solving some of the problems
of optical triangulation; however, the authors in [11] do not indicate
that their design solves or even addresses these problems. Further,
we show that the principle generalizes to other scanning geometries.

In the following sections, we first show how range errors arise
with traditional triangulation techniques. In section 3, we show that
by analyzing the time evolution of structured light reflections, a pro-
cess we call spacetime analysis, we can overcome the accuracy lim-
itations caused by shape and reflectance variations. Experimental
evidence also indicates that laser speckle behaves in a manner that
allows us to reduce its distorting effect as well.

In sections 4 and 5, we describe our hardware and software im-
plementation of the spacetime analysis using a commercial scanner
and a video digitizer, and we demonstrate a significant improvement
in range accuracy. Finally, in section 6, we conclude and describe
future directions.

2 Error in triangulation systems

For optical triangulation systems, the accuracy of the range data de-
pends on proper interpretation of imaged light reflections. The most
common approach is to reduce the problem to one of finding the
“center” of a one dimensional pulse, where the “center” refers to
the position on the sensor which hopefully maps to the center of the
illuminant. Typically, researchers have opted for a statistic such as
mean, median or peak of the imaged light as representative of the
center. These statistics give the correct answer when the surface is
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Figure 2: Range errors using traditional triangulation methods. (a) Reflectance discontinuity. (b) Corner. (c) Shape discontinuity with respect
to the illumination. (d) Sensor occlusion.

perfectly planar, but they are generally inaccurate whenever the sur-
face perturbs the shape of the illuminant.

2.1 Geometric intuition

Perturbations of the shape of the imaged illuminant occur whenever:

� The surface reflectance varies.

� The surface geometry deviates from planarity.

� The light paths to the sensor are partially occluded.

� The surface is sufficiently rough to cause laser speckle.

In Figure 2, we give examples of how the first three circumstances
result in range errors even for an ideal triangulation system with infi-
nite sensor resolution and perfect calibration. For purposes of illus-
tration, we omit the imaging optics of Figure 1 and treat the sensor
as a one dimensional orthographic sensor. Further, we assume an
illuminant of Gaussian cross-section, and we use the mean for de-
termining the center of an imaged pulse. Figure 2a shows how a step
reflectance discontinuity results in range points that do not lie on the
surface. Figure 2b and 2c provide two examples of shape variations
resulting in range errors. Note that in Figure 2c, the center of the
illuminant is not even striking a surface. In this case, a measure of
the center of the pulse results in a range value, when in fact the cor-
rect answer is to return no range value whatever. Finally, Figure 2d
shows the effect of occluding the line of sight between the illumi-
nated surface and the sensor. This range error is very similar to the
error encountered in Figure 2c.

The fourth source of range error is laser speckle, which arises
when coherent laser illumination bounces off of a surface that is
rough compared to a wavelength [7]. The surface roughness intro-
duces random variations in optical path lengths, causing a random
interference pattern throughout space and at the sensor. The result is
an imaged pulse with a noise component that affects the mean pulse
detection, causing range errors even from a planar target.

2.2 Quantifying the error

To quantify the errors inherent in using mean pulse analysis, we
have computed the errors introduced by reflectance and shape vari-
ations for an ideal triangulation system with a single Gaussian il-
luminant. We take the beam width, w, to be the distance between
the beam center and the e�2 point of the irradiance profile, a con-
vention common to the optics literature. We present the range er-
rors in a scale invariant form by dividing all distances by the beam
width. Figure 3 illustrates the maximum deviation from planarity

introduced by scanning reflectance discontinuities of varying step
magnitudes for varying triangulation angles. As the size of the step
increases, the error increases correspondingly. In addition, smaller
triangulation angles, which are desirable for reducing the likelihood
of missing data due to sensor occlusions, actually result in larger
range errors. This result is not surprising, as sensor mean posi-
tions are converted to depths through a division by sin�, where �
is the triangulation angle, so that errors in mean detection translate
to larger range errors for smaller triangulation angles.

Figure 4 shows the effects of a corner on range error, where the
error is taken to be the shortest distance between the computed range
data and the exact corner point. The corner is oriented so that the
illumination direction bisects the corner’s angle as shown in Fig-
ure 2b. As we might expect, a sharper corner results in greater com-
pression of the left side of the imaged Gaussian relative to the right
side, pushing the mean further to the right on the sensor and push-
ing the triangulated point further behind the corner. In this case, the
triangulation angle has little effect as the division by sin� is offset
almost exactly by the smaller observed left/right pulse compression
imbalance.

One possible strategy for reducing these errors would be to de-
crease the width of the beam and increase the resolution of the sen-
sor. However, diffraction limits prevent us from focusing the beam
to an arbitrary width. The limits on focusing a Gaussian beam with
spherical lenses are well known [15]. In recent years, Bickel, et al,
[3] have explored the use of axicons (e.g., glass cones and other sur-
faces of revolution) to attain tighter focus of a Gaussian beam. The
refracted beam, however, has a zeroth order Bessel function cross-
section; i.e., it has numerous side-lobes of non-negligible irradiance.
The influence of these side-lobes is not well-documented and would
seem to complicate triangulation.

3 A New Method: Spacetime Analysis

The previous section clearly demonstrates that analyzing each im-
aged pulse using a low order statistic leads to systematic range er-
rors. We have found that these errors can be reduced or eliminated
by analyzing the time evolution of the pulses.

3.1 Geometric intuition

Figure 5 illustrates the principle of spacetime analysis for a laser tri-
angulation scanner with Gaussian illuminant and orthographic sen-
sor as it translates across the edge of an object. As the scanner steps
to the right, the sensor images a smaller and smaller portion of the
laser cross-section. By time t3 , the sensorno longer images the cen-
ter of the illuminant, and conventional methods of range estimation
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Figure 3: Plot of errors due to reflectancediscontinuities for varying
triangulation angles (theta).
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Figure 4: Plot of errors due to corners.

fail. However, if we look along the lines of sight from the corner to
the laser and from the corner to the sensor, we see that the profile
of the laser is being imaged over time onto the sensor (indicated by
the dotted Gaussian envelope). Thus, we can find the coordinates
of the corner point (xc; zc) by searching for the mean of a Gaussian
along a constant line of sight through the sensor images. We can
express the coordinates of this mean as a time and a position on the
sensor, where the time is in general between sensor frames and the
position is between sensor pixels. The position on the sensor indi-
cates a depth, and the time indicates the lateral position of the cen-
ter of the illuminant. In the example of Figure 5, we find that the
spacetime Gaussian corresponding to the exact corner has its mean
at position sc on the sensor at a time tc between t2 and t3 during
the scan. We extract the corner’s depth by triangulating the center
of the illuminant with the line of sight corresponding to the sensor
coordinate sc, while the corner’s horizontal position is proportional
to the time tc.

3.2 A complete derivation

For a more rigorous analysis, we consider the time evolution of the
irradiance from a translating differential surface element, �O, as
recorded at the sensor. We refer the reader to Figure 6 for a de-
scription of coordinate systems; note that in contrast to the previous
section, the surface element is translating instead of the illuminant-
sensor assembly. The element has a normal n̂ and an initial position
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Figure 5: Spacetime mapping of a Gaussian illuminant. As the light
sweeps across the corner point, the sensor images the shape of the
illuminant over time.
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p(t) ≡ position of surface element
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                           element at t=0
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Figure 6: Triangulation scanner coordinate system. A depiction of
the coordinate systems and the vectors relevant to a moving differ-
ential element.

~po and is translating with velocity ~v, so that:

~p(t) = ~po + t~v (1)

Our objective is to compute the coordinates ~po = (xo; zo) given
the temporal irradiance variations on the sensor. For simplicity, we
assume that~v = (�v;0). The illuminant we consider is a laser with
a unidirectional Gaussian radiance profile. We can describe the total
radiance reflected from the element to the sensor as:

L(~p(t); !̂S) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2 (2)

where fr is the bidirectional reflection distribution function (BRDF)
of the point ~po, jn̂�!̂Lj is the cosine of the angle between the surface
and illumination. The remaining terms describe a point moving in
the x-direction under the Gaussian illuminant of widthw and power
IL.

Projecting the point ~p(t) onto the sensor, we find:

s = (xo � vt)cos�� zosin� (3)

where s is the position on the sensor and � is the angle between the
sensor and laser directions. We combine Equations 2-3 to give us
an equation for the irradiance observed at the sensor as a function
of time and position on the sensor:

ES(t; s) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2

�(s� (xo � vt)cos�� zosin�) (4)



To simplify this expression, we condense the light reflection terms
into one measure:

� � fr(!̂L; !̂S)jn̂ � !̂Lj (5)

which we will refer to as the reflectance coefficient of point ~p for the
given illumination and viewing directions. We also note that x =
vt is a measure of the relative x-displacement of the point during
a scan, and z = s=sin� is the relation between sensor coordinates
and depth values along the center of the illuminant. Making these
substitutions we have:

ES(x; z) = �ILe
�2(x�xo)

2

w2

�((x� xo)cos�+ (z � zo)sin�) (6)

This equation describes a Gaussian running along a tilted line
through the spacetime sensor plane or “spacetime image”. We de-
fine the “spacetime image” to be the image whose columns are filled
with sensor scanlines that evolve over time. Through the substitu-
tions above, position within a column of this image represents dis-
placement in depth, and position within a row represents time or dis-
placement in lateral position. Figure 7 shows the theoretical space-
time image of a single point based on the derivation above, while
Figures 8a and 8b shows the spacetime image generated during a
real scan. From Figure 7, we see that the tilt angle is �� with re-
spect to the z-axis, and the width of the Gaussian along the line is:

w0 = w=cos� (7)

The peak value of the Gaussian is �IL, and its mean along the line
is located at (xo; zo), the exact location of the range point. Note
that the angle of the line and the width of the Gaussian are solely
determined by the fixed parameters of the scanner, not the position,
orientation, or BRDF of the surface element.

Thus, extraction of range points should proceed by computing
low order statistics along tilted lines through the sensor spacetime
image, rather than along columns (scanlines) as in the conventional
method. As a result, we can determine the position of the surface
element independently of the orientation and BRDF of the element
and independently of any other nearby surface elements. In the-
ory, the decoupling of range determination from local shape and
reflectance is complete. In practice, optical systems and sensors
have filtering and sampling properties that limit the ability to resolve
neighboring points. In Figure 8d, for instance, the extracted edges
extend slightly beyond their actual bounds. We attribute this artifact
to filtering which blurs the exact cutoffs of the edges into neighbor-
ing pixels in the spacetime image, causing us to find additional range
values.

As a side effect of the spacetime analysis, the peak of the Gaus-
sian yields the irradiance at the sensor due to the point. Thus, we
automatically obtain an intensity image precisely registered to the
range image.

3.3 Generalizing the geometry

We can easily generalize the previous results to other scanner ge-
ometries under the following conditions:

� The illuminant direction is constantover the path of each range
point.

� The sensor is orthographic.

� The motion is purely translational.

θ

x

z

w' = 
w

cosθ

E
S

zo

xo

ρ ΙL

Figure 7: Spacetime image of a point passing through a Gaussian
illuminant.

These conditions ensure that the reflectance coefficient, � =
fr(!̂L; !̂S)jn̂ � !̂Lj, is constant. Note that the illumination need
only be directional; coherent or incoherent light of any pattern is ac-
ceptable. Further, the translational motion need not be of constant
speed, only constant direction; we can correct for known variations
in speed by applying a suitable warp to the spacetime image.

We can weaken each of these restrictions if � does not vary ap-
preciably for each point as it passes through the illuminant. A per-
spective sensor is suitable if the changes in viewing directions are
relatively small for neighboring points inside the illuminant. This
assumption of “local orthography” has yielded excellent results in
practice. In addition, we can tolerate a rotational component to the
motion as long as the radius of curvature of the point path is large
relative to the beam width, again minimizing the effects on �.

3.4 Correcting laser speckle

The discussion in sections 3.1-3.3 show how we can go about ex-
tracting accurate range data in the presence of shape and reflectance
variations, as well as occlusions. But what about laser speckle? Em-
pirical observation of the time evolution of the speckle pattern with
our optical triangulation scanner strongly suggests that the image of
laser speckle moves as the surface moves. The streaks in the space-
time image of Figure 8b correspond to speckle noise, for the object
has uniform reflectance and should result in a spacetime image with
uniform peak amplitudes. These streaks are tilted precisely along
the direction of the spacetime analysis, indicating that the speckle
noise adheres to the surface of the object and behaves as a noisy re-
flectance variation. Other researchers have observed a “stationary
speckle” phenomenon as well [1]. Proper analysis of this problem
is an open question, likely to be resolved with the study of the gov-
erning equations of scalar diffraction theory for imaging of a rough
translating surface under coherent Gaussian beam illumination [6].

4 Implementation

We have implemented the spacetime analysis presented in the pre-
vious section using a commercial laser triangulation scanner and a
real-time digital video recorder.

4.1 Hardware

The optical triangulation system we use is a Cyberware MS platform
scanner. This scanner collects range data by casting a laser stripe
on the object and by observing reflections with a CCD camera posi-
tioned at an angle of 30o with respect to the plane of the laser. The
platform can either translate or rotate an object through the field of
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Figure 8: From geometry to spacetime image to range data. (a) The original geometry. (b) The resulting spacetime image. TA indicates the
direction of traditional analysis, while SA is the direction of the spacetime analysis. The dotted line corresponds to the scanline generated at
the instant shown in (a). (c) Range data after traditional mean analysis. (d) Range data after spacetime analysis.

view of the triangulation optics. The laser width varies from 0.8 mm
to 1.0 mm over the field of view which is approximately 30 cm in
depth and 30 cm in height. Each CCD pixel images a portion of the
laser plane roughly 0.5 mm by 0.5 mm. Although the Cyberware
scanner performs a form of peak detection in real time, we require
the actual video frames of the camera for our analysis. We capture
these frames with an AbekasA20 video digitizer and an Abekas A60
digital video disk, a system that can acquire 486 by 720 size frames
at 30 Hz. These captured frames have approximately the same res-
olution as the Cyberware range camera, though they represent a re-
sampling of the reconstructed CCD output.

4.2 Algorithms

Using the principles of section 3, we can devise a procedure for ex-
tracting range data from spacetime images:

1. Perform the range scan and capture the spacetime images.

2. Rotate the spacetime images by ��.

3. Find the statistics of the Gaussians in the rotated coordinates.

4. Rotate the means back to the original coordinates.

In order to implement step 1 of this algorithm, we require a sequence
of CCD images. Most commercial optical triangulation systems dis-
card each CCD image after using it (e.g. to compute a stripe of
the range map). As described in section 4.1, we have assembled
the necessary hardware to record the CCD frames. In section 3,
we discussed a one dimensional sensor scenario and indicated that
perspective imaging could be treated as locally orthographic. For
a two dimensional sensor, we can imagine the horizontal scanlines
as separate one dimensional sensors with varying vertical (y) off-
sets. Each scanline generates a spacetime image, and by stacking
the spacetime images one atop another, we define a spacetime vol-
ume. In general, we must perform our analysis along the paths of
points, paths which may cross scanlines within the spacetime vol-
ume. However, we have observed for our system that the illuminant
is sufficiently narrow and the perspective of the range camera suf-
ficiently weak, that these paths essentially remain within scanlines.
This observation allows us to perform our analysis on each space-
time image separately.

In step 2, we rotate the spacetime images so that Gaussians are
vertically aligned. In a practical system with different sampling
rates in x and z, the correct rotation angle can be computed as:

tan� =
�z
�x

tan�T (8)

where � is the new rotation angle, �x and �z are the sample spacing
in x and z respectively, and �T is the triangulation angle. In order to
determine the rotation angle, �, for a given scanning rate and region
of the field of view of our Cyberware scanner, we first determined
the local triangulation angle and the sample spacings in depth (z)
and lateral position (x). Equation 8 then yields the desired angle.

In step 3, we compute the statistics of the Gaussians along each
rotated spacetime image raster. Our method of choice for comput-
ing these statistics is a least squares fit of a parabola to the log of the
data. We have experimented with fitting the data directly to Gaus-
sians using the Levenberg-Marquardt non-linear least squares algo-
rithm [13], but the results have been substantially the same as the
log-parabola fits. The Gaussian statistics consist of a mean, which
corresponds to a range point, as well as a width and a peak am-
plitude, both of which indicate the reliability of the data. Widths
that are far from the expected width and peak amplitudes near the
noise floor of the sensor imply unreliable data which may be down-
weighted or discarded during later processing (e.g., when combin-
ing multiple range meshes [18]). For the purposes of this paper, we
discard unreliable data.

Finally, in step 4, we rotate the range points back into the global
coordinate system.

Traditionally, researchers have extracted range data at sampling
rates corresponding to one range point per sensor scanline per unit
time. Interpolation of shape between range points has consisted of
fitting primitives (e.g., linear interpolants like triangles) to the range
points. Instead, we can regard the spacetime volume as the primary
source of information we have about an object. After performing a
real scan, we have a sampled representation of the spacetime vol-
ume, which we can then reconstruct to generate a continuous func-
tion. This function then acts as our range oracle, which we can query
for range data at a sampling rate of our choosing. In practice, we
can magnify the sampled spacetime volume prior to applying the
range imaging steps described above. The result is a range grid with
a higher sampling density based directly on the imaged light reflec-
tions.

5 Results

5.1 Reflectance correction

To evaluate the tolerance of the spacetime method to changes in
reflectance, we performed two experiments, one quantitative and
the other qualitative. For the first experiment, we generated pla-
nar cards with step reflectance changes varying from about 1:1 to
10:1 and scanned them at an angle of 30o (roughly facing the sen-
sor). Figure 9 shows a plot of maximum deviations from planarity
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Figure 9: Measured error due to varying reflectance steps.

(a)

(b)
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Figure 10: Reflectance card. (a) Photograph of a planar card with
the word “Reflectance” printed on it, and shaded renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.

when using traditional per scanline mean analysis and our spacetime
analysis. The spacetime method has clearly improved over the old
method, yielding up to 85% reductions in range errors.

For qualitative comparison, we produced a planar sheet with the
word “Reflectance” printed on it. Figure 10 shows the results. The
old method yields a surface with the characters well-embossed into
the geometry, whereas the spacetime method yields a much more
planar surface indicating successfuldecoupling of geometry and re-
flectance.

5.2 Shape correction

We conducted several experiments to evaluate the effects of shape
variation on range acquisition. In the first experiment, we generated
corners of varying angles by abutting sharp edges of machined alu-
minum wedges which are painted white. Figure 11 shows the range
errors that result for traditional and spacetime methods. Again, we
see an increase in accuracy, though not as great as in the reflectance
case.

We also scanned two 4 mm strips of paper at an angle of 30o

(roughly facing the sensor) to examine the effects of depth continu-
ity. Figure 12b shows the “edge curl” observed with the old method,
while the spacetime method in Figure 12c shows a significant reduc-
tion of this artifact under spacetime analysis. We have found that the
spacetime method reduces the length of the edge curl from an aver-
age of 1.1 mm to an average of approximately 0.35 mm.

Finally, we impressed the word “shape” onto a plastic ribbon us-


  Scanline mean
�  Spacetime Gaussian

|
100

|
120

|
140

|
160

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

 Corner Angle (degrees)

 D
is

ta
nc

e 
to

 c
or

ne
r 

(m
m

)













�

�

�

�

Figure 11: Measured error due to corners of varying angles.

(a) (b) (c)

Figure 12: Depth discontinuities and edge curl. (a) Photograph of
two strips of paper, and shaded renderings of the range data gen-
erated by (b) mean pulse analysis and (c) spacetime analysis. The
“edge curl” indicated by the hash-marks in (b) is 1.1mm.

ing a commonly available label maker. In Figure 10, we wanted the
word “Reflectance” to disappear because it represented changes in
reflectance rather than in geometry. In Figure 13, we want the word
“Shape” to stay because it represents real geometry. Furthermore,
we wish to resolve it as highly as possible. Figure 13 shows the re-
sult. Using the scanline mean method, the word is barely visible.
Using the new spacetime analysis, the word becomes legible.

5.3 Speckle reduction

We performed range scans on the planar surfaces and generated
range points using the traditional and spacetime methods. After fit-

(a)

(b)

(c)

Figure 13: Shape ribbon. (a) Photograph of a surface with raised
lettering (letters are approx. 0.3 mm high), and renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.



ting planes to range points, we found a 30-60% reduction in average
deviation from planarity when using the spacetime analysis.

5.4 A complex object

Figure 14 shows the results of scanning a model tractor. Figure 14b
is a rendering of the data generated by the Cyberware scanner hard-
ware and is particularly noisy. This added noisiness results from
the method of pulse analysis performed by the hardware, a method
similar to peak detection. Peak detection is especially susceptible
to speckle noise, because it extracts a range point based on a sin-
gle value or small neighborhood of values on a noisy curve. Mean
analysis tends to averageout the speckle noise, resulting in smoother
range data as shown in Figure 14c. Figure 14d shows our spacetime
results and Figure 14e shows the spacetime results with 3X interpo-
lation and resampling of the spacetime volume as described in sec-
tion 4.2. Note the sharper definition of features on the body of the
tractor and less jagged edges in regions of depth discontinuity.

5.5 Remaining sources of error

The results we presented in this section clearly show that the space-
time analysis yields more accurate range data, but the results are im-
perfect due to system limitations. These limitations include:

� CCD noise

� Finite sensor resolution

� Optical blurring and electronic filtering

� Quantization errors

� Calibration errors

� Surface-surface inter-reflections

In addition, we observed some electronic artifacts in our Cyberware
scanner that influenced our results. We expect, however, that any
measures taken to reduce the effects of the limiting factors described
above will lead to higher accuracy. By contrast, if one uses tradi-
tional methods of range extraction, then increasing sensor resolu-
tion and reducing the effects of filtering alone will not significantly
increase tolerance to reflectance and shape changes when applying
the traditional methods of range extraction.

6 Conclusion

We have described several of the systematic limitations in tradi-
tional methods of range acquisition with optical triangulation range
scanners, including intolerance to reflectanceand shape changesand
speckle noise. By analyzing the time evolution of the reflected light
imaged onto the sensor, we have shown that distortions induced by
shape and reflectance changes can be corrected, while the influence
of laser speckle can be reduced. In practice, we have demonstrated
that we can significantly reduce range distortions with existing hard-
ware. Although the spacetime method does not completely elimi-
nate range artifacts in practice, it has proven to reduce the artifacts
in all experiments we have conducted.

In future work, we plan to incorporate the improved range data
with algorithms that integrate partial triangulation scans into com-
plete, unified meshes. We expect this improved data to ease the
process of estimating topology, especially in areas of high curva-
ture which are prone to edge curl artifacts. We will also investigate
methods for increasing the resolution of the existing hardware by

registering and deblurring multiple spacetime images [9]. Finally,
we hope to apply the results of scalar diffraction theory to put the
achievement of speckle reduction on sound theoretical footing.
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