
Abstract
Range imaging offers an inexpensive and accurate means for

digitizing the shape of three-dimensional objects. Because most
objects self occlude, no single range image suffices to describe the
entire object. We present a method for combining a collection of
range images into a single polygonal mesh that completely describes
an object to the extent that it is visible from the outside.

The steps in our method are: 1) align the meshes with each other
using a modified iterated closest-point algorithm, 2) zipper together
adjacent meshes to form a continuous surface that correctly captures
the topology of the object, and 3) compute local weighted averages
of surface positions on all meshes to form a consensus surface
geometry.

Our system differs from previous approaches in that it is incre-
mental; scans are acquired and combined one at a time. This
approach allows us to acquire and combine large numbers of scans
with minimal storage overhead. Our largest models contain up to
360,000 triangles. All the steps needed to digitize an object that
requires up to 10 range scans can be performed using our system with
five minutes of user interaction and a few hours of compute time. We
show two models created using our method with range data from a
commercial rangefinder that employs laser stripe technology.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modelling.
Additional Key Words: Surface reconstruction, surface fitting,
polygon mesh, range images, structured light range scanner.

1 Introduction
This paper presents a method of combining multiple views of an

object, captured by a range scanner, and assembling these views into
one unbroken polygonal surface. Applications for such a method
include:

• Digitizing complex objects for animation and visual simulation.
• Digitizing the shape of a found object such as an archaeological

artifact for measurement and for dissemination to the scientific
community.

• Digitizing human external anatomy for surgical planning,
remote consultation or the compilation of anatomical atlases.

• Digitizing the shape of a damaged machine part to help create
a replacement.

There is currently no procedure that will allow a user to easily
capture a digital description of a physical object. The dream tool
would allow one to set an industrial part or a clay figure onto a
platform, press a button, and have a complete digital description of
that object returned in a few minutes. The reality is that much
digitization is done by a user painstakingly touching a 3D sensing
probe to hundreds or thousands of positions on the object, then
manually specifying the connectivity of these points. Fortunately
range scanners offer promise in replacing this tedious operation.

A range scanner is any device that senses 3D positions on an
object’s surface and returns an array of distance values. A range
image is an m×n grid of distances (range points) that describe a
surface either in Cartesian coordinates (a height field) or cylindrical
coordinates, with two of the coordinates being implicitly defined by
the indices of the grid. Quite a number of measurement techniques
can be used to create a range image, including structured light,
time-of-flight lasers, radar, sonar, and several methods from the
computer vision literature such as depth from stereo, shading, tex-
ture, motion and focus. The range images used to create the models
in this paper were captured using structured light (described later),
but our techniques can be used with any range images where the
uncertainties of the distance values are smaller than the spacing
between the samples.

Range scanners seem like a natural solution to the problem of
capturing a digital description of physical objects. Unfortunately,
few objects are simple enough that they can be fully described by a
single range image. For instance, a coffee cup handle will obscure
a portion of the cup’s surface even using a cylindrical scan. To
capture the full geometry of a moderately complicated object (e.g. a
clay model of a cat) may require as many as a dozen range images.

There are two main issues in creating a single model from multiple
range images: registration and integration. Registration refers to
computing a rigid transformation that brings the points of one range
image into alignment with the portions of a surface that is shares with
another range image. Integration is the process of creating a single
surface representation from the sample points from two or more
range images.

Our approach to registration uses an iterative process to minimize
the distance between two triangle meshes that were created from the
range images. We accelerate registration by performing the match-
ing on a hierarchy of increasingly more detailed meshes. This
method allows an object to be scanned from any orientation without
the need for a six-degree-of-freedom motion device.

Zippered Polygon Meshes from Range Images

Greg Turk and Marc Levoy
Computer Science Department

Stanford University

E-mail: turk@redclay.stanford.edu, levoy@cs.stanford.edu
Web site: www-graphics.stanford.edu

We separate the task of integration into two steps: 1) creating a
mesh that reflects the topology of the object, and 2) refining the
vertex positions of the mesh by averaging the geometric detail that is
present in all scans. We capture the topology of an object by merging
pairs of triangle meshes that are each created from a single range
image. Merging begins by converting two meshes that may have
considerable overlap into a pair of meshes that just barely overlap
along portions of their boundaries. This is done by simultaneously
eating back the boundaries of each mesh that lie directly on top of the
other mesh. Next, the meshes are zippered together: the triangles of
one mesh are clipped to the boundary of the other mesh and the
vertices on the boundary are shared. Once all the meshes have been
combined, we allow all of the scans to contribute to the surface detail
by finding the consensus geometry. The final position of a vertex is
found by taking an average of nearby positions from each of the
original range images. The order in which we perform zippering and
consensus geometry is important. We deliberately postpone the
refinement of surface geometry until after the overall shape of the
object has been determined. This eliminates discontinuities that may
be introduced during zippering.

The remainder of this paper is organized as follows. Section 2
describes previous work on combining range images. Section 3
covers the basic principles of a structured light range scanner.
Section 4 presents the automatic registration process. Section 5
describes zippering meshes into one continuous surface. Section 6
describes how surface detail is captured through consensus geom-
etry. Section 7 shows examples of digitized models and compares
our approach to other methods of combining range data. Section 8
concludes this paper by discussing future work.

2 Previous Work
There is a great deal of published work on registration and

integration of depth information, particularly in the vision literature.
Our literature review only covers work on registration or integration
of dense range data captured by an active range scanner, and where
the product of the integration is a polygon mesh.

2.1 Registration
Two themes dominate work in range image registration: matching

of “created” features in the images to be matched, and minimization
of distances between all points on the surface represented by the two
images. In the first category, Wada and co-authors performed six
degree of freedom registration by matching distinctive facets from
the convex hulls of range images [Wada 93]. They computed a
rotation matrix from corresponding facets using a least squares fit of
the normal vectors of the facets.

In the second category, Champleboux and co-workers used a data
structure called an octree-spline that is a sampled representation of
distances to an object’s surface [Champleboux 92]. This gave them
a rapid way to determine distances from a surface (and the distance
gradient) with a low overhead in storage. Chen and Medioni
establish a correspondence between points on one surface and nearby
tangent planes on the other surface [Chen 92]. They find a rigid
motion that minimizes the point-to-tangent collection directly and
then iterate. Besl and McKay use an approach they call the iterated
closest-point algorithm [Besl 92]. This method finds the nearest
positions on one surface to a collection of points on the other surface
and then transforms one surface so as to minimize the collective
distance. They iterate this procedure until convergence.

Our registration method falls into the general category of direct
distance minimization algorithms, and is an adaptation of [Besl 92].
It differs in that we do not require that one surface be a strict subset
of the other. It is described in Section 4.

2.2 Integration
Integration of multiple range scans can be classified into struc-

tured and unstructured methods. Unstructured integration presumes

that one has a procedure that creates a polygonal surface from an
arbitrary collection of points in 3-space. Integration in this case is
performed by collecting together all the range points from multiple
scans and presenting them to the polygonal reconstruction proce-
dure. The Delaunay triangulation of a set of points in 3-space has
been proposed as the basis of one such reconstruction method
[Boissonnat 84]. Another candidate for surface reconstruction is a
generalization of the convex hull of a point set known as the alpha
shape [Edelsbrunner 92]. Hoppe and co-authors use graph traversal
techniques to help construct a signed distance function from a
collection of unorganized points [Hoppe 92]. An isosurface extrac-
tion technique produces a polygon mesh from this distance function.

Structured integration methods make use of information about
how each point was obtained, such as using error bounds on a point’s
position or adjacency information between points within one range
image. Soucy and Laurendeau use a structured integration technique
to combine multiple range images [Soucy 92] that is similar in
several respects to our algorithm. Given n range images of an object,
they first partition the points into a number of sets that are called
common surface sets. The range points in one set are then used to
create a grid of triangles whose positions are guided by a weighted
average of the points in the set. Subsets of these grids are stitched
together by a constrained Delaunay triangulation in one of n projec-
tions onto a plane. We compare our method to Soucy’s in Section 7.

3 Structured Light Range Scanners
In this section we describe the operating principles of range

scanners based on structured light. We do this because it highlights
issues common to many range scanners and also because the range
images used in this article were created by such a scanner.

3.1 Triangulation
Structured light scanners operate on the principle of triangulation

(see Figure 1, left). One portion of the scanner projects a specific
pattern of light onto the object being scanned. This pattern of light
is observed by the sensor of the scanner along a viewing direction that
is off-axis from the source of light. The position of the illuminated
part of the object is determined by finding the intersection of the
light’s projected direction and the viewing direction of the sensor.
Positions can be accumulated across the length of the object while the
object is moved across the path of the projected light. Some of the
patterns that have been used in such scanners include a spot, a circle,
a line, and several lines at once. Typically the sensor is a CCD array
or a lateral effect photodiode.

The scanner used for the examples in this paper is a Cyberware
Model 3030 MS. It projects a vertical sheet of He-Ne laser light onto
the surface of an object. The laser sheet is created by spreading a laser
beam using a cylindrical lens into a sheet roughly 2 mm wide and 30
cm high. The sensor of the Cyberware scanner is a 768 × 486 pixel
CCD array. A typical CCD image shows a ribbon of laser light
running from the top to the bottom (see Figure 2). A range point is
created by looking across a scanline for the peak intensity of this
ribbon. A range point’s distance from the scanner (the “depth”) is
given by the horizontal position of this peak and the vertical position
of the range point is given by the number of the scanline. Finding the
peaks for each scanline in one frame gives an entire column of range
points, and combining the columns from multiple frames as the
object is moved through the laser sheet gives the full range image.

3.2 Sources of Error
Any approach to combining range scans should attempt to take

into account the possible sources of error inherent in a given scanner.
Two sources of error are particularly relevant to integration. One is
a result of light falling on the object at a grazing angle. When the
projected light falls on a portion of the object that is nearly parallel
to the light’s path, the sensor sees a dim and stretched-out version of
the pattern. Finding the center of the laser sheet when it grazes the

object becomes difficult, and this adds uncertainty to the position of
the range points. The degree of uncertainty at a given range point can
be quantified, and we make use of such information at several stages
in our approach to combining range images.

A second source of inaccuracy occurs when only a portion of the
laser sheet hits an object, such as when the laser sheet falls off the
edge of a book that is perpendicular to the laser sheet (see Figure 1,
right). This results in a false position because the peak-detection and
triangulation method assumes that the entire width of the sheet is
visible. Such an assumption results in edges of objects that are both
curled and extended beyond their correct position. This false
extension of a surface at edges is an issue that needs to be specifically
addressed when combining range images.

3.3 Creating Triangle Meshes from Range Images
We use a mesh of triangles to represent the range image data at all

stages of our integration method. Each sample point in the m×n range
image is a potential vertex in the triangle mesh. We take special care
to avoid inadvertently joining portions of the surface together that are
separated by depth discontinuities (see Figure 3).

To build a mesh, we create zero, one or two triangles from four
points of a range image that are in adjacent rows and columns. We
find the shortest of the two diagonals between the points and use this
to identify the two triplets of points that may become triangles. Each
of these point triples is made into a triangle if the edge lengths fall
below a distance threshold. Let s be the maximum distance between
adjacent range points when we flatten the range image, that is, when
we don’t include the depth information (see Figure 3). We take the
distance threshold be a small multiple of this sampling distance,
typically 4s. Although having such a distance threshold may prevent
joining some range points that should in fact be connected, we can
rely on other range images (those with better views of the location in
question) to give the correct adjacency information.

This willingness to discard questionable data is representative of
a deliberate overall strategy: to acquire and process large amounts of
data rather than draw hypotheses (possibly erroneous) from sparse
data. This strategy appears in several places in our algorithm.

4 Registration of Range Images
Once a triangle mesh is created for each range image, we turn to

the task of bringing corresponding portions of different range images
into alignment with one another. If all range images are captured
using a six-degree of freedom precision motion device then the
information needed to register them is available from the motion
control software. This is the case when the object or scanner is
mounted on a robot arm or the motion platform of a precision milling
machine. Inexpensive motion platforms are often limited to one or
two degrees of freedom, typically translation in a single direction or
rotation about an axis. One of our goals is to create an inexpensive
system. Consequently, we employ a registration method that does
not depend on measured position and orientation. With our scanner,
which offers translation and rotation around one axis, we typically
take one cylindrical and four translational scans by moving the object
with the motion device. To capture the top or the underside of the
object, we pick it up by hand and place it on its side. Now the
orientation of subsequent scans cannot be matched with those taken
earlier, and using a registration method becomes mandatory.

4.1 Iterated Closest-Point Algorithm
This section describes a modified iterated closest-point (ICP)

algorithm for quickly registering a pair of meshes created from range
images. This method allows a user to crudely align one range image
with another on-screen and then invoke an algorithm that snaps the
position of one range image into accurate alignment with the other.

The iterated closest-point of [Besl 92] cannot be used to register
range images because it requires that every point on one surface have

Figure 1: Structured light triangulation (left) and false edge extension in the presence of a partially illuminated edge (right).

Laser and Lens

Light Sheet

Depth

Image of light ribbon

Ribbon of light
on vase

Laser
Sheet

Illuminated
portion of sensor

Plane of
Light Sensor

Model

Laser
Sheet

Illuminated
portion
of sensor

Computed
(but incorrect)
Range Point

ModelComputed
Range Point

Figure 3: Building triangle mesh from range points.
Figure 2: Light-stripe projected on vase (left) and

corresponding CCD image (right).

distance >> s,
so should not
connect

s

Scanned Surface

direction of
projected light

a corresponding point on the other surface. Since our scans are
overlapping, we seldom produce data that satisfies this requirement.
Thus we have developed our own variant of this algorithm. Its steps
are:

1) Find the nearest position on mesh A to each vertex of mesh B.
2) Discard pairs of points that are too far apart.
3) Eliminate pairs in which either points is on a mesh boundary.
4) Find the rigid transformation that minimizes a weighted

least-squared distance between the pairs of points.
5) Iterate until convergence.
6) Perform ICP on a more detailed mesh in the hierarchy.

In step 1, it is important to note that we are looking for the 3-space
position A

i
 on the surface of mesh A that is closest to a given vertex

B
i
 of mesh B (see Figure 4). The nearest point A

i
 may be a vertex of

A, may be a point within a triangle, or may lie on a triangle’s edge.
Allowing these points A

i
 to be anywhere on a C0 continuous surface

means that the registration between surfaces can have greater accu-
racy than the spacing s between range points.

4.2 Constraints on ICP
Our ICP algorithm differs from Besl’s in several ways. First, we

have added a distance threshold to the basic iterated closest-point
method to avoid matching any vertex B

i
 of one mesh to a remote part

of another mesh that is likely to not correspond to B
i
. Such a vertex

B
i
 from mesh B might be from a portion of the scanned object that was

not captured in the mesh A, and thus no pairing should be made to any
point on A. We have found that excellent registration will result when
this distance threshold is set to twice the spacing s between range
points. Limiting the distance between pairs of corresponding points
allows us to perform step 2 (eliminating remote pairs) during the
nearest points search in step 1.

The nearest points search can be accelerated considerably by
placing the mesh vertices in a uniform subdivision of space based on
the distance threshold. Because the triangle size is limited in the
mesh creation step, we can search over all triangles within a fixed
distance and guarantee that we miss no nearby portion of any triangle.
Because we will use this constrained nearest-point search again later,
it is worth giving a name to this query. Let nearest_on_mesh(P,d,M)
be a routine that returns the nearest position on a mesh M to a given
point P, or that returns nothing if there is no such point within the
distance d.

Second, we have added the restriction that we never allow
boundary points to be part of a match between surfaces. Boundary
points are those points that lie on the edge of a triangle and where that
edge is not shared by another triangle. Figure 4 illustrates how such
matches can drag a mesh in a contrary direction to the majority of the
point correspondences.

4.3 Best Rigid Motion
The heart of the iterated closest-point approach is in finding a rigid

transformation that minimizes the least-squared distance between

the point pairs. Berthold Horn describes a closed-form solution to
this problem [Horn 87] that is linear in time with respect to the
number of point pairs. Horn’s method finds the translation vector T
and the rotation R such that:

is minimized, where A
i
 and B

i
 are given pairs of positions in

3-space and B
c
 is the centroid of the B

i
. Horn showed that T is just the

difference between the centroid of the points A
i
 and the centroid of the

points B
i
. R is found by constructing a cross-covariance matrix

between centroid-adjusted pairs of points. The final rotation is given
by a unit quaternion that is the eigenvector corresponding to the
largest eigenvalue of a matrix constructed from the elements of this
cross-covariance matrix. Details can be found in both [Horn 87] and
[Besl 92].

As we discussed earlier, not all range points have the same error
bounds on their position. We can take advantage of an optional
weighting term in Horn’s minimization to incorporate the positional
uncertainties into the registration process. Let a value in the range
from 0 to 1 called confidence be a measure of how certain we are of
a given range point’s position. For the case of structured light
scanners, we take the confidence of a point P on a mesh to be the dot
product of the mesh normal N at P and the vector L that points from
P to the light source of the scanner. (We take the normal at P to be
the average of the normals of the triangles that meet at P.) Addition-
ally, we lower the confidence of vertices near the mesh boundaries
to take into account possible error due to false edge extension and
curl. We take the confidence of a pair of corresponding points A

i
 and

B
i
 from two meshes to be the product of their confidences, and we will

use w
i
 to represent this value. The problem is now to find a weighted

least-squares minimum:

The weighted minimization problem is solved in much the same
way as before. The translation factor T is just the difference between
the weighted centroids of the corresponding points. The solution for
R is described by Horn.

4.4 Alignment in Practice
The above registration method can be made faster by matching

increasingly more detailed meshes from a hierarchy. We typically
use a mesh hierarchy in which each mesh uses one-forth the number
of range points that are used in the next higher level. The less-
detailed meshes in this hierarchy are constructed by sub-sampling the
range images. Registration begins by running constrained ICP on the
lowest-level mesh and then using the resulting transformation as the
initial position for the next level up in the hierarchy. The matching
distance threshold d is halved with each move up the hierarchy.

Besl and McKay describe how to use linear and quadratic extrapo-
lation of the registration parameters to accelerate the alignment
process. We use this technique for our alignment at each level in the
hierarchy, and find it works well in practice. Details of this method
can be found in their paper.

The constrained ICP algorithm registers only two meshes at a
time, and there is no obvious extension that will register three or more
meshes simultaneously. This is the case with all the registration
algorithms we know. If we have meshes A, B, C and D, should we
register A with B, then B with C and finally C with D, perhaps
compounding registration errors? We can minimize this problem by
registering all meshes to a single mesh that is created from a
cylindrical range image. In this way the cylindrical range image acts
as a common anchor for all of the other meshes. Note that if a
cylindrical scan covers an object from top to bottom, it captures all
the surfaces that lie on the convex hull of the object. This means that,

Mesh A

Mesh B

Figure 4: Finding corresponding points for mesh registration.
Dotted arrows show matches that should be avoided because
they will cause mesh B to be erroneously dragged up and left.

E = Ai-R Bi-Bc -T 2∑
i=1

n

E = wiAi-R Bi-Bc -T 2∑
i=1

n

for almost all objects, there will be some common portions between
the cylindrical scan and all linear scans, although the degree of this
overlap depends on the extent of the concavities of the object. We
used such a cylindrical scan for alignment when constructing the
models shown in this paper.

5 Integration: Mesh Zippering
The central step in combining range images is the integration of

multiple views into a single model. The goal of integration is to arrive
at a description of the overall topology of the object being scanned.
In this section we examine how two triangle meshes can be combined
into a single surface. The full topology of a surface is realized by
zippering new range scans one by one into the final triangle mesh.

Zippering two triangle meshes consists of three steps, each of
which we will consider in detail below:

1) Remove overlapping portions of the meshes.
2) Clip one mesh against another.
3) Remove the small triangles introduced during clipping.

5.1 Removing Redundant Surfaces
Before attempting to join a pair of meshes, we eat away at the

boundaries of both meshes until they just meet. We remove those
triangles in each mesh that are in some sense “redundant,” in that the
other mesh includes an unbroken surface at that same position in
space. Although this step removes triangles from the meshes, we are
not discarding data since all range points eventually will be used to
find the consensus geometry (Section 6). Given two triangle meshes
A and B, here is the process that removes their redundant portions:

Repeat until both meshes remain unchanged:
Remove redundant triangles on the boundary of mesh A
Remove redundant triangles on the boundary of mesh B

Before we can remove a given triangle T from mesh A, we need
to determine whether the triangle is redundant. We accomplish this
by querying mesh B using the nearest_on_mesh() routine that was
introduced earlier. In particular, we ask for the nearest positions on
mesh B to the vertices V

1
, V

2
 and V

3
 of T. We will declare T to be

redundant if the three queries return positions on B that are within a
tolerance distance d and if none of these positions are on the boundary
of B. Figure 7 shows two overlapping surfaces before and after
removing their redundant triangles. In some cases this particular
decision procedure for removing triangles will leave tiny gaps where
the meshes meet. The resulting holes are no larger than the maximum
triangle size and we currently fill them in an automatic post-processing
step to zippering. Using the fast triangle redundancy check was an
implementation decision for the sake of efficiency, not a necessary
characteristic of our zippering approach, and it could easily be
replaced by a more cautious redundancy check that leaves no gaps.
We have not found this necessary in practice.

If we have a measure of confidence of the vertex positions (as we
do for structured light scanners), then the above method can be
altered to preserve the more confident vertices. When checking to
see if the vertices V

1
, V

2
 and V

3
 of T lie within the distance tolerance

of mesh B, we also determine whether at least two of these vertices
have a lower confidence measure than the nearby points on B. If this
is the case, we allow the triangle to be removed. When no more
triangles can be removed from the boundaries of either mesh, we drop
this confidence value restriction and continue the process until no
more changes can be made. This procedure results in a pair of meshes
that meet along boundaries of nearly equal confidences.

5.2 Mesh Clipping
We now describe how triangle clipping can be used to smoothly

join two meshes that slightly overlap. The left portion of Figure 5
shows two overlapping meshes and the right portion shows the result
of clipping. Let us examine the clipping process in greater detail, and

for the time being make the assumption that we are operating on two
meshes that lie in a common plane.

To clip mesh A against the boundary of mesh B we first need to add
new vertices to the boundary of B. Specifically, we place a new
vertex wherever an edge of a triangle from mesh A intersects the
boundary of mesh B. Let Q be the set of all such new vertices.
Together, the new vertices in Q and the old boundary vertices of mesh
B will form a common boundary that the triangles from both meshes
will share. Once this new boundary is formed we need to incorporate
the vertices Q into the triangles that share this boundary. Triangles
from mesh B need only to be split once for each new vertex to be
incorporated (shown in Figure 5, right). Then we need to divide each
border triangle from A into two parts, one part that lies inside the
boundary of B that should be discarded and the other part that lies
outside of this boundary and should be retained (See Figure 5,
middle). The vertices of the retained portions of the triangle are
passed to a constrained triangulation routine that returns a set of
triangles that incorporates all the necessary vertices (Figure 5, right).

The only modification needed to extend this clipping step to
3-space is to determine precisely how to find the points of intersec-
tion Q. In 3-space the edges of mesh A might very well pass above
or below the boundary of B instead of exactly intersecting the
boundary. To correct for this we “thicken” the boundary of mesh B.
In essence we create a wall that runs around the boundary of B and
that is roughly perpendicular to B at any given location along the
boundary. The portion of the wall at any given edge E is a collection
of four triangles, as shown in Figure 6. To find the intersection points
with the edges of A, we only need to note where these edges pass
through the wall of triangles. We then move this intersection point
down to the nearest position on the edge E to which the intersected
portion of the wall belongs. The rest of the clipping can proceed as
described above.

5.3 Removing Small Triangles
The clipping process can introduce arbitrarily small or thin

triangles into a mesh. For many applications this does matter, but in
situations where such triangles are undesirable they can easily be
removed. We use vertex deletion to remove small triangles: if any of
a triangle’s altitudes fall below a user-specified threshold we delete
one of the triangle’s vertices and all the triangles that shared this
vertex. We then use constrained triangulation to fill the hole that is
left by deleting these triangles (see [Bern 92]). We preferentially
delete vertices that were introduced as new vertices during the
clipping process. If all of a triangle’s vertices are original range
points then the vertex opposite the longest side is deleted.

Figure 5: Mesh A is clipped against the boundary of mesh B.
Circles (left) show intersection between edges of A and B’s
boundary. Portions of triangles from A are discarded (middle)
and then both meshes incorporate the points of intersection
(right).

Retain

Discard

Mesh A Mesh B

clip boundary Final triangles

5.4 False Edge Extension
As described in Section 3.2, range points from a structured light

scanner that are near an object’s silhouette are extended and curled
away from the true geometry. These extended edges typically occur
at corners. If there is at least one scan that spans both sides of the
corner, then our method will correctly reconstruct the surface at the
corner. Since we lower the confidence of a surface near the mesh
boundaries, triangles at the false edge extensions will be eliminated
during redundant surface removal because there are nearby triangles
with higher confidence in the scan that spans the corner. For correct
integration at a corner, it is the user’s responsibility to provide a scan
that spans both sides of the corner. Figure 7 illustrates correct
integration at a corner in the presence of false edge extension.
Unfortunately, no disambiguating scan can be found when an object
is highly curved such as a thin cylinder.

Although the problem of false edge extension is discussed in the
structured light literature [Businski 92], we know of no paper on
surface integration from such range images that addresses or even
mentions this issue. We are also unaware of any other integration
methods that will correctly determine the geometry of a surface at
locations where there are false extensions. Our group has developed

a method of reducing false edge extensions when creating the range
images (to appear in a forthcoming paper) and we are exploring
algorithms that will lessen the effect of such errors during integra-
tion. It is our hope that by emphasizing this issue we will encourage
others to address this topic in future research on range image
integration.

6 Consensus Geometry
When we have zippered the meshes of all the range images

together, the resulting triangle mesh captures the topology of the
scanned object. This mesh may be sufficient for some applications.
If surface detail is important, however, we need to fine-tune the
geometry of the mesh.

The final model of an object should incorporate all the informa-
tion available about surface detail from each range image of the
object. Some of this information may have been discarded when we
removed redundant triangles during mesh zippering. We re-introduce
the information about surface detail by moving each vertex of our
zippered mesh to a consensus position given by a weighted average
of positions from the original range images. Vertices are moved only
in the direction of the surface normal so that features are not blurred
by lateral motion. This is in contrast to unstructured techniques
which tend to blur small features isotropically. Our preference for
averaging only in the direction of the surface normal is based on the
observation that most points in range scans are generally accurately
placed with respect to other points in the same scan, but may differ
between scans due to alignment errors such as uncorrected optical
distortion in the camera. Let M

1
, M

2
,..., M

n
 refer to the original

triangle meshes created from the range images. Then the three steps
for finding the consensus surface are:

1) Find a local approximation to the surface normal.
2) Intersect a line oriented along this normal with each original

range image.
3) Form a weighted average of the points of intersection.

Surface of
Triangle Mesh

Wall to
thicken
mesh
boundary

Mesh boundary

Figure 6: Thickened boundary for clipping in 3-space.

Figure 7: Left (top and bottom): Meshes created from two range images of a telephone. Red denotes locations of high confidence
and blue shows low confidence. Note the low confidence at the edges to account for false edge extensions. Top middle: The two
meshes (colored red and white) after alignment. Bottom middle: Close-up of aligned meshes that shows a jagged ridge of triangles
that is the false edge extension of the white mesh at a corner. Top right: The meshes after redundant surface removal. Bottom
right: The meshes after zippering.

Figure 9: Left: This model of a telephone handset was created by zippering together meshes from ten range images. The mesh
consists of more than 160,000 triangles. Right: The final positions of the vertices in the mesh have been moved to an average
of nearby positions in the original range images. We call this the consensus geometry.

Figure 8: Photograph of a plastic dinosaur model (left) and a polygon mesh created by registering and zippering together 14 range
images that were taken of the model (right). The mesh consists of more than 360,000 polygons.

We approximate the surface normal N at a given vertex V by
taking an average over all vertex normals from the vertices in all the
meshes M

i
 that fall within a small sphere centered at V. We then

intersect each of the meshes M
i
 with the line passing through V along

the direction N. Let P be the set of all intersections that are near V.
We take the consensus position of V to be the average of all the points
in P. If we have a measure of confidence for positions on a mesh we
use this to weight the average.

7 Results and Discussion
The dinosaur model shown in Figure 8 was created from 14 range

images and contains more than 360,000 triangles. Our integration
method correctly joined together the meshes at all locations except
on the head where some holes due to false edge extensions were filled
manually. Such holes should not occur once we eliminate the false
extensions in the range images. The dinosaur model was assembled
from a larger quantity of range data (measured either in number of
scans or number of range points) than any published model known to
us. Naturally, we plan to explore the use of automatic simplification
methods with our models [Schroeder 92] [Turk 92] [Hoppe 93].
Figure 9 shows a model of a phone that was created from ten range
images and contains over 160,000 triangles. The mesh on the right
demonstrates that the consensus geometry both reduces noise from
the range images without blurring the model’s features and also that
it eliminates discontinuities at zippered regions.

A key factor that distinguishes our approach from those using
unstructured integration ([Hoppe 92] and others) is that our method
attempts to retain as much of the triangle connectivity as is possible
from the meshes created from the original range images. Our
integration process concentrates on a one-dimensional portion of the
mesh (the boundary) instead of across an entire two-dimensional
surface, and this makes for rapid integration.

Our algorithm shares several characteristics with the approach of
Soucy and Laurendeau, which is also a structured integration method
[Soucy 92]. The most important difference is the order in which the
two methods perform integration and geometry averaging. Soucy’s
method first creates the final vertex positions by averaging between
range images and then stitches together the common surface sets. By
determining geometry before connectivity, their approach may be
sensitive to artifacts of the stitching process. This is particularly
undesirable because their method can create seams between as many
as 2n common surface sets from n range images. Such artifacts are
minimized in our approach by performing geometry averaging after
zippering.

In summary, we use zippering of triangle meshes followed by
refinement of surface geometry to build detailed models from range
scans. We expect that in the near future range image technology will
replace manual digitization of models in several application areas.

8 Future Work
There are several open problems related to integration of multiple

range images. One issue is how an algorithm might automatically
determine the next best view to capture more of an object’s surface.
Another important issue is merging reflectance information (includ-
ing color) with the geometry of an object. Maybe the biggest
outstanding issue is how to create higher-order surface descriptions
such as Bezier patches or NURBS from range data, perhaps guided
by a polygon model.

Acknowledgments
We thank David Addleman, George Dabrowski and all the other

people at Cyberware for the use of a scanner and for educating us
about the issues involved in the technology. We thank all the
members of our scanner group for numerous helpful discussions. In
particular, Brian Curless provided some key insights for interpreting
the range data and also wrote code to help this work. Thanks to Phil

Lacroute for help with the color figures. This work was supported by
an IBM Faculty Development Award, The Powell Foundation, and
the National Science Foundation under contract CCR-9157767.

References
[Bern 92] Bern, Marshall and David Eppstein, “Mesh Generation
and Optimal Triangulation,” Technical Report P92-00047, Xerox
Palo Alto Research Center, March 1992.

[Besl 92] Besl, Paul J. and Neil D. McKay, “A Method of Registra-
tion of 3-D Shapes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 14, No. 2 (February 1992), pp. 239–256.

[Boissonnat 84] Boissonnat, Jean-Daniel, “Geometric Structures for
Three-Dimensional Shape Representation,” ACM Transactions on
Graphics, Vol. 3, No. 4 (October 1984), pp. 266–286.

[Businski 92] Businski, M., A. Levine and W. H. Stevenson,
“Performance Characteristics of Range Sensors Utilizing Optical
Triangulation,” IEEE National Aerospace and Electronics Confer-
ence, Vol. 3 (1992), pp. 1230–1236.

[Champleboux 92] Champleboux, Guillaume, Stephane Lavallee,
Richard Szeliski and Lionel Brunie, “From Accurate Range Imaging
Sensor Calibration to Accurate Model-Based 3-D Object Localiza-
tion,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Champaign, Illinois,
June 15-20, 1992, pp. 83–89.

[Chen 92] Chen, Yang and Gerard Medioni, “Object Modelling by
Registration of Multiple Range Images,” Image and Vision Comput-
ing, Vol. 10, No. 3 (April 1992), pp. 145–155.

[Edelsbrunner 92] Edelsbrunner, Herbert and Ernst P. Mücke,
“Three-dimensional Alpha Shapes,” Proceedings of the 1992 Work-
shop on Volume Visualization, Boston, October 19-20, 1992, pp. 75–
82.

[Hoppe 92] Hoppe, Hugues, Tony DeRose, Tom Duchamp, John
McDonald and Werner Stuetzle, “Surface Reconstruction from
Unorganized Points,” Computer Graphics, Vol. 26, No. 2
(SIGGRAPH ’92), pp. 71–78.

[Hoppe 93] Hoppe, Hugues, Tony DeRose, Tom Duchamp, John
McDonald and Werner Stuetzle, “Mesh Optimization,” Computer
Graphics Proceedings, Annual Conference Series (SIGGRAPH
’93), pp. 19–26.

[Horn 87] Horn, Berthold K. P., “Closed-Form Solution of Absolute
Orientation Using Unit Quaternions,” Journal of the Optical Society
of America. A, Vol. 4, No. 4 (April 1987), pp. 629–642.

[Schroeder 92] Schroeder, William J., Jonathan A. Zarge and
William E. Lorensen, “Decimation of Triangle Meshes,” Computer
Graphics, Vol. 26, No. 2 (SIGGRAPH ’92), pp. 65–70.

[Soucy 92] Soucy, Marc and Denis Laurendeau, “Multi-Resolution
Surface Modeling from Multiple Range Views,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, Champaign, Illinois, June 15-20, 1992, pp. 348–
353.

[Turk 92] Turk, Greg, “Re-Tiling Polygonal Surfaces,” Computer
Graphics, Vol. 26, No. 2 (SIGGRAPH ’92), pp. 55–64.

[Wada 93] Wada, Nobuhiko, Hiroshi Toriyama, Hiromi T. Tanaka
and Fumio Kishino, “Reconstruction of an Object Shape from
Multiple Incomplete Range Data Sets Using Convex Hulls,” Com-
puter Graphics International ’93, Lausanne, Switzerland, June 21-25,
1993, pp. 193–203.

