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Abstract

In this article we present a method for automatically constructing a solid (in the CAD sense) model of an unknown object from range
images. The model acquisition system provides facilities for range image acquisition, solid model construction and model merging: a solid
representation is derived from a mesh surface that models the range data from each view, which is then merged with the model built from
previous sensing operations. This modeling system has the benefit of constructing a solid model at each phase of the acquisition process, and
is able to model parts that are difficult or impossible using other methods, such as extremely thin parts or those with deep through-holes. We
introduce a technique that utilizes the incomplete model resulting from the merging process to plan the next sensing operation by finding a
sensor viewpoint that will improve the fidelity of the model. A number of examples are given for the modeling of various objects that include
planar and curved surfaces, features such as through-holes, and large self-occlusions.q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Solid modeling; Range images; Sensor planning; Surface reconstruction; Laser rangefinder; Sensor modeling

1. Introduction

Automatically constructing 3-D computer models of an
object or a scene from range images has recently received
increased attention due to the availability of inexpensive
accurate rangefinders and to improvements in reconstruc-
tion algorithms. Termedmodeling from observation[9], this
task’s inherent difficulty is due to the large scope of the
shapes of 3-D objects and the resource-intensive data sets
that are acquired. Typically, systems that perform this task
model a range image using a surface, volumetric, or para-
metric model. As the information from a single range image
will not completely describe an object, range images from
other viewpoints must be acquired, modeled, and integrated
with previously acquired information. The task therefore
includes acquisition, modeling and planning components,
which make it necessary to address integration issues.
Most importantly the modeling process must support incre-
mental integration of new range data, be able to recognize
model surfaces that need additional sensing, and must not
put restrictions on the topological type of the object to be

acquired. The capability of incremental integration in
particular is an important one because it allows the
reconstruction to progress with each newly acquired range
image and therefore permits the use of a sensor planner to
determine the next sensing orientation. Other desirable
properties are that the system be robust with respect to errors
in the range images and that the final model does not have
holes in its surface or other irregularities, i.e. it is ‘watertight’
and conforms to the definition of a ‘solid model’ [15].

This article describes a system that incrementally builds
solid models from multiple range images and that exhibits
the above-mentioned capabilities. The algorithm consists of
two phases that are interleaved during the acquisition pro-
cess. The first phase acquires a range image, models it as a
solid, and merges the solid with any previously acquired
information. This phase motivates the generation of a
topologically-correct 3-D solid model at each stage of the
modeling process, which allows the use of well-defined
geometric algorithms to perform the merging task and addi-
tionally supports the view planning process. The second
phase plans the next sensor orientation so that each addi-
tional sensing operation recovers object surfaces that have
not yet been modeled. This planning component makes it
possible to reduce the number of sensing operations to
recover a model: systems without planning typically utilize
as many as 70 range images, with significant overlap
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between them. This concept of reducing the number of scans
is important for tasks such as 3-D FAX where the sensing
process may add considerable time. In addition, the algo-
rithm presented here avoids the problems associated with
discretizing sensor positions by determining sensor visibi-
lity for a specific target, and is able to handle object self-
occlusion properly.

2. Background

Recent research on the acquisition, modeling and merging
process includes Thompson et al.’s REFAB system, which
allows a user to specify approximate locations of machining
features on a range image of a part; the system then produces
a best fit to the data using previously-identified features and
domain-specific knowledge as constraints [19]. The IVIS
system of Tarbox and Gottshlich uses an octree to represent
the ‘seen’ and ‘unseen’ parts of each of a set of range images
and set-theoretic operators to merge the octrees into a final
model [18]. Methods that use a mesh surface to model and
integrate each of a set of range images, such as work by
Turk and Levoy [23] or by Rutishauser et al. [16], or to
model a complete point sampling as by Hoppe [8] or Fua
and Sander [7] have also proven useful in this task. Both
Connolly and Stenstrom [4,17] and Martin and Aggarwal
[12] perform edge detection and projection from intensity
images, a concept that is revisited by Laurentini [11]. Cur-
less and Levoy [5] present a system that uses a mesh in a
ray-casting operation to weight voxels in an octree, which is
then used as input to an isosurface extraction algorithm.
This method has achieved excellent results at a cost of
numerous (50–70) overlapping sensing operations. In con-
trast, our method utilizes a planner with the goal of reducing
the number of imaging and integration operations.

The planning process presented in this paper operates by
reasoning about occlusion, which has been strongly
associated with viewpoint planning in the research literature
for some time. Kutulakos [10] utilizes changes in the
boundary between sensed surface and occlusion with
respect to sensor position to recover shape. In Connolly’s
octree-based work [3], ‘unseen’ space is explicitly
represented and used to plan the next view either by ray-
casting or by analyzing a histogram of the normals of
surfaces of ‘unseen’ space. A similar histogram-based
technique is used by Maver and Bajcsy [13] to find the
viewing vector that will illuminate the most edge features
derived from occluded regions. More closely resembling the
work presented in this paper is that of Whaite and Ferrie [24],
which uses a sensor model to evaluate the efficacy of the
imaging process over a set of discrete orientations by ray-
casting: the sensor orientation that would hypothetically best
improve the model is selected for the next view. Recent work
by Pito and Bajcsy [14] removes the need to ray-cast from
every possible sensor location by determining a subset of
positions that would improve the current model.

3. Model acquisition and merging

The first phase of this system acquires and models range
data, and integrates the resulting model into acomposite
model that represents all known information about the
object or scene. This is done by representing the data with
a mesh surface, which is then extruded in the imaging
direction to form a solid. Each model created by our method
includes information about the space occluded from the
sensor, an important difference from systems that only
model sensed surfaces. Thisocclusion volumeis a key com-
ponent of our sensor planning process because it allows the
system to reason about what has not been properly sensed.
Integration of models from different viewpoints is done via
set intersection, similar to that described in [11] for intensity
images. In this section, we discuss how a range image from
a specific viewpoint is modeled, and how this model is
merged into the composite model in an incremental fashion
that allows new information to be integrated as it is
acquired. We also discuss some of the problems caused by
using set intersection methods in the context of sampled
data.

3.1. Modeling a surface from a range image

The acquisition of range data is performed by a robotic
system similar to many range-scanning configurations: a
Servo-Robot laser rangefinder is attached to an IBM
SCARA robot, with the object to be imaged being placed
on a motorized rotation stage (Fig. 1). The rangefinder
acquires a single scan line of data at a time in a plane
perpendicular to the robot’sz axis. After each scan line
has been acquired, the robot steps the rangefinder a small
distance along itsz axis. The result of the scanning process
is a rectangular range image of the object from a particular
viewpoint, the direction of which is controlled by rotating
the turntable. The points in the range image may then be
used as the vertices in a mesh. However, since the mesh

Fig. 1. Experimental set-up showing robot with attached laser rangefinder
(to right) and turntable (to left).
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determined by a single range image is in essence a surface
model, it does not contain information that permits spatial
addressability (the ability to classify points as inside, on, or
outside the model) which is necessary for many tasks and is
inherent in solid models. Although a mesh that completely
covers an object may be used to determine a solid model, in
most incremental modeling techniques the mesh cannot be
closed until the entire object has been scanned. Thus, meth-
ods that only use the mesh as a surface model require a large
number of overlapping scans, will not work with objects
whose entire surface is not visible to the sensor, and will
preclude the use of a planning method or any other procedure
that requires a solid model during the acquisition process.

A solution to this problem is to build a solid model from
each scanning operation that incorporates both the informa-
tion about the model’s sensed surfaces and the occlusion
information in the form of the occlusion volume. When
building the mesh that will be used to represent a surface
from a range image, it is necessary to determine what the

mesh connectivity will be. In this regard our work differs
from other mesh-based methods such as mesh zippering
[23] and other similar re-meshing techniques [16] which
retain only elements that lie directly on an imaged surface
by removing elements that containocclusion edges. These
edges are discernible in the mesh by their orientation or
because their lengths exceed some threshold (Fig. 2). Our
system retains these elements, since they denote the
boundary between surfaces of the object that are imaged
by the sensor and the space occluded from the sensor and
therefore needs further imaging. (These elements must be
handled with care, because they have the potential to violate
certain assumptions regarding the model construction
process, which we will discuss below.)

As an example of this process, consider the hypothetical
object shown at the top of Fig. 3. A range image is sampled
from the CAD model using the shown sensing direction.
The surface model shown in the middle of Fig. 3 is typical
of mesh-based methods; no occlusion edges are represented,
and although it is possible to attach low ‘confidence’ values
to the edges of the two surfaces it is not possible to deter-
mine occupancy information in the space between them. In
contrast, the mesh shown at the bottom of Fig. 3 represents
both the imaged surfaces of the object and the boundary of
occluded space between the imaged surfaces.

3.2. Sweeping the mesh into a solid

This mesh surfaceM is ‘swept’ to form a solid modelSof
both the imaged object surfaces and the occluded volume.
The algorithm may be stated concisely as:

S¼ ∪
;m

extrude(m), m[ M

An extrusion operator is applied to each triangular mesh
elementm, orthographically along the vector of the range-
finder’s sensing axis, until it comes in contact with a far
bounding plane. The result is the five-sided solid of a
triangular prism (Fig. 4). A union operation is applied to
the set of prisms, which produces a polyhedral solid con-
sisting of three sets of surfaces: a mesh-like surface from the
acquired range data, a number of lateral faces equal to the
number of vertices on the boundary of the mesh derived
from the sweeping operation, and a bounding surface that
caps one end.

It is important to be able to differentiate between these
surfaces during later model analysis and sensor planning. To
do this we attach tags to each surface in the model based on

Fig. 2. Example of edges between sampled vertices on a surface.

Fig. 3. Top: Rendering of CAD model of a typical 2-1/2 D part, shown with
a sensing direction. Middle: Surface mesh from synthetic range data of
CAD part. This mesh does not include any elements that contain occlusion
edges. Bottom: Surface mesh generated from synthetic range data,
including elements composed of occlusion edges.

Fig. 4. Example of a mesh sweep operation. Left to right: Mesh surface,
mesh surface with one element swept, and mesh surface with all elements
swept and unioned. The sensing direction is from the left.
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which of the above sets the surface belongs to. All surface
elements in the model that were present in the mesh before
sweeping and that are composed of edges shorter than a
threshold distance should be tagged as ‘imaged surface’.
These elements describe surfaces of the object that were
imaged properly and do not need to be imaged again. All
the remaining surfaces should be tagged as ‘occluded
surface’ so that they may be used to drive a later planning
process. It should be noted that this tagging procedure must
be done to each model from a single sensor position: large
faces often get split into smaller ones during the merging
process, and will not be differentiable by their edge lengths
alone. After the tagging process the solid may be merged
with models from other sensor positions, or it may first be
used as input to a mesh optimization routine to reduce the
number of elements.

As an example of the sweeping process, consider again
the hypothetical part shown at the top of Fig. 3. Sweeping its
mesh (shown at the bottom of Fig. 3) results in the solid
shown in Fig. 5, its surfaces tagged according to the process
described before.

3.3. Merging single-view models

Each successive sensing operation will result in new
information that must be registered and merged with the

current model being built, called thecomposite model.
Registration in our system is done by calibration of the
rangefinder, robot and turntable, which produced satisfac-
tory results for our purposes. Automated model registration
techniques also exist that may provide a higher degree of
registration accuracy [6]. Merging of mesh-based surface
models has been done using clipping and re-triangulation
methods that also perform some vertex averaging [16,23].
These methods are necessary because the mesh surface
models are not closed, so specialized techniques to operate
on non-manifold surfaces of approximately continuous
vertex density are needed. However, these specialized
methods have robustness and accuracy issues that are
largely unexplored, and will only result in a closed model
when the entire object’s surface has been completely
imaged, an impossibility for many parts. In our method

Fig. 5. Solid formed by sweeping the mesh shown at bottom of Fig. 3 in the
sensing direction. Tags for hidden surfaces are shown with dotted arcs.

Fig. 6. Sensing behavior of a typical range scanner in 2D. Scanned points
are shown as circles, and the sensor’s energy emission is shown as dotted
lines.

Fig. 7. 2-D example of a mesh surface determined directly from the sensed
points (shown as a thin line connecting the sensed points) and the solid
formed by sweeping this mesh (shown as the darkened region).

Fig. 8. Detail of a ‘missed’ object surface leading to the situation in Fig. 7:
A remedy is to move the sensed point along the arrow from its original
position to the new position.
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we generate a solid from each viewpoint which allows us to
use a merging method based on set intersection. Many CAD
systems include highly robust algorithms for set operations
on solids, and our algorithm takes advantage of this. This is
of critical importance in this application for the following
reasons: the high density of the range images (and therefore
the small size of many of the mesh elements), the many long
and thin lateral surfaces, and most importantly the fact that
many of these models will have overlapping surfaces that
are extremely close to each other.

The merging process itself starts by initializing the com-
posite model to be the entire bounded space of our modeling
system. The information determined by a newly acquired
model from a single viewpoint is incorporated into the com-
posite model by performing a regularized set intersection
operation between the two. The intersection operation must
be able to correctly propagate the surface-type tags from
surfaces in the models through to the composite model.
Because a surface element on the boundary of the result
of a volumetric intersection will be present on the boundary
of either one or both of the intersected volumes, there are
two cases to consider. In the case that the surface on the
boundary of the result is found in only one of the two inter-
sected volumes, the surface-type tag may be directly copied
from the original volume to which the surface belonged. In
the case where the two volumes have overlapping surfaces,
we use the following rule to decide what the tag for the
surface on the result volume will be: if the tags for the
two overlapping surfaces are the same, then that tag is
copied to the result surface. If they are different then the
tag ‘imaged surface’ is given priority, since it must be true
that the surface was imaged in one of the two solids.

Reconstruction methods based on mesh surface integra-
tion and averaging, e.g. [16,23], are often thought to be
better than methods based on set intersection because the
averaging helps to produce more accurate results. In our

method, although intersection is used during the merging
phase of the model-building process, during the range
image acquisition, averaging methods may still be used to
improve the quality of the mesh surface. If, after this has
been done, there are still differences in the location of the
same surface seen in different views, they are more likely to
be the effect of incorrect registration rather than sensing
errors. In this case, averaging will produce a model that
may or may not be more accurate, in effect blurring the
features or surfaces in the vicinity of the vertex. Addition-
ally, registration errors may prevent a closed surface from
being formed when using mesh surface integration methods,
in contrast to our method which will produce solid models
even in the presence of significant registration error. Never-
theless, methods that utilize averaging during integration
provide a convenient solution to the artifacts that sometimes
affect set intersection-based methods.

3.4. Interaction of sampling sensors and set intersection
methods

The construction of single-view and composite models as
described above makes two major assumptions. The first is
typical for all systems that perform modeling from
observation:

Assumption:Any object surface that adheres to certain
orientation constraints will be sampled in detail sufficient
for the task.

In reconstruction methods based on mesh surfaces, mesh
elements corresponding to occlusions in the object or scene
are identified by their orientation and are removed, as pre-
viously described. This allows those modeling systems to
assume the converse of the above assumption: that all
(remaining) model surfaces correspond to and properly
capture actual surfaces in the object. However, our method
also constructs surfaces from the boundaries between
imaged and occluded space in the scene: as described
above these are tagged as ‘occluded surface’. These surfaces
clearly do not fall under the above assumption, since they
are not part of the object’s imaged surface, and in fact may
be arbitrarily far from true surfaces in the scene. Moreover,
their behavior violates a second assumption that is a require-
ment for using set intersection as a method of integration,
whether it be by intensity, rangefinding, or other sensing
methods:

Assumption:The space bounded by the solid represent-
ing any single view of the object must be a superset of the
space occupied by the actual imaged object.

Thus, it must never happen that the solid constructed from
a single view does not contain some region or feature that is
present in the actual object. If this happens, due to the
semantics of set intersection, that region or feature will
never be able to be acquired, no matter how many other
single-view models properly represent it.

Unfortunately, this assumption is violated if the scene is
modeled using the points from the range image directly as

Fig. 9. Effect of nonuniformly dilating mesh on swept solid: The vertices of
the (two) occlusion surfaces are moved until they coincide with the rays of
the sensor’s nearest adjacent sensing ray, in the direction shown by the
arrows. The area resulting from the swept surface is shown in grey, and
is clearly a superset of the actual object.
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Fig. 10. Models of hip prosthetic and toy bear in four views. The solid models from four distinct range images are shown, as is the wireframe of the composite
model next to a photograph of the actual object.
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vertices in a mesh surface. This is because the modeled
surface error, i.e. the distance by which the mesh surface
may deviate from the true surface, is related to the distance
between adjacent vertices in the mesh, and thus the
sampling interval, angle, and distance of the surface w.r.t.
the sensor are all related (Fig. 6). As shown in the example
of Fig. 7, a surface constructed from the sensed points may
drastically underestimate the surface of the object, and
therefore the solid formed by the swept surface may not
include some parts of the original object. Again, methods
based on set intersection require that the object is never
underestimated, as once a part of an object is removed
during the intersection process, it may never be recovered.

It is because of this phenomenon that previous model
construction techniques using mesh representations discard
mesh elements that have a large separation between
vertices. However, we propose another solution to this
problem, in which the initial mesh is nonuniformly dilated
so that it correctly represents thelargestobject that could
have produced the point sampling given by the range image.
In order to accomplish this, it is necessary to be able to
identify those elements of the mesh surface that may be
interior to the space occupied by the sensed object. It is
precisely those surfaces that represent the boundary
between imaged and unimaged surface that may contribute
to this problem by ‘missing’ the object surface, and as noted
above these elements have already been identified and

Fig. 11. Model of the video game controller in three views. Solid models from each of three views are shown at top; bottom left is photograph of actual part,
bottom right is wireframe of acquired model.

Fig. 12. Model of propeller blade in two views. Solid models from each
view are shown at top; bottom left is photograph of actual prop, bottom
right is wireframe of acquired model.
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tagged as ‘occluded surface’. Therefore it is possible to
proceed by extending those surfaces so that they are
guaranteed to be ‘outside’ the actual object surface. This
is done by identifying one or more of the element’s vertices
and moving it in the direction of the sensor’s baseline until it
approaches the position where the nearest sample would
have been. Fig. 8 details such a case: the vertex of an
element is moved so that it approaches the next adjacent
sensing ray, and therefore must be ‘outside’ any sensed
object. Because the sensor’s resolution, and therefore the
magnitude of the displacement of the vertex, depends on
the distance from the sensor, it is important to have a sensor
model from which parameters such as beam angle between
adjacent samples may be calculated. An alternative to this
technique, pointed out by one of the anonymous reviewers,
is to insert a new vertex in the mesh at the appropriate point.
This method has the advantage of allowing the new vertex
to be tagged for future identification in the merging or
planning processes. The effect of the nonuniform dilation
process on the 2-D example is shown in Fig. 9, and is shown
for real range data in the following section. It should be
noted that the magnitudes of these displacements are
small ( , 1 mm) for the range images in this paper: they
are not visible with the naked eye in any of the models from
single views, but the effect of this process is readily visible
in the final model as we show below.

3.5. Examples of object modeling without sensor planning

A few examples are shown here to illustrate the described
process. Shown are models constructed from four, three, and
two views taken from equivalent turntable rotations. The
first two examples are of the construction of a prosthetic
hip model and of a toy bear from four range images
(Fig. 10). The solids constructed from each of the four
range images are shown, along with a photograph of the
object and a wire-frame rendering of the final model. The
models have a relatively uniform sampling of their surfaces,

except at the regions where there was overlap between two
or more of the single-view models (and therefore overlap of
the range images as well). In these places, there tends to be a
greater concentration of faces due to the effects of intersect-
ing the surfaces.

In Fig. 11, the model of a hand-held video game control-
ler is modeled in three views. This part consists of polygonal
and curved surfaces at varying levels of detail, including
buttons on its front surface. As a last example, Fig. 12
shows a propeller blade modeled in two views. This
example is particularly interesting because it shows that
this method can model objects that are not acquirable
using methods that rely on mesh overlap: no mesh overlap
of the opposing view of the blade surface is possible caused
by the extremely thin surface there, and hence those

Fig. 13. Bear model detail showing effect of dilation process on model-building. Left: model built using sensed points directly as vertices in mesh from each
view. Right: model built using dilation process on mesh of each range image prior to sweep operation.

Fig. 14. Planning for model consisting of three surfaces A (the target), B,
and C. Top: the model withVunoccludedfor A shown in grey. Middle: the
occlusion due toOC (left) and OB (right). Bottom: the final visibility
volume V determined byVunoccluded ¹ (OB ∪ OC), i.e. with occlusions
taken into account: a point in the grey area has an unobstructed view of
the target A.
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methods that rely on it will fail. This situation will occur
whenever a part has a feature whose width approaches the
sampling interval, a common event with machine parts such
as gears and propellers.

Fig. 13 demonstrates the positive effect of the nonuni-
form dilation process of Section 3.4 on a model, in this
case the previously-shown model of the bear toy. The left
image of Fig. 13 shows the backside of the bear model when

no such process is applied to the mesh, and thus the swept
surface is computed directly from the sensed points. As can
be seen, there are considerable artifacts that not only poorly
represent the actual surface of the object but also generate
undesirable local geometry. In contrast, the right image in
the figure shows the same portion of the model when it was
built using the dilation process. The surfaces here have a
much more uniform appearance, and also more accurately
model the object.

The performance of this model building process on a
Silicon Graphics Onyx II using two processors is as follows.
The mesh construction, dilation and extrusion to a solid
takes approximately 4 min for each 1103 128 rectangular
range image, slightly less for those images where more
background is visible. Merging solids using the set inter-
section operator takes approximately 2 min per model. The
number of surfaces on the resulting models are as follows:
propeller: 17 758, bear: 17 335, hip: 17 228, game
controller: 20 301.

4. The planning process

The model construction process we have described so far
performs no planning of sensor viewpoints; we use equal
turntable rotations between range images. In this section, we
describe how we may dynamically plan the next viewpoint

Fig. 16. The first range image, the solid model constructed by sweeping its mesh surface, and the composite model after one view (left to right). As this is the
first view, the composite model is identical to the model constructed from this range image.

Fig. 17. The second range image, acquired after a rotation of 90 degrees, the solid model derived from the range image, and the composite mode after two views
(left to right). Note that the composite mode now has the overall shape of the object.

Fig. 15. Photograph of strut-like part.
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during the model acquisition process. This planning system
relies on occlusion information, which as we have noted
before is an important scene attribute useful to the planning
process. Occlusion was used previously to assist planning in
one of two ways, both of which assume that occlusions are
explicitly represented in the model. In the first, ray casting is
applied to the model to find how much occluded volume
will be imaged for every sensor position: the sensor position
that images the most occlusions is selected [3,24]. This

requires tessellating a viewing sphere to discretize the
sensing positions and computing a ray-cast image from
each of them, with the disadvantage of high computational
cost and the fact that some solutions will be missed. The
second method collects a histogram of normals of the sur-
faces that comprise the occlusions, scaled by surface area
[3,13]. The peak in the histogram denotes the normal of the
most area of occluded surface, and an anti-parallel vector is
then selected for the sensing direction. This technique is not
sufficient because it does not take into account known self-
occlusion of the model’s surfaces, and therefore may result
in a sensor position that acquires no new information. What
is desired is a method that takes known self-occlusions into
account, and yet does not need to discretize the sensing
positions and compute an image for each of them. In the
experiments that follow we show that by selecting a specific
target to be imaged, and from this target and the associated
model planning the appropriate sensing direction, that the
previous problems are avoided.

4.1. Planning for unoccluded viewpoints

The planning component presented here is based on pre-
vious work on the sensor planning problem in our laboratory
[1,21]. The sensor planning problem is that of computing a
set of sensor locations for viewing a target given a model of
an object or scene, a sensor model, and a set of sensing
constraints [22]. The planner used in this work is able to
reason about occlusion to compute valid, occlusion-free
viewpoints given a specific surface on the model. Once an
unoccluded sensor position for the specified surface was
determined, it may then be sensed, modeled, and integrated
with the composite model. Thus, the method presented here
is target-driven and performed in continuous space. As the
incremental modeling process proceeds, regions that require
additional sensing can be guaranteed of having an
occlusion-free view from the sensor, if one exists. Other
viewing constraints may also be included in the sensor
planning such as sensor field of view, resolution, and
standoff distance, as will be shown below.

The planning process relies on the construction of a
visibility volume Vtarget for the target that specifies the set

Fig. 18. Occlusion computation for a target on the composite model: The
entire green and red volume representsVunoccluded for a target from the
composite model’s ‘occlusion surface’. The red space is∪ Oi, the union
of sensor positions occluded from the target by model surfacei. The green
space is the visibility volumeVtarget ¼ Vunoccluded¹ ∪ Oi, i.e. the valid
positions for a sensor viewing the target.

Fig. 19. The third range image (acquired by use of the plan above), its solid representation, and the composite model after three views. The composite model is
now very similar to the object, but there are still some occlusion surfaces between the strut’s arms.
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of all sensor positions that have an unoccluded view of the
target for a specified model. This can computed by deter-
mining Vunoccluded, the visibility volume for the case where
there are no occlusions, and subtractingOi, the volume
containing the set of sensor positions occluded from the
target by model surfacei, for each surface of the model:

Vtarget¼ Vunoccluded¹ ∪ Oi

The volume described byVunoccludedis a half-space whose
defining plane is coincident with the target’s face, with the

half-space’s interior being in the direction of the target’s
surface normal.Oi, the set of sensor positions whose
visibility of the target is occluded by model surfacei, is
similar in concept and construction to the occlusion volume
discussed earlier, and is generated via a geometric algorithm
based on space decomposition that determines the space that
the element blocks from viewing the entire target [20]. We
illustrate by computingVtarget for a 2-D target in Fig. 14, in
which we have also incorporated a resolution constraint so
that the sensor must be within a fixed distance from the
target’s center, and thus in 2-D,Vunoccludedis a half-circle.
Once the visibility volume is computed, viewing parameters
that are specific to the real sensor are included to further
constrain the visibility volume. Finally, a transform is
applied to bring the sensor into the visibility volume for
the target, and the model acquisition process repeats.

4.2. Example of the planning process

The capabilities of this planning process are demon-
strated by building a model from distinct views of the object
shown in Fig. 15, which is a strut-like part. The planning for
the sensor orientation is done by the algorithm above during
the acquisition process, with the goal of determining a small
number of views that will accurately reconstruct the object.
This part has both curved and polygonal surfaces, and
includes holes that are very difficult to image. The first
two images are acquired without using sensor planning:
the first image is taken from an arbitrary position, while
the second image is acquired after a turntable rotation of
90 degrees. These two range images, the models acquired
from them, and their respective composite model are shown
in Figs 16 and 17. The current composite model is shown in
the third column of these rows; the shape of the part is
already quite evident in the composite model of the second
row. A target is designated on this composite model by user
interaction from one of the surfaces tagged ‘occluded sur-
face’, and the planning algorithm constructs the plan shown
in Fig. 18. This plan is executed by rotating the turntable to
place the sensor within the green visibility volume, in this
case an additional 83 degrees, which produces the image and
model shown in Fig. 19. Again, a target is designated and a
plan produced, which is shown in Fig. 20. The turntable is

Fig. 20. Result of sensor planning for a target specified on the ‘occlusion
surface’ of the composite model in Fig. 19. Again, red volume specifies
points that are occluded from seeing the target, green volume describes the
valid sensor positions.

Fig. 21. Fourth range image of object acquired according to plan in Fig. 20, its solid, and the composite model after integration.
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rotated 134 degrees to move the sensor into this visibility
volume, and the image and model from Fig. 21 result. This
final model is shown rendered and as a mesh in Fig. 22. As
was present in the earlier models, there are ‘boundaries’ where
the intersection of the solids from two overlapping sensing
operations causes an increase in the density of mesh
elements. As this is an incremental method, additional
scans may be also taken to improve the quality of the model.

In the previous case, a plan was generated by considering
a single target surface. Although this method will work, it is
only local in its scope and does not take global visibility of
all possible targets into account. A more sophisticated
method would be to plan using multiple targets, and select
the sensor position that images the most area. Although in
many sensing scenarios this is unnecessary, we show here
how multiple targets may be used to plan. In this example,
the composite model of the strut after two views is shown in
Fig. 23. This model was decimated using a modified version
of the Simplification Envelopes method [2], in which the

boundary between surfaces labelled ‘imaged surface’ and
those labelled ‘occluded surface’ is retained. After this
decimation, the 30 occluded surfaces with the largest area
are selected as targets and plans are generated for each of
them. These plans (shown at the top left of Fig. 23) are then
intersected with the sensor’s reachable space, in this case a
cylinder (shown in the top right of Fig. 23). Overlapping
plans appear as darker regions and represent sets of
positions in sensor space where more than one target is
visible. These regions may then be searched for the position
that images the most target area.

5. Conclusions

We have described a system that builds a 3-D CAD model
of an unknown object incrementally from multiple range
images. The method is based on an algorithm that constructs
a solid model from a mesh surface, and allows identification
of the occluded and imaged surfaces, by using modeling
techniques from both mesh surface and solid representa-
tions. By combining these two we retain the benefits of
mesh surfaces, such as representational flexibility and con-
ceptual simplicity, while still allowing the use of well-
defined set theoretic merging operations inherent to solid
modelers. Benefits including guaranteed water-tight models
and the ability to acquire both very thin objects and features
such as through-holes are realized using this method. In
addition, we presented a planning method that relies on
the specification of targets on the incomplete model of the

Fig. 22. Final model, shown rendered (left) and as a mesh surface (right).
Note the through-hole acquired in the rendered model.

Fig. 23. Planning using multiple targets. Top left: Model after two views with plans for the 30 largest occlusion surfaces. Top right: Model with intersections of
plans and sensor’s reachable space (a cylinder). Bottom: Intersections unwrapped from cylinder onto plane to clearly show overlaps.
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object to drive the planning process. This permits a static
sensor planner to be used to compute occlusion-free view-
points of the target and thereby allow each sensing operation
to improve the accuracy of the model. The advantages of
this technique are that, unlike prior methods, it both avoids
discretization of sensor positions and is able to take object
or scene self-occlusions into account, with the potential for
more accurate sensor positioning.
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