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Abstract
We are building a system that can automatically acquire

3D range scans and 2D images to build geometrically and
photometrically correct 3D models of urban environments.
A major bottleneck in the process is the automated registra-
tion of a large number of geometrically complex 3D range
scans in a common frame of reference. In this paper we
provide a novel method for the accurate and efficient reg-
istration of a large number of complex range scans. The
method utilizes range segmentation and feature extraction
algorithms. Our algorithm automatically computes pairwise
registrations between individual scans, builds a topological
graph, and places the scans in the same frame of reference.
We present results for building large scale 3D models of his-
toric sites and urban structures.

1 Introduction
The recovery and representation of 3D geometric and

photometric information of the real world is one of the most
challenging and well studied problems in Computer Vision
and Robotics research. There is a clear need for highly real-
istic geometric models of the world for applications related
to Virtual Reality, Tele-presence, Digital Cinematography,
Digital Archeology, Journalism, and Urban Planning. Re-
cently, there has been a large interest in reconstructing mod-
els of outdoor urban environments. The areas of interest in-
clude geometric and photorealistic reconstruction of individ-
ual buildings or large urban areas using a variety of acquisi-
tion methods and interpretation techniques, such as ground-
base laser sensing, air-borne laser sensing, ground and air-
borne image sensing.

A typical 3D modeling system involves the phases of
1) Individual range image acquisition from different view-
points, 2) Registration of all images into a common frame
of reference, 3) Transformation of each range image into an
intermediate surface-based or volumetric-based representa-
tion, and 4) Merging of all range images into a common rep-
resentation. Typical 3D modeling systems include the work
by Allen [12], Levoy [3], the VIT group [16], and Bernardini
[1]. In this paper we are presenting a novel range registra-
tion algorithm between N pairs of range images (second task
of a 3D modeling system) that is automated, it does not as-
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sume any a-priori knowledge regarding the position of the
sensors, it does not assume that the views are spatially close
with respect to each other, and is suitable for large scale data
sets. Our algorithm produces accurate results and is compu-
tationally efficient, as shown in the last section of this paper.
The algorithm is integrated in a larger system that generates
photorealistic geometrically correct 3D models [14].

Registering two range images when two sets of corre-
sponding 3D points have been identified can be done using
a quaternion-based non-linear optimization method as de-
scribed in [6]. The automation of the process of establish-
ing point correspondences was presented in [2]. This is the
widely used Iterative Closest Point (ICP) algorithm, where
the rigid transformation between two views is iteratively
refined, while larger sets of corresponding points between
views can be extracted after each refinement step. Variants of
this method include the work by Turk [15] and Rusinkiewicz
[13]. All ICP-type methods require the meshes to be spa-
tially close with respect to each other in order for an initial
set of closest point correspondence to be established. Global
ICP-type methods that compute registrations between all ac-
quired scans include the work of Pulli [11] and Nishino [10].
We can utilize those methods as a post-processing step af-
ter the execution of our algorithm, since we do not constrain
the scans to be spatially close. Hebert [7] introduced the
idea of spin-images, where the initial list of corresponding
points is extracted by using a pose-invariant representation
for the range images. Integration of both range and inten-
sity information in the 3D registration process is described
in [17, 8]. Finally, Lucchese [9] proposes a method based on
3D Fourier transform for the registration of 3D solids (tex-
ture information is also used).

Our method starts with a segmentation algorithm that ex-
tracts planar and linear features from the raw range scans
(section 2). The reduction of the geometric complexity due
to segmentation makes our method suitable for large scale
registration problems [14]. Our novel pairwise registration
algorithm is applied in order to register overlapping scans
(section 3). The pairwise registration algorithm is exploring
the joined feature-space of the two scans for pairs of features
that generate a robust match, and the optimal such match is
kept. Finally, the pairwise registrations generate a graph; the
nodes are the individual scans and the edges are the trans-
formations between the scans. A graph algorithm is used in
order to compute the transformation between every scan in



this graph and a scan which is called the pivot (section 4).
Results of applying the algorithm for the reconstruction of a
historic building and of an urban structure are presented in
section 5.

2 Feature Extraction
The individual range-images which the range-sensor pro-

vides are the result of dense sampling of visible surfaces in
large urban scenes. Using a Cyrax laser scanner [4], we get
1K by 1K range samples (∼ one million range samples) with
a spatial resolution of a few centimeters. Our previously de-
veloped range segmentation algorithm [14] automatically ex-
tracts planar regions and linear features at the areas of inter-
section of neighboring planar structures. Thus, a 3D range
scan is converted to a set of bounded planes and a set of fi-
nite lines (see Fig. 6 for an example). In this paper we extend
our initial line extraction algorithm, by extracting linear fea-
tures at the internal and external boundaries of the recovered
planar surfaces.

After the segmentation and line extraction step, the fol-
lowing elements are very accurately generated from the point
clouds: planar regions P, outer and inner borders of those
planar regions Bout and Bin, and outer and inner 3D bor-
der lines Lin and Lout (defining the borders of the planar
regions). Border lines are represented by their two end-
points (pstart,pend), and by the plane Π on which they
lie. That is, each border line has an associated line di-
rection, and an associated supporting plane Π (Fig. 2). In
more detail, we represent each border line as a 5-tuple
(pstart,pend,pid,n,psize), where pid is a unique identi-
fier of the line’s supporting plane Π, n is the normal of Π,
and psize is the size of Π. We estimate the size of the planes
by using the number of range points on the plane, the com-
puted distance of the plane from the origin of the coordinate
system and the normal of the plane. The additional infor-
mation associated with each line greatly helps the automated
registration algorithm described in the following section.

3 Pairwise Registration
In this section we describe the automated registration be-

tween a pair of overlapping range scans S1 and S2. We
are solving for the rotation matrix R and translation vector
T = [Tx, Ty, Tz]T that place the two scans in the same coor-
dinate system 1. The features extracted by the segmentation
algorithm are automatically matched and verified in order to
compute the best rigid transformation between the two scans.
The input to the algorithm is a set of border lines with asso-
ciated planes (see section 2). The flowchart of the algorithm
is shown in Fig. 1, and it is explained in more detail below.

Generally, a solution to the problem is possible if two
pairs of matched lines are found between the two scans S1

and S2. Only the orientation and position of the lines is
used due to the fact the endpoints can never be exactly local-
ized (this is an inherent problem of all line detectors). Using

1If a point p is expressed in the coordinate system of scan S1, then p′ =
Rp + T is the same point expressed in the coordinate system of scan S2.
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Figure 1: Flowchart of the automated registration between a
pair of overlapping scans.
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Figure 2: Two matched infinite lines (l, r) provide an exact so-
lution for the rotation R between the two coordinate systems.
In general, one pair of lines is not enough for the rotation com-
putation. We, however, take advantage of the fact that each
line has an associated plane normal on which it lies. Also, by
utilizing the actual endpoints of the lines we can compute an
estimated translation Test.

these two matched pairs, a closed-form formula [5] provides
the desired transformation (R,T). That means that a blind
hypothesis-and-test approach would have to consider all pos-

sible ( N
2

) × ( M
2

) = O(M2N2) pairs of lines, where N

and M are the number of lines from scans S1 and S2 respec-
tively. Such an approach is impractical due to the size of the
search space to be explored. For each pair of lines we would
need to compute the transformation (R,T) and then verify
the transformation by transforming all lines from scan S1 to
the coordinate system of scan S2. The verification step is an
expensive O(MN) operation. In order to avoid the combi-
natorial explosion caused by the blind exhaustive search we
designed an algorithm that efficiently searches for a robust
pair of line matches. For each 3D line the additional infor-
mation of the supporting planes (section 2) on which it lies
facilitates the search. Also, the length of the lines, and the
size of the planes is used in order to discard invalid pairs at
a preprocessing step, and in order to verify the quality of the
match at later steps.



The rotational component of the transformation between
the two views can be computed using the orientations oi

l and
oi
r of the matched 3-D lines (li, ri)[5]. This is done via the

minimization of the error function Err(N) =
N∑

i=1

||oi
r −

Roi
l||2 where R is the unknown rotational matrix. The min-

imization of the above function has a closed-form solution
when the rotation is expressed as a quaternion. The mini-
mum number of correspondences for the computation of the
rotation is two, i. e. N = 2. In our case only one pair of
lines (l, r) from the left and right scan can produce a unique
estimation for the rotation R, due to the utilization of the
normals (nl,nr) of the two supporting planes (Fig. 2). Also,
by using the endpoints of the lines we can produce an esti-
mate Test of the translational vector2 as the vector that con-
nects the mid-points of the two lines. It can be proved that
this is the best approximation of the translation if we assume
uniform errors in the locations of the endpoints of the lines.
Two pairs of lines (l1, r1) and (l2, r2) on the other hand,
determine uniquely not only the rotational but also the trans-
lational part of the transformation (R,T), provided that such
a transformation exists.

3.1 Algorithm
In more detail the algorithm works as follows (flowchart

in Fig. 1). Let us call scan S1, the left scan, and scan S2

the right scan. Each left line l is represented by the 5-tuple
(pstart,pend,pid,n,psize), and each right line r by the 5-
tuple (p′

start,p
′
end,p′

id,n′,p′
size) (section 2). The central

idea is the selection of a robust pair of lines in STAGE 1
(computation of (R,Test)) and of a second pair of lines
in STAGE 2 (computation of (R,T)) in order to evaluate
the computed transformation in STAGE 3 and to refine it in
STAGE 4. The efficiency of the algorithm lies on the fact that
a small number of pairs survive to STAGE 3. The necessary
steps follow:

• Filter out, at a preprocessing step, pairs whose ratios
of lengths and plane sizes psize,p′

size is smaller than
a threshold. The overlapping parts of the two scans are
not acquired identically by the scanner, due to occlusion
and noise. The data though was accurate enough for the
extracted matching lines to have similar lengths and po-
sitions and for the matching planes similar sizes. After
some experimentation we were able to find thresholds
that worked on all pairs of scans, giving results of sim-
ilar quality.

• Consider all remaining pairs of left and right lines (l, r)
in lexicographical order. Initialize the current maxi-
mum number of line matches to Nmax = 0 and the
best transformation so far (Rbest,Tbest) to identity.

• STAGE 1: Get the next pair of lines (l1, r1). Compute
the rotation matrix R, and an estimation of the trans-

2This is not an exact solution since the endpoints of 3D lines can not be
exactly localized.

lation Test assuming the match (l1, r1). A-priori in-
formation regarding the rotation R can be applied here
in order to reject the match. Let Mplanes be the set of
pairs of matched planes. Make Mplanes = ∅.

• Apply the computed rotation R to all pairs (l, r) with
l > l1 (note that the pairs are visited in lexicographic
order). Reject all line pairs whose directions and asso-
ciated plane normals do not match after the rotation, by
using a fixed threshold angle thresh. If the number
of remaining pairs (after the rejection) is less than the
current maximum number of matches, go to STAGE 1.
Otherwise accept the match between lines (l1, r1) and
of their associated planes. Update the set Mplanes by
including the two associated planes.

• STAGE 2: Get the next pair (l2, r2) from the remain-
ing pairs of lines (a number of pairs were rejected in the
previous step). Reject the match if it is not compatible
with the estimated translation Test, using fixed thresh-
olds dist thresh and endpts thresh, and go back to
STAGE 2. Otherwise, compute an exact translation T
from the two pairs (l1, r1) and (l2, r2). Verify that the
two line pairs are in correspondence, using fixed thresh-
olds dist thresh and endpts thresh, after the trans-
lation T is applied, and accept (l2, r2) as the second
match. Update the set Mplanes by including the planes
of (l2, r2).

• STAGE 3: Grade the computed transformation (R,T),
by transforming all left lines to the coordinate system
of the right scan, and by counting the number of valid
pairs that are in correspondence, using fixed thresholds
dist thresh and endpts thresh. Each time a corre-
spondence (l, r) is found, update the set Mplanes by in-
cluding the two associated planes. If the current number
of line matches is greater than Nmax, update Nmax and
(Rbest,Tbest). Go to STAGE 2 if there are more pairs
to consider, or to STAGE 1 if no more stage 2 pairs can
be considered.

• STAGE 4: In this stage we transform all S1 lines to the
coordinate system of scan S2 using (Rbest,Tbest). We
can thus find all possible pairs of line matches between
S1 and S2, and recompute (Rbest,Tbest) based on all
these matches (a weighted least-squares algorithm is
used [5, 14]). The thresholds used for matching lines
are discussed in the next section. Now, we reiterate
STAGE 4 using refined thresholds for a fixed number
of times (see next section) in order to refine the trans-
formation (Rbest,Tbest).

The pairwise registration algorithm efficiently computes the
best rigid transformation (R, T ) between a pair of overlap-
ping scans S1 and S2. This transformation has an associated
grade g(R, T ) that equals the total number of line matches
after the transformation is applied. Note that the grade is



small if there is no overlap between the scans. In this case
the grade is the result of spurious matches. The efficiency of
the algorithm stems from the fact that a large number of line
pairs is rejected before STAGE 3 is reached. Evaluation of
the performance of the algorithm is shown in section 5.

3.2 Algorithmic Details & Thresholds
Each time a pair of lines (l, r) is matched in STAGE 1,

STAGE 2, and STAGE 3 the associated planes are matched as
well. A list of matched planes Mplanes is maintained. The
efficiency of the algorithm is increased by never allowing
line matches if there is an inconsistency with the matching
of their planes in previous stages 3.

A number of thresholds (for actual values see section 5)
has to be used in order to decide if two lines or planes can
be potential matches: (1) max pl ratio and max ln ratio:
maximum ratio between the sizes of two matched planes and
lines, (2) dist thresh: the maximum perpendicular distance
allowed between two matched lines l and r after the transfor-
mation (R,T) is applied, (3) endpts thresh: the maximum
distance allowed between the endpoints of two matched lines
l and r after the transformation (R,T) is applied, and (4)
angle thresh: the maximum angle between matched lines
after the rotation R transformation has been applied. Thresh-
olds (1) are used in the preprocessing stage, and thresholds
(2) and (3) for the verification of the translation (STAGES 2,
3, and 4). Finally threshold (4) is used for the verification of
the rotation (STAGES 1, 2, 3, and 4).

The selection of correct thresholds is an important is-
sue. We attack this problem by allowing large fixed thresh-
olds on the first three stages of the algorithm (STAGE 1 to
STAGE 3). That means that the search for the best trans-
form (Rbest,Tbest) becomes less vulnerable to the quality
of the extracted lines sets. As a result, the experiments per-
formed on the campus building and on the Cathedral used the
same set of thresholds for all pairwise registered scans be-
longing to the same building. In STAGE 4 of the algorithm,
where the best transformation is being refined, we adapt the
angle thresh to each pair of matches, we iteratively reduce
the angle and distance thresholds by a constant factor c for
a fixed number of steps, and we introduce weights for each
pair of matches (see next paragraph).

Our experiments have shown us that there is a predictable
bias in the computation of the orientation of the 3D lines
depending on the orientation of the planes where the lines
lie. The bigger the angle αi between the plane Πi and the
scanning direction, the more probable is that the lines that
lie on plane Πi are biased (see Fig. 3). That means that
these lines will bias the rotation estimation. Therefore, for
every pair of lines checked for matching we adapt the an-
gle threshold to be proportional to cos(αi) ∗ cos(αj), where
angles αi and αj correspond to planes on which the two

3A line l with corresponding plane Πi can not be matched with a line r
and corresponding plane Πj if the plane Πi has been previously matched
with a plane Πk and plane Πj has been previously matched with a plane
Πw , with k �= w.

Figure 3: Bias in line estimation. See the skewed orientation of
the white lines (they belong to a slanted plane with respect the
scanning direction) and the vertical orientation of the blue lines
(they belong to a plane almost perpendicular to the viewing di-
rection).

matched lines lie. Also, as we mentioned before, the angle
and distance thresholds are reduced at every iterative step
of STAGE 4 by a constant factor c. So, the angle thresh-
olds used for matching line pairs are adapted to each indi-
vidual pair according to the formula angle thresh(n) =
angle thresh(0) ∗ cn ∗ cos(αi) ∗ cos(αj), where n is the
refinement iteration in STAGE 4 and c is a constant fac-
tor lying in the interval (0, 1). The distance thresholds are
just reduced and are not adapted to each individual pair:
dist thresh(n) = dist thresh(0) ∗ cn. Finally in the ro-
tation computation, we adapt the weight of matched lines to
W lines(i, j) = K∗cos(αi)∗cos(αj)∗(lengthi+lengthj),
where K is a constant, in order to reduce the effect of
the bias. We consider the weight of the plane normals
of matched planes (Πi,Πj) (planes are not biased) to be
W plane(i, j) = L ∗ (sizei + sizej), where L is a con-
stant. These heuristic optimizations increase the quality of
the output transformations by almost an order of magnitude
(from cm to mm accuracy).

4 Global Registration between Pairs of Scans
In a typical scanning session tens or hundreds of range

scans need to be registered. Our efficient pairwise registra-
tion algorithm (section 3) is executed for pairs of overlapping
scans. In our system, the user is providing a list of overlap-
ping pairs4. After all pairwise transformations from the list
of overlapping pairs are computed one of the scans is cho-
sen to be the anchor scan Sa. Finally, all other scans S are
registered with respect to the anchor Sa. In the final step,
we have the ability to reject paths of pairwise transformation
that contain registrations of lower confidence.

In more detail, the rigid transformations (Ri,Ti) and
their associated grades g(Ri, Ti) are computed between each
pair of overlapping scans. In this manner a weighted undi-
rected graph is constructed (see Fig. 4 for an example). The
nodes of the graph are the individual scans, and the edges
are the transformations between scans. Finally the grades

4The list does not have to be a complete enumeration of all possible
overlaps.



g(Ri, Ti) are the weights associated with each edge (Fig. 4).
More than one path of pairwise transformations can exist
between a scan S and the anchor Sa. Our system uses a
Dijkstra-type algorithm in order to compute the most robust
transformation path from S to Sa. Let p1 and p2 be two dif-
ferent paths from S to Sa. We call p1 to be more robust than
p2, if the cheapest edge on p1 has a larger weight than the
cheapest edge of p2. This is the case because the cheapest
edge on the path corresponds to the pairwise transformation
of lowest confidence (the smaller the weight the smaller the
overlap between scans). In this manner, our algorithm uti-
lizes all possible paths of pairwise registrations between S
and Sa in order to find the path of maximum confidence.
This strategy can reject weak overlaps between scans that
could affect the quality of global registration between scans.
Note that our method is not a global optimization technique
that solves the correspondence problem for all scans simul-
taneously.

5 Results and Conclusions
The algorithm was tested on real data gathered from the

famous Gothic Cathedral of Ste. Piérre in Beauvais (twenty-
seven scans used, each consisting of one million 3D points)
and from the Thomas Hunter building in our campus (ten
scans used, each consisting of one million 3D points). The
scans were gathered by a Cyrax 2500 laser range-scanner
[4]. The accuracy of a point is 6mm along the laser-beam di-
rection at a distance of 50m from the scanner. Each scan
was first segmented (see section 2) and major planes and
lines were extracted from it. The pairwise registration al-
gorithm was executed (section 3) on pairs of overlapping
scans. The final step is the global registration algorithm (sec-
tion 4). A segmentation and pairwise registration between
line-sets is shown in Figs. 5f and 6. The thresholds used
(section 3.2) for all pairs of the Cathedral (campus) data set
are: max pl ratio = 2.0 (3.0), max ln ratio = 2.0 (2.0),
dist thresh = 40cm (40cm), endpts thresh = 40cm
(60cm), angle thresh = 10o(10o). Note the large dis-
tance and endpoints thresholds. As was described in section
3.2 those thresholds are iteratively and adaptively refined in
STAGE 4 of the algorithm.

Results from the Cathedral and campus experiments are
shown in Fig. 5. Note the registration accuracy. Table 1 pro-
vides an extensive evaluation of the efficiency and accuracy
of our algorithm. The efficiency of the algorithm is demon-
strated by the percentage of line pairs that survive after pre-
processing, and reach STAGE 2, and STAGE 3 of the algo-
rithm. Very few lines need to be considered at the expensive
STAGE 3. The running times range from 3 to 52 seconds
(2GHz Intel machine) per pair, depending on the input size
and on the amount of overlap. The measured pairwise regis-
tration error is also shown. This error is the average distance
between matched planes lying on the surface of the scans.
The error ranges from 1.36mm to 14.96mm for the Campus
data set and from 5.34mm to 56.08mm for the Cathedral.
The average error over all ten scans of the Campus data set is

7.4mm and over all twenty-seven scans of the Cathedral data
set 17.3mm. Note that the errors are small if we consider the
spatial extent of the 3D data sets. The larger errors in the
Cathedral data set are due to the lower spatial resolution of
the scans (larger distance between scan lines). We believe
that this is an excellent initial alignment between scans. The
accuracy of our method can be further increased by using a
point-based global ICP algorithm like [10].

We have described a fully automated method for the regis-
tration of large number of geometrically complex range data
sets. Our algorithm is based on a segmentation and feature
extraction step that reduces the geometric complexity and
produces features that are used for registration purposes. Our
pairwise registration algorithm does not require the scans to
be spatially close with respect to each other. It is based on
rejection of large number of line-pairs before an expensive
verification step. Finally, a graph algorithm is utilized in or-
der to register each individual scan with a central pivot scan.
Scene symmetry is a problem that may lead our algorithm to
produce inaccurate results. In this case the incorporation of
a-priori constraints is needed. Also, our pairwise registration
is not a symmetric operation. Finally, our metric, the abso-
lute number of matched features, while commonly used in
object recognition literature, could be replaced by the actual
registration error in mm. Our method can be very efficiently
applied to geometrically complex scans of large scale urban
scenes. Due to its efficiency it can produce the desired result
in a matter of minutes on a regular Intel workstation.
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Figure 4: Graph of the twenty-seven registered scans of the
Cathedral data set. The nodes correspond to the individual
range scans. The edges show pairwise registrations. The
weights on the edges show the number of matched lines that the
pairwise registration algorithm provides. The directed edges
show the paths from each scan to the pivot scan that is used as
an anchor.
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