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Segmentation Through Variable-O rder Surface F itting 
PAUL J. BESL, MEMBER, IEEE, AND RAMESH c. JAIN, SENIOR MEMBER, IEEE 

Abstract-Computer vision systems attempt to recover useful infor- 
mation about the three-dimensional world from huge image arrays of 
sensed values. Since direct interpretation of large amounts of raw data 
by computer is difficult, it is often convenient to partition (segment) 
image arrays into low-level entities (groups of pixels with similar prop- 
erties) that can be compared to higher-level entities derived from rep- 
resentations of world knowledge. Solving the segmentation problem 
requires a mechanism for partitioning the image array into low-level 
entities based on a model of the underlying image structure. Using a 
piecewise-smooth surface model for image data that possesses surface 
coherence properties, we have developed an algorithm that simulta- 
neously segments a large class of images into regions of arbitrary shape 
and approximates image data with bivariate functions so that it is pos- 
sible to compute a complete, noiseless image reconstruction based on 
the extracted functions and regions. Surface curvature sign labeling 
provides an initial coarse image segmentation, which is refined by an 
iterative region growing method based on variable-order surface fit- 
ting. Experimental results show the algorithm’s performance on six 
range images and three intensity images. 

Index Terms--Image segmentation, range images, surface fitting. 

I. INTR~DUCTI~N 

C OMPUTER vision systems attempt to recover useful 
information about the three-dimensional (3-D) world 

from huge image arrays of sensed values. Since direct 
interpretation of large amounts of raw data by computer 
is difficult, it is often convenient to partition (segment) 
image arrays into low-level entities (groups of pixels with 
particular properties) that can be compared to higher-level 
entities derived from representations of world knowledge. 
Solving the segmentation problem requires a mechanism 
for partitioning the image array into useful entities based 
on a model of the underlying image structure. 

In most easily interpretable images, almost all pixel 
values are statistically and geometrically correlated with 
neighboring pixel values. This pixel-to-pixel correlation, 
or spatial coherence, in images arises from the spatial co- 
herence of the physical surfaces being imaged. In range 
images, where each sensed value measures the distance 
to physical surfaces from a known reference surface, the 
pixel values collectively exhibit the same spatial coher- 
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ence properties as the actual physical surfaces they rep- 
resent. This has motivated us to explore the possibilities 
of a surface-based image segmentation algorithm that uses 
the spatial coherence (surface coherence) of the data to 
organize pixels into meaningful groups for later visual 
processes. 

Many computer vision algorithms are based on inflex- 
ible, unnecessari ly restricting assumptions about the world 
and the underlying structure of the sensed image data. The 
following assumptions are common: 1) all physical ob- 
jects of interest are polyhedral, quadric, swept (as in gen- 
eralized cylinders), convex, or combinations thereof; 2) 
all physical surfaces are planar, quadric, swept, or con- 
vex; 3) all image regions are rectangular or regularly 
shaped and are approximately constant in brightness; and 
4) all image edges are linear or circular. The extensive 
research based on these assumptions solves many impor- 
tant application problems, but these assumptions are very 
limiting when analyzing scenes containing real-world ob- 
jects with free-form, sculptured surfaces. Therefore, we 
have developed an image segmentation algorithm based 
only on the assumption that the image data exhibits SUT- 
face coherence in the sense that the image data may be 
interpreted as noisy samples of a piecewise-smooth sur- 
face function. A preliminary grouping of pixels is based 
on the sign of mean and Gaussian surface curvature. This 
initial, coarse segmentation is refined by an iterative re- 
gion growing procedure based on variable-order bivariate 
surface fitting. The order of the surface shape hypotheses 
is automatically controlled byjtting surfaces to the image 
data and testing the sur-ucejts by 1) checking the spatial 
distribution of the signs of residual fitting errors (the re- 
gions test) and 2) comparing the mean square residual er- 
ror of the fit to a threshold proportional to an estimate of 
the image noise variance. In this iterative process, images 
are not only segmented into regions of arbitrary shape, 
but the image data in those regions is also approximated 
with flexible bivariate functions such that it is possible to 
compute a complete, noiseless image reconstruction based 
on the extracted functions and regions. We believe that 
an explicit image description based on flexibly shaped ap- 
proximating functions defined over arbitrary connected 
image regions can be useful in many computer vision ap- 
plications, but will be critically important to object recon- 
struction and object recognition algorithms based on range 
imaging sensors when object volumes are bounded by 
free-form, smooth surfaces. 

Although this segmentation algorithm may be most use- 
ful for range images, it is capable of segmenting any type 
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of image that can be adequately represented as a noisy, 
sampled version of a piecewise-smooth graph surface. 
Therefore, we first include a brief discussion of the rela- 
tionship between general computer vision and range im- 
age understanding. Since other segmentation methods in 
the literature involve several ideas closely related to those 
presented here, we also include a brief discussion of pre- 
vious work in intensity image segmentation, followed by 
a survey of more recent work in range image analysis, in 
order to clarify the differences of the surface-based seg- 
mentation algorithm. Mathematical preliminaries are then 
presented to precisely define the problem we are attempt- 
ing to solve, followed by a qualitative description of a 
method for general smooth surface decomposition. Sev- 
eral key ideas behind the algorithm philosophy are de- 
scribed next. Then the entire algorithm is outlined to in- 
troduce the role of the individual algorithm elements, 
followed by a detailed explanation of each element. Ex- 
perimental results show the algorithm’s excellent perfor- 
mance on a variety of six range and three intensity images 
from a database of successful test results on over forty 
images. We conclude with comments on future improve- 
ments and applications to other types of multidimensional 
image data. 

A. Vision and Range 
Most past computer vision research has been concerned 

with extracting useful information from one or more in- 
tensity images of a scene. The desired “useful” infor- 
mation has often been depth or range information. Indeed, 
the dominant images-to-surfaces vision paradigm [73], 
[44] dictates that various visual cues can be used to infer 
the distance of many scene points from sensed light in- 
tensity values as the human visual system does. Several 
methods for obtaining range (shape) from intensity im- 
ages based on various visual cues are summarized below. 

When the sampled values in an image array represent 
light intensity at each point, knowledge of the intensity 
image formation process and an appropriate set of con- 
straints can be used to recover the shape of the physical 
3-D surfaces represented by the data. Vision researchers 
have developed many techniques (see survey [ 1 S]) for ob- 
taining 2.5-D descriptions (registered range images) of 
intensity images that indicate the sensor-to-physical-sur- 
face distance at many points in a scene: shape from shad- 
ing [58], shape from texture [103], shape from contour 
[66], shape from binocular stereo [43], shape from pho- 
tometric stereo [ 1051, [25], shape from motion [ 1011, 
[63], shape from shadows [67]. 

The above are predominantly passive approaches for 
obtaining range information in the sense that energy is not 
projected into the environment. Many active approaches 
for obtaining range images have also been developed (641 
including amplitude-modulated laser radar [ 1081; fre- 
quency-modulated laser radar [7]; time-of-flight laser ra- 
dar [71]; structured light with lines [93], grids [46], and 
coded binary patterns [61]; intensity ratio [21]; moire in- 
terferometry [86]; and focussing methods [68]. But once 

a range image has been acquired for a given scene by any 
of the above methods, the extraction of useful information 
still requires processing a huge array of values where each 
value represents the distance to a physical surface from a 
known reference surface. Hence, the ability to obtain 
range at each pixel in an image does not in itself solve 
computer vision problems. Range images provide sam- 
pled geometric information in an explicit form rather than 
in an implicit form dependent on surface reflectance and 
illumination. The data must still be organized into a more 
structured form for interpretation purposes. 

Witkin and Tenenbaum [104] have argued that percep- 
tual organization mechanisms exist in the early stages of 
human visual processing that are independent of the high- 
level knowledge necessary for correct image interpreta- 
tion and are independent of the image formation process. 
That is, people can visually segment image regions into 
meaningful entities even when they know nothing about 
the entities or the image formation process. Consider the 
fact that people with no knowledge of or experience with 
the formation of images from electron microscopes, X- 
ray imagers, ultrasonic sensors, and imaging radars can 
often partition images into important regions that are 
meaningful to experts in the respective fields. Therefore, 
it should be possible to group pixels in many types of 
images using only relatively low-level information. How- 
ever, it is not at all clear how these general-purpose low- 
level grouping mechanisms operate. 

We believe that perception of surfaces is a low-level 
grouping operation that plays a fundamental role in many 
image understanding tasks. Therefore, a segmentation al- 
gorithm that groups pixels based on a surface interpreta- 
tion should be valuable to many applications. For exam- 
ple, explicit surface approximations over range image 
regions is directly useful for surface inspection, assembly 
verification, automatic shape acquisition, and autono- 
mous navigation. If early vision processes focus on seg- 
menting range images (however they are acquired) into 
surfaces defined over image regions, we believe that it 
will eventually be possible to achieve robust recognition 
of arbitrary 3-D objects by matching perceived surface 
descriptions with known object models. Although many 
matching approaches are based on lower dimensional fea- 
tures, such as points (i.e., object vertices) and edges (i.e., 
occluding edges and separating boundaries between sur- 
faces), we believe that matching based on surface shape 
holds the most promise for general-purpose vision be- 
cause surface matching would not be hindered by occlu- 
sion of individual point or edge features. Moreover, our 
experimental results show that surface-based segmenta- 
tion is also promising for other types of images, such as 
intensity images, whenever the image data exhibits sur- 
face coherence properties. 

B. Intensity Image Segmentation 
A problem with many computer vision techniques is the 

assumption that there is only one physical surface or ob- 
ject represented in an image. When many surfaces of many 
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objects are present,  it is often necessary to organize pixels 
into connected groups or image regions that cor respond 
to individual objects or surfaces, and  then apply higher- 
level algorithms to the isolated image regions. The  fun- 
damental,  complementary issues in organizing image pix- 
els into regions are similarity (uniformity) and  difference 
(contrast). Given the sensed values at two image pixels 
and  their neighbors,  the computer  must answer  the ques-  
tion: “does  this pixel possess enough  of the same prop- 
erties as  that pixel to say that these two pixels are simi- 
lar?” 

Segmentat ion of digital images has  been  an  active area 
of research for many  years (see surveys [47], [31], [37], 
[65], [90], [88]). Many  popular  segmentat ion techniques 
use histogram-based thresholding or template matching, 
but these methods provide little information when the im- 
age  data does  not conform to the restrictive image model  
assumptions. Edge detection techniques (see survey [29]) 
attempt to define regions by  locating pixels that lie on  the 
boundar ies between regions using difference measures on  
neighbor ing pixels (e. g  . , image gradient magnitude).  Re- 
gion growing techniques (see survey [107]) attempt to 
group pixels into connected regions based on  similarity 
measures,  such as  approximate equality (e.g., [20]). 
Edge-detect ion and  region-growing can be  data-driven 
operat ions based on  generic not ions of dif ference and  sim- 
ilarity that make no  commitment to the set of possible 
image interpretations, or they can be  model-dr iven oper-  
ations based on  application-specific object models and  do-  
main knowledge. Model-dr iven techniques can reduce 
computat ional requirements by  incorporating high-level 
knowledge about  the scenes represented in images to re- 
strict the search for valid interpretations [41]. 

A commonly used definition of image segmentat ion [57] 
states that if I is the set of all image pixels and  P( ) is a  
uniformity precidate defined on  groups of connected pix- 
els, a  segmentat ion of I is a  partit ioning set of connected 
subsets or image regions {R,, * * * , RN) such that 

N 

U RI = I where R, fl R, = (b ~1 # m, (1) I= I 

the uniformity predicate P (R,) = True for all regions, 
and  

P(RI U R,) = False (2) 
whenever  R, is adjacent to R,. Different segmentat ion al- 
gori thms may be  v iewed as  implementations of different 
uniformity predicates. Uniformity predicates may be  clas- 
sified according to knowledge requirements [65]: signal- 
level methods are based purely on  the numbers  in a  digital 
image, physical-level methods include knowledge about  
image formation, and  semantic-level methods include 
even more knowledge about  the type of scenes being 
viewed. The  sur face-based segmentat ion algorithm in this 
paper  is a  signal-level method where the uniformity pred- 
icate on  groups of pixels is true if almost all the pixel data 
in a  region can be  represented well by  an  approximating 
(surface) function. 
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Functional approximation ideas have been  used on  in- 
tensity images in the past to define uniformity measures 
for region-growing segmentat ion at the signal-level. Pav- 
lidis [80] developed a  region-growing segmentat ion ap-  
proach based on  a  piecewise-l inear scanline function ap-  
proximation. Scanline intervals with similar s lopes were 
merged to define regions. The  uniformity predicate re- 
quires pixels in the same region to be  approximated by  
straight lines with similar slopes. Haralick and  Watson 
[48] proved the convergence of the facet iteration algo- 
rithm for flat (constant), s loped (planar), and  quadrat ic 
polynomial facets (local surfaces) def ined over  prese- 
lected image window sizes. This algorithm was intended 
more for noise removal than segmentat ion, but may be  
considered as  a  segmentat ion algorithm where the image 
segments are the resulting small facets. A physical sur- 
face in an  image is typically represented by  many  image 
facets. The  uniformity predicate in this case requires pix- 
els are well approximated by  the facet surfaces. The  win- 
dow operator size for the surface fits, which limits the 
facet size, and  the surface type are preselected parameters 
independent  of the data. Pong et al. [82] have  obtained 
good  results with a  similar algorithm based on  property 
vectors of facets rather than the facet surface fits. 

Functional approximation ideas are also used to derive 
window coefficients [85] for edge  detection approaches to 
segmentat ion. In most edge-based techniques, pixels are 
simply labeled as  edge  or non-edge,  and  an  edge-l inking 
step is required to create refined region descriptions. A 
good  example of a  more complete pixel labeling scheme 
based on  local surface function (facet) approximations is 
the topographic primal sketch [49]. In this approach,  the 
output consists of 1) step edge,  ridge, and  valley lines, 2) 
peak,  pit, saddle, and  flat points, and  3) planar slopes, 
convex,  concave,  and  saddle-shaped regions. The  uni- 
formity predicate in this case groups pixels with the same 
topographic label. This method is purely local however  
and  does  not prescribe the integration of global similarity 
information. The  surface type labeling used in the sur- 
face-based segmentat ion algorithm also suffers from the 
same problem, but global information is effectively inte- 
grated by  the iterative region growing algorithm. 

C. Range Image Segmentation 
Region growing based on  function approximation ideas 

are used commonly in range image analysis (see survey 
[9]). The  uniformity predicate in the work listed below 
requires that region pixels are well approximated by  planar 
or quadric surfaces. Shirai and  Suwa [94], Milgrim and  
Bjorklund [75], Henderson and  Bhanu [53], Henderson 
1521,  Bhanu [ 121,  and  Boyter [ 171  segment  range images 
into fitted planar surfaces extracted via region growing. 
Other work has  been  geared toward detecting cylinders in 
range data [1], [77], [83], [15], [69]. Hebert  and  Ponce 
[51] segmented planes, cylinders, and  cones from range 
data. Sethi and  Jayaramamurthy [92] handled spheres and  
ellipsoids in addit ion to planes, cylinders, and  cones.  
Oshima and  Shirai [79] used planes, spheres,  cylinders, 
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and cones. Dane [27] and Faugeras et al. [34] at INRIA 
allow for region growing based on planar or general quad- 
tic surface primitives. The above do not directly address 
other types of surfaces except that the INRIA [33] and 
Henderson/Bhanu approaches have worked with arbitrary 
curved surfaces represented by many-faceted polyhedral 
approximations. Many of these methods obtain an initial 
segmentation of small primitive regions and then itera- 
tively merge the small primitives until all merges (al- 
lowed by a smoothness or approximation error constraint) 
have taken place. The RANSAC method of Bolles and 
Fischler [ 151 has used iterative model fitting directly on 
the data based on randomly selected initial points (seeds). 
Our approach also works directly on the data, but seed 
regions are extracted deterministically and the model it- 
self may change as required by the data. 

Concepts and techniques from differential geometry 
have been useful in describing the shape of arbitrary 
smooth surfaces arising in range images [ 191, [74], [96], 
1621, [36], [lo], [ 102],]32]. (This approach has also been 
applied to intensity image description [72], [81], [ 111.) 
For segmentation based on differential geometric quan- 
tities, such as lines of curvature or surface curvature, the 
uniformity predicate requires region pixels to possess 
similar geometric properties. As the name implies, the dif- 
ferential geometry of surfaces analyzes the local di$er- 
ences of surface points. Although global similarities in 
surface structure are also analyzed, most theorems in dif- 
ferential geometry address only global topological simi- 
larities, such as the one-hole equivalence of a doughnut 
and a coffee cup with a handle. Global shape similarity 
theorems do exist for the surfaces of convex objects, and 
they have been successfully utilized in extended Gaussian 
image (EGI) convex surface shape matching schemes 
[55]. Difficulties arise when local descriptors are used to 
identify the shape and global similarities of arbitrary non- 
convex object surfaces from arbitrary-viewpoint range- 
image projections. The mathematics of differential ge- 
ometry gives little guidance for an integrated global shape 
description or for computational matching methods in this 
general case. Brady et al. [ 191 extract and analyze a dense 
set of integrated 3-D lines of curvature across entire sur- 
face patches to describe the global surface properties. This 
method can take hours to describe simple objects. Our 
approach integrates global information into parametric 
surface descriptions and runs in minutes on similar ob- 
jects with similar computing power. 

Many researchers have favored the extraction of lower- 
dimensional features, such as edges, to describe range im- 
ages instead of surfaces [97], [59], [60], [39], [76], [loo], 
[95], [54], [50], [16], [13]. The uniformity predicate in 
these approaches requires that range and the range gra- 
dient are continuous for all pixels in region interiors where 
only the region boundaries are computed explicitly. By 
detecting and linking range and range gradient disconti- 
nuities, the space curves that bound arbitrary smooth sur- 
faces are isolated creating an image segmentation. How- 
ever, most of the above edge-based work has focussed on 

straight and circular edges for matching with polyhedra 
and cylinders and their combinations. Although edge- 
based approaches offer important computational advan- 
tages for today’s computer vision systems, we believe that 
such systems cannot provide the detailed surface infor- 
mation that will be required from future general-purpose 
range-image vision systems. Only more research experi- 
ence will determine the advantages and disadvantages of 
these approaches for different applications, but the gen- 
erality of an arbitrary surface segmentation and surface 
description approach is necessary today for automated 
free-form, sculptured surface reconstruction and shape 
acquisition tasks as in [84]. 

II. PROBLEM DEFINITION 

In the surface-based approach to segmentation, the rel- 
evant structure of an image is viewed as a piecewise- 
smooth graph surface contaminated by noise as defined 
below. We emphasize the geometric shape of the image 
data in this approach, not the noise process as in random 
field image models [ 1061, [26], [30], [24]. Several terms 
are introduced to give a reasonably precise description of 
the problem we are attempting to solve. 

A 3-D smooth graph su$ace is a twice-differentiable 
function of two variables: 

z  = f(x, Y). (3) 
A piecewise-smooth graph surface g(x, y) can be parti- 
tioned into smooth surface primitives fr (x, y) over sup- 
port regions RI: 

z = g(x, y) = [t, f,(x, y) x(x, y, R,) (4) 

where x(x, y, R,) is the characteristic function of the re- 
gion RI, which is unity if (x, y) E RI and zero otherwise. 
For each piecewise-smooth surface g(x, y), it is conve- 
nient to associate a region labelfunction 1,(x, y) defined 
as 

If a’[ is the vector of all parameters needed to precisely 
specify the smooth function fr (x, y), then any piecewise- 
smooth surface may be represented as the piecewise- 
constant function 1, (x, y) (with minimum value 1 and 
maximum value N), which contains all segmentation in- 
formation, and the list of N parameter vectors { ZI}, which 
contains all shape information. 

A digital sueace is a noisy, quantized, discretely sam- 
pled version of piecewise-smooth graph surface: 

zij = g(i,j) = La(s(-4i)y y(j)) 

+ n(x(iL r(j))) + bl (6) 
where a and b are the quantizer’s scale factor and offset 
respectively, the floor function indicates truncation 
(quantization) to an integer, and the additive noise pro- 
cess n(x, y) is nominally zero-mean with finite variance 
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a2(x, y) at each  point. The  discrete image location (i, j ) 
need  not be  linearly related to the Eucl idean (x, y) loca- 
tion allowing for the nonl inear relationships involved in 
some range sensors (see Appendix).  A range image is a  
particular type of a  digital surface where the zij values 
represent the distance to a  physical surface from a  refer- 
ence  surface. An intensity image is another  type of digital 
surface where the zii values represent the number  of visi- 
ble photons incident at the (i, j ) location in the focal p lane 
of a  camera.  Other image types are def ined based on  the 
meaning of the sensed zii values. This underlying model  
is quite general  and  can be  used to represent many  types 
of images unless multiplicative noise or some other type 
of nonaddit ive noise is present.  Many  textured surfaces 
may also be  considered as  an  approximating smooth sur- 
face plus random sensor  noise along with structured noise 
to represent the given texture. 

The  segmentation/reconstruction problem that we are 
attempting to solve is a  generalization of the segmentat ion 
problem and  may be  stated as  follows. Given only a  dig- 
ital surface, denoted g  (i, j >  and  specif ied by  thelzij val- 
ues, f indAN approximating functionsf/ (x, y) and  N image 
regions R, over which those functions are evaluated such 
that the total image representat ion error 

etot =  (Ig(i,j) - k?(x(i), y(j))[(, 

between the reconstructed image function 

(7) 

evaluated at the points (x (i ), y( j ) ) and  the data g  (i, j ,> 
is small and  the total number  of functions and  regions N 
is small. The  function norm is left unspecif ied, but may 
be  the max norm, the (Euclidean) root-mean-square error 
norm, or the mean  absolute error norm. The  implicit log- 
ical segmentat ion predicate in the above  problem state- 
ment  may be  written as  the surface coherence predicate: 

i 

TRUE 
pm = 

if )I k?  - AIJR, <  E 
FALSE otherwise 

(9) 

where the value of E depends  on  the mean  var iance of the 
noise process n(x, y) in the image region. 

The  two trivial solutions may be  discarded immedi- 
ately. The  “one  pixel per  region” solution minimizes the 
approximation error (zero error), maximizes the number  
of regions, and  requires no  work, but is of course also 
useless. The  “one  function per  image” solution mini- 
mizes the number  of regions (one region), maximizes the 
approximation error, requires work, may be  useful for 
some purposes,  but does  not solve the real problem. W e  
seek an  algorithm that tends to segment  images into re- 
gions that can be  directly associated with meaningful  high- 
level entities. In the case of range images, the surface 
functions def ined over  the image regions should mathe- 
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matically represent the 3-D shape of visible physical sur- 
faces in the scene.  

The  problem statement places no  constraints on  the 
functions except  that they are smooth, no  constraints on  
the image regions except  that they are connected,  no  con- 
straints on  the form of the additive noise term except  that 
it is zero-mean. W e  want the total approximation error 
and  the number  of regions to be  small, but we have not 
at tempted to weight the relative importance of each.  
W ithout such weights, it is difficult to form an  objective 
function and  apply existing optimization methods.  

It is not at all clear from the above  statement that such 
a  “chicken-and-egg” segmentat ion problem can be  solved 
at the signal level. It is straightforward to fit functions to 
pixel data over  regions if the regions have been  deter- 
mined, but how are the regions to be  determined? Simi- 
larly, it is possible to determine the image regions if the 
set of functions are known, but how are the functions ex- 
t racted? But even the number  of functions/regions present 
in the data is not known. W e  seek a  signal-level, data- 
dr iven segmentat ion procedure based only on  knowledge 
of piecewise-smooth surfaces. 

III. SMOOTH SURFACE DECOMPOSITION 

The problem statement says that the smooth component  
functions h  (x, y) of the underlying model  g(x, y) are 
al lowed to be  arbitrary smooth surfaces, which can be  ar- 
bitrarily complicated. However,  arbitrary smooth sur- 
faces can be  subdivided into simpler regions of constant 
surface curvature sign based on  the signs of the mean  and  
Gaussian curvature at each  point [lo]. As shall be  dis- 
cussed in more detail later, there are only eight possible 
surface types surrounding any  point on  a  smooth surface 
based on  surface curvature sign: peak,  pit, r idge, valley, 
saddle ridge, saddle valley, flat (planar), and  minimal. 
These fundamental  surface shapes,  shown in Fig. 1, are 
very simple and  do  not contain inflection points (compare 
to codons for planar curve description as  in [87]. Our  hy- 
pothesis is that these simple surface types are well ap-  
proximated for image segmentat ion (i.e., perceptual or- 
ganization) purposes by  bivariate polynomials of order M 
or less where it4 is small. The  experimental results in- 
c luded here and  in [8] attempt to show that this assump- 
tion is reasonable for a  large class of images when M = 
4  (biquartic surfaces). Even the range image surfaces of 
quadric primitives can be  approximated well enough  for 
segmentat ion purposes with such polynomial surfaces. 
This assumption is only limiting in the context of the seg- 
mentat ion algorithm when a  large smooth surface bends  
much faster than x4. If a  particular application encounters 
a  significant number  of such surfaces, the limit of M  = 4  
can be  raised. If a  range imaging application can guar-  
antee that only planar and  quadric surfaces will appear,  
they can use only those types of functions for fitting pur- 
poses.  In fact, any  ordered set of bivariate approximating 
functions can be  used if they satisfy the set of require- 
ments def ined below. In summary,  arbitrary smooth sur- 
faces may be decomposed into a union of simple surface- 
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Fig. 1. Eight fundamental surface types from surface curvature sign. 

curvature-sign primitives that are well approximated by 
low-order bivariate polynomials. 

The intermediate goal of a segmentation algorithm then 
is to isolate all underlying simple surj&es (surface-cur- 
vature-sign primitives) in the image data and fit those sim- 
ple surfaces with simple bivariate approximating func- 
tions. This creates an image segmentation in terms of the 
support regions of the simple approximating functions and 
an image reconstruction in terms of those simple approx- 
imating functions evaluated over the support regions. If 
the boundaries of the smooth surfaces of the underlying 
piecewise-smooth surface model are desired, then 
smoothly joining, adjacent simple surface regions can be 
merged to create the smooth surface support regions. This 
noniterative postprocessing step is covered in [8] and is 
not discussed here. We currently leave the function de- 
scription over the smooth surface regions in the form of a 
collection of simple polynomial surfaces. The final col- 
lection of smooth surfaces and their support regions is the 
underlying piecewise-smooth image description that we 
wished to recover in the problem definition. In applica- 
tions, it may be desirable to go back and fit the segmented 
smooth surface with application surfaces, such as quad- 
rics, composite Bezier patches [35], or rational B-splines 
[99], rather than leaving it as a set of polynomial surfaces. 

A. Approximating Function Requirements 
Arbitrarily complicated smooth surfaces can be decom- 

posed into a disjoint union of surface-curvature-sign sur- 
face primitives. If these surface primitives can be approx- 
imated well by a small set of approximating functions, a 
composite surface description for arbitrary smooth sur- 
faces can be obtained. There are several constraints that 
the set of approximating functions must satisfy. Of course, 
the approximating functions must be able to approximate 
the fundamental surface-curvature-sign surface-primi- 
tives well. For dimensional@ reduction reasons, the ap- 
proximating functions should be representable by a small 
amount of data. For generality, the approximating sur- 
faces must be well-defined over any arbitrary connected 
region in the image plane. The approximating functions 

of the digital surface segmentation must be useful for ex- 
trapolation into neighboring areas of a surface in order 
for the region growing method to be successful. Znterpo- 
l&ion capabilities are also useful for evaluating points be- 
tween pixels if surface intersections are required. The ap- 
proximating functions should also be easily differentiable 
so that differential geometric shape descriptors can be re- 
computed from them and so that other processes may 
compare surface normals and other differential quantities. 
Finally, the complete set of approximating functions 
should be totally ordered so that each approximant is ca- 
pable of describing lower order approximants exactly, but 
cannot adequately approximate higher order functions. 
This provides the basis for a set of increasingly compli- 
cated hypotheses about the form of the underlying data. 
Note that general 3-D surface representation capability is 
not needed because digital surfaces are discrete represen- 
tations of graph surface functions. 

Low-order bivariate polynomials satisfy all of the above 
requirements, and the surface fitting procedure requires 
only a linear least-squares solver for the p x q ( p > q) 
equation [A] x’ = b’ [70], [5]. We have found that the set 
of planar, biquadratic, bicubic, and biquartic polynomials 
performed well in our experiments without significant 
computational requirements (a few seconds per fit on a 
VAX 11-780). However, any set of approximating fine- 
tions that satisfy the above constraints may be used in- 
stead. To maintain generality in the algorithm descrip- 
tion, it is only assumed that there is a set of approximating 
functions, denoted as F, that contains ( F ( discrete types 
of functions that can be ordered in terms of the “shape 
potential” of each surface function relative to the set of 
fundamental surface-curvature-sign surface primitives. 

In our case 1 F 1 = 4 and the set of approximating func- 
tions F can be written in the form of a single equation: 

P(m, 2; 4 Y) 

= i+zm aij-hj 

= a00 + alar + ~OIY + all-v + a20x2 

+ ao2y2 + a2,x2y + a12xy2 + a30x3 

+ ao3y3 + a31x3y + a22x2y2 

(10) 

+ 4,-v 3 4 
+ a4dr4 + ~04~ . (m = 4) (11) 

Planar surfaces are obtained by restricting the parameter 
vector space ail5 to three-dimensional subspace where 
only a,,,,, alo, aol may be nonzero. Biquadratic surfaces 
are restricted to a six-dimensional subspace, and bicubic 
surfaces to a ten-dimensional subspace. A least-squares 
solver computes the parameter vector a’ and the RMS fit 
error E from the digital surface data over a region quickly 
and efficiently. Moreover, a QR least-squares solution ap- 
proach allows surface region fits to be updated recursively 
during the region growing process as new data points 
are added [42], [22] for better computational efficiency. 



BESL AND JAIN: VARIABLE-ORDER SURFACE FITTING 

B. Simple to Complex Hypothesis Testing 
The key idea behind the algorithm, which is indepen- 

dent  of the set of approximating functions actually cho-  
sen, is that one  should start with the simplest hypothesis 
about  the form of the data and  then gradually increase the 
complexity of the hypothesized form as needed.  This is 
the variable-order concept,  which has  not been  used in 
previous segmentat ion algorithms. In our  case, surface 
type labels at each  pixel allow us  to find large groups of 
identically labeled pixels. Then,  a  small subset  of those 
pixels, known as a  seed region, is chosen using a  simple 
shrinking method that attempts to ensure that every pixel 
in the seed region is correctly labeled. The  simplest hy- 
pothesis for any  surface fitting approach is that the data 
points represented in the seed region lie in a  plaue. The  
hypothesis is then tested to see if it is true. If true, the 
seed region is grown based on  the planar surface fit. If the 
simple hypothesis is false, the algorithm responds by  test- 
ing the next more complicated hypothesis (e.g., a  biqua- 
dratic surface). If that hypothesis is true, the region is 
grown based on  that form. If false, the next hypothesis is 
tested. This process cont inues until either 1) all prese- 
lected hypotheses have been  shown to be  false or 2) the 
region growing based on  the surface fitting has  converged 
in the sense that the same image region is obtained twice. 
Since all smooth surfaces can be  partit ioned into simple 
surfaces based on  surface curvature sign, false.hypotheses 
may occur only when the isolated seed region surface- 
type labels are incorrect (due to noise) or when the un-  
derlying surface bends  faster than the highest order ap-  
proximating surface. During execut ion of the algorithm, 
bad  seed regions are rejected immediately when the sur- 
face fit error is poor  and  large quickly bending surfaces 
are broken into two or more surface regions. 

IV. ALGORITHM PHILOSOPHY 

This section includes qualitative comments about  the 
system structure of the sur face-based segmentat ion algo- 
rithm. The  success of the algorithm is based on  the effec- 
tive combinat ion of simple component  algorithms, not on  
the capabilit ies of any  single processing step. 

A. Initial Guess Plus Iteration 
Like many  region growing schemes,  the basic approach 

of this algorithm might be  summarized as  “make an  ini- 
tial guess  and  then iteratively refine the solution.” This 
idea is at least as  old as  Newton’s method for f inding the 
zeros of a  complicated function. Unlike other region 
growing schemes,  the initial guess  at the underlying sur- 
face segmentat ion is based on  invariant differential geo-  
metric principles and  is quantif ied in terms of surface cur- 
vature sign labels, or surface type labels [lo]. The  
iterative ref inement process is based on  function approx-  
imation and  region growing. Once  a  surface has  been  fit- 
ted to the kth group of connected pixels, the (k + 1  )th 
group of pixels is obtained by  finding all new connected 
pixels that are compatible with the fitted surface of the 
previous group. W h e n  the same group of pixels is ob-  
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tained twice, the iteration terminates yielding an  extracted 
region. This process is descr ibed in more detail later. 

Al though we shall not prove it in this paper,  there is 
the usual relationship between the quality of the initial 
guess  and  the number  of iterations required. If the initial 
guess  is very good,  only a  few iterations are required. 
Many  iterations may be  required if the initial guess  is not 
good.  For bad  initial guesses,  no  number  of iterations will 
yield the proper  convergence to a  solution. In our  algo- 
rithm, the quality of the initial guess  is related to the qual- 
ity of the image data, and  the per formance of the segmen-  
tation algorithm degrades gracefully with increasing noise 
levels. 

B. Stimulus Bound Image Analysis 
The variable-order surface fitting approach may be  

thought of as  a  hypothesize and  test (hypothesize and  ver- 
ify) algorithm where the hypotheses can be  automatically 
changed by  the input data and  each surface fit is bound  by  
(must conform to) the input data. Therefore, we suggest  
the use of the adjective stimulus bound [89] for the type 
of hypothesis testing done  by  the sur face-based segmen-  
tation algorithm, where the stimulus is the original sensed 
data values. In a  stimulus bound  process, all interpretive 
processing of the data is bound to or constrained by  the 
original data or stimulus in each  stage of processing to 
reduce the probability of interpretation errors. In our  case, 
each  simple surface function hypothesis is tested against 
the original data via surface fitting followed by  two tests: 
1) an  RMS fit error test (related to the chi-square test), 
and  2) a  regions test (related to the nonparametr ic statis- 
tics runs test). Hence,  each  iteration and  the final inter- 
pretation are bound  by  the original stimulus. 

It is general ly acknowledged that vision algorithms 
should function at several different levels using associated 
vision modules to process the signal and  symbol infor- 
mation at different levels. It often occurs that each  level’s 
vision module accepts input only from the previous, lower 
level and  provides output only to the subsequent ,  higher 
level. Fig. 2(a) shows a  typical example of such a  pro- 
cess. This assumption may be  rooted in human visual 
models where retinal information is not directly available 
to the high level cerebral processes.  However,  human vi- 
sion is a  fundamental ly dynamic perceptual process in 
which subsequent ,  highly correlated “video frames” are 
always immediately available to the visual system after 
any  given instant in time. Therefore, it may be  inappro- 
priate to apply dynamic human visual model  principles to 
static computat ional vision problems. The  stimulus bound 
phi losophy states that the output from all lower level vi- 
sion modules should be  available to high-level vision 
modules.  In particular, the original image from the sensor  
must be  available to every vision module in a  static vision 
system as shown in Fig. 2(b). In the sur face-based seg- 
mentat ion algorithm, every pixel in every region is con-  
stantly checked to see how close the sensed value at a  
given pixel is to the approximating surface function for 
the given region. The  global grouping of pixels relies on  
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Fig. 2. Conventional edge approach versus stimulus bound approach. 

simple differencing between pixel values and the inter- 
preted surface primitives. These concepts are expressed 
in more detail in later sections. Without constantly check- 
ing symbolic interpretations against the original data, a 
vertical chain of interpretive vision modules is only as 
robust as the weakest module. Many edge-based intensity 
image vision schemes have failed in practice because pre- 
cise, correctly linked edges could not be extracted from 
real images. 

We believe that surface-based range image vision sys- 
tems have an advantage over edge-based systems in that 
it is possible to quickly check final object or surface inter- 
pretations against the original data (via simple image dif- 
ferencing) because synthetic range images can be gener- 
ated from models with a depth-buffer algorithm [78] using 
only the object or surface geometry; light and surface re- 
flectance are not involved. The final interpretation in the 
form of a reconstructed range image can be subtracted 
from the original range image to create an interpretation 
error image, which can then be used to evaluate the qual- 
ity of the image interpretation globally and locally. This 
is only possible when an image interpretation includes 
segmentation and reconstruction information as described 
in the problem definition. 

C. Emerging Commitment 
The surface-based segmentation algorithm is primarily 

data-driven in that only generic knowledge of surfaces, 
curvature, noise, and approximation are used. Of course, 
data-driven and model-driven elements must cooperate in 
any algorithm that attempts to interpret a digital image in 
terms of specific model information. An important feature 
of any image interpretation approach is the process of 
commitment to the final interpretation. A special-purpose 
model-driven program can make a commitment to its set 
of possible interpretations when the program is written or 
compiled [41], thus avoiding certain computations that 
might otherwise be required. A data-driven program may 
postpone making a commitment to a final interpretation 
in order to be more generally applicable, but it should 
reduce the amount of information that must be manipu- 

lated by later higher-level processes that use specific world 
model information by generating intermediate symbolic 
primitives. We believe that our approach follows a prin- 
ciple of emerging commitment that is gradual and locally 
reversible, but not random. One must make steps toward 
image interpretation, yet it is impossible to always avoid 
errors that necessitate steps or labels being undone. An 
algorithm should make a series of small steps towards the 
goal, where each step need not produce perfect results, 
can easily be undone, but still produces useful informa- 
tion for the next step. Simulated annealing algorithms [4], 
[38] might also be said to follow a principle of emerging 
commitment, but the surface-based segmentation algo- 
rithm described here is very directed in its search process 
and provides a much more structured output. 

V. ALGORITHM DESCRIPTION 

The algorithm presented in this paper uses a general 
piecewise-smooth surface model to do pixel grouping as- 
suming the image data exhibits surface coherence prop- 
erties. If all pixel values are viewed as noisy samples of 
an underlying piecewise-smooth surface function defined 
over the entire image, the segmentation process should 
not only provide detailed definitions of the segmented re- 
gions, but should also provide the component surface 
functions of the underlying piecewise-smooth surface. 
Surface-based segmentation includes surface (image) re- 
construction. 

In the first stage of the segmentation algorithm de- 
scribed below, each pixel in an image is given a label 
based on its value and the values of its neighboring pixels. 
This label can only take on eight possible values based on 
two surface-curvature signs and indicates the qualitative 
shape of an approximating surface that best-fits the image 
data surrounding that point. This surface-type label image 
can be analyzed for connected regions using a standard 
connected component analysis algorithm [91], [3]. Any 
individual pixel label can be wrong, but it is likely to be 
correct if it lies in the interior of a large region of iden- 
tically labeled pixels. Moreover, due to the constrained 
nature of the surface types represented by the eight labels, 
it is also likely that a simple surface function will approx- 
imate a group of correctly labeled pixels. The surface type 
label image is used to provide seed regions to the region- 
growing algorithm. A pixel’s similarity with a group of 
other pixels is measured by comparing 1) the difference 
between the pixel’s value and the other pixels’ approxi- 
mating surface value (at the given pixel location) and 2) 
a parameter that measures the goodness of the fit of the 
surface to the other pixels. This similarity measure allows 
for a pixel to enter and leave a group of pixels depending 
on the other pixels currently in that group. Hence, a mis- 
take in grouping can be undone. Regions are grown until 
convergence criterion are met, and a concise, parametri- 
cally defined surface description is recorded along with a 
definition of the image region. It is common for images 
reconstructed from the segmentation description to be al- 
most indistinguishable from the original image. 
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This algorithm can be viewed as a two-stage process. 
The first stage computes an “initial-guess” coarse seg- 
mentation in terms of regions of identical surface type la- 
bels. The second stage iteratively refines the coarse image 
segmentation and simultaneously reconstructs image sur- 
faces. The entire algorithm is outlined below. 

The first stage creates a surface type label image 
T( i, j ) from the original image g (i, j ) in the following 
manner: 

l Compute partial derivative images &, (i, j ), gU ( i, j ), 
g,,(i, j), g,,(i, j), g,,(i, j) from the original image 
S (i, j ) using local f ixed-window surface fits that are ac- 
complished via convolution operators. 

l Using the partial derivative images, compute the 
mean curvature image H( &, g,, &,, &,, g,,,) and the 
Gaussian curvature image K( &, &,, &, g,,, &,). 

l Compute the sign ( + , - , 0) of mean curvature, de- 
noted sgn (H ), and the sign of Gaussian curvature, de- 

1) Declarations: 

175 

noted sgn (K ). The Signum function sgn (x) maps neg- 
ative numbers to - 1, positive numbers to + 1, and zero 
maps to zero. 

l Use surface curvature sign to determine a surface type 
label T( i, j ) for each pixel ( i, j ). 

The second stage performs iterative region growing 
using variable-order surface fitting as described below. Its 
input consists of the original image and the surface type 
label image. In order to determine the next (first) seed 
region to use, a connected component algorithm isolates 
the largest connected region of any surface type in the 
T(i, j) image, and then a 3 X 3 binary image erosion 
operator shrinks the region until a small seed region of 
appropriate size is obtained. The output of the second 
stage consists of a region label image 1; ( i, j ), which con- 
tains all region definitions in one image (the segmentation 
information), and a list of coefficient vectors { a’[ > , one 
for each region (the shape reconstruction information). 

Surface-Order: m E F = { 1 (Planar), 2 (Biquadratic), 3 (Bicubic), 4 (Biquartic)}; 
Max-Sugace-Order:  (F 1 = 4 (Biquartic); 
Sur$uce-Fit: { a’ = Coefficient Vector (3, 6, 10, or 15 numbers), 0 = RMS Fit Error } ; 
Surface-Type-Image: T(i, j) where T E (1, 2, 3, 5,, 6, 7, 8, 91; 
Region-Label-Zmage: fg ( i, j ) where i E { 1, . * . , N  } ; 
Surface-Fit-List: { a’l > where 1 E { 1, * . . , ti } ; 
Reconstruction-Zmage: 8 (i, j ); 
Error-Zmuge: e(i, j) = (g(i, j) - g(i, j)(; 
Current-Region, New-Region, Seed-Region: Four-Connected Subsets of Image Z 

2) Initialization: 
Set Error-Zmage = Big Error Value; 
Set Reconstruction-Image = No Value; 
Set Region-Label-Image = No Label; 

3) Start-Iteration: 
Set Surfuce-Order = Planar (z = a + bx + cy); 
Set Seed-Region = Next-Seed-Region (Sur$zce-Type-Zmuge); 
IF Seed-Region Smaller Than Threshold Size (e.g., 30 pixels), 
THEN GoTo All-Done; 
ELSE Set Current-Region = Seed-Region; 

4) Surface-Fitting: 
Perform Surface-Order Fit to zii Values in Current-Region to obtain Su$ace-Fit; 

5) Surface-Fit-Testing: 
IF Sur$uce-Fit OK using RMS Error Test and Regions Test, 
THEN GoTo Region-Growing; 
ELSE Increment Su@zce-Order;  
(Example: Planes become Biquadratics: z  = a + bx + cy + dxy + ex* + fy2) 
IF SuMace-Order > Max-Surface-Order, 
THEN GoTo Accept-Reject; 
ELSE GoTo Surface-Fitting; 

6) Region-Growing: 
Find New-Region Consisting of Compatible Connected Neighboring Pixels where Compatibility means Pixel 
Values must be Close to Surface and Residual Error must be Smaller Than Current Value in Error Image and 
Derivative Estimates from Pixel Values must be Close to Surface Derivatives; 
IF Current-Region = New-Region, 
THEN GoTo Accept-Reject; 
ELSE Set Current-Region = New-Region; GoTo Surface-Fitting; 
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7) Accept-Reject: 
IF Surjke-Fit OK using RMS Error Test, 
THEN GoTo Accept-Surface-Region; 
ELSE Zero Out Seed-Region Pixels in Surface-Type-Zmage; GoTo Start-Iteration; 

8) Accept-Surface-Region: 
Zero Out Current-Region Pixels in Suqace-Type-Image; 
Label Current-Region Pixels in Region-Label-Image; 
Evaluate Current-Region Pixels in Reconstruction-Image using Surface-Fit; 
Update Current-Region Pixels in Error-Zmage with Absolute Residual Errors; 
Add Surface-Fit to Surface-Fit-List; 
GoTo Start-Iteration; 

9) All-Done: 
Surface-Fit-List Contains All Function Definitions for Image Reconstruction 
Region-Label-Zmage Contains All Region Definitions for Image Segmentation 
Reconstruction-Zmage Contains Noiseless, Smooth Surface Version of Original Image; 
Error-Zmage Contains Approximation Error at Each Pixel to Evaluate Reconstruction Quality; 

It is not necessary to maintain a separate version of the 
reconstructed image as this can always be recomputed 
from the surface fit list and the region label image. How- 
ever, displaying this image during program execution is 
an excellent way to monitor the progress of the algorithm. 
The error image can also be recomputed from the surface 
fit list, the region label image, and the original image, but 
it is maintained throughout the iteration process to coun- 
teract the tendency of surfaces without sharp boundaries 
to grow slightly beyond their actual boundaries. The error 
image is updated at each pixel with the absolute error be- 
tween the approximating surface and the original data 
when a surface/region is accepted. During the region 
growing procedure, the error image is consulted to see if 
the current approximating function represents a given 
pixel better than it has been represented before. If so, a 
pixel that was labeled as a member of a previously deter- 
mined region is free to be labeled with a better fitting re- 
gion as long as the pixel is connected to the better fitting 
region. Thus, labeling decisions are reversible. Later sur- 
faces in this sequential algorithm can relabel a pixel even 
though it was already labeled as part of another surface. 

The algorithm above terminates when the next seed re- 
gion extracted from the surface type label image is too 
small (e.g., less than 30 pixels). However, some pixels 
may still be unlabeled at this point. These pixels are co- 
alesced into a binary surface type image in which all pix- 
els that have already been labeled are turned off (black) 
leaving all unlabeled pixels on (white). This new “left- 
overs” surface type image is then processed by extracting 
and fitting the next seed region as usual except that the 
region growing constraints are relaxed (e.g., the allowa- 
ble RMS fit error limit is doubled). When the next seed 
region from the left-overs surface type image is too small, 
the algorithm finally terminates. 

The outline above provides a high-level description of 
all the main elements of the segmentation algorithm. We 
have omitted several details that are covered in subse- 
quent sections. The algorithm as stated here does not al- 
ways yield clean high-quality edges between regions, and 

it is still possible that some pixels may be left unlabeled 
(ungrouped with a surface). Hence, a local region refine- 
ment operator capable of cleaning up pixel-size irregular- 
ities was used to create the final segmentations shown in 
the experimental results section. Also, as mentioned 
above, surface curvature sign primitive regions must be 
merged at polynomial surface primitive boundaries that 
lie within the boundaries of a smooth surface. The details 
on a region refinement operation and a one-step region 
merging method for smoothly joining surface primitive 
boundaries are available in [8], and further enhancements 
are currently being developed. These fine points are not 
at all related to the performance of the segmentation al- 
gorithm as described here since the necessary procedures 
are performed after the termination of the iterative region 
growing. 

VI. NOISE ESTIMATION FOR THRESHOLD SELECTION 

Digital surfaces exhibit the property of surface coher- 
ence when sets of neighboring pixels are spatially con- 
sistent with each other in the sense that those pixels can 
be interpreted as noisy, quantized, sampled points of some 
relatively smooth surface. In order for the surface-based 
segmentation algorithm to group pixels based on under- 
lying smooth surfaces, it needs to know how well the 
approximating functions should fit the image data. This 
information should be derived from the image data in a 
data-driven algorithm. If the noise i; the image is ap- 
proximately stationary (a*(~, y) = uimg = constant), we 
can compute a single estimate of the noise variance &,, 
(that should be applicable at almost all image pixels) by 
averaging estimates of the noise variance at each pixel. 
To compute an estimate of the noise variance at each 
pixel, we perform a equally-weighted least-squares planar 
fit in the 3 x 3 neighborhood W, surrounding the pixel. 
If the pixel lies in the interior portion of a smooth surface 
region and if the radius of the mean surface curvature is 
larger than a few pixels, the error in the planar surface fit 
will be primarily due to noise. In contrast, steeply sloped 
image regions typically have large mean curvatures and 
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bad planar fits. To get a good estimate of the magnitude 
of the additive noise and the quantization noise in the im- 
age, it is necessary to exclude these pixels Where the gra- 
dient magnitude is large. Therefore, we only include pix- 
els in the mean noise variance calculation if the gradient 
magnitude is below a preset threshold (8 levels/pixel was 
used in our experiments). A more detailed discussion of 
this idea is given in [8]. The equation for the mean image 
noise variance CJ;,, may be expressed as 

where aR represents the boundary of the region R, iVi,t is 
the total number of surface interior pixels contributing to 
the sum, and where uW3 ( p) is the root-mean-square-error 
(RMSE) of the least-squares planar surface fit (aoo, alo, 
sol) in the 3 x 3 window W, around the pixel p: 

ddP) = d (i.jg+,3 (zij - (%I + %li + uolj))2 (13) 

where i and j are interpreted as integer row and column 
coordinates. Although the regions themselves are not 
known at the time the noise variance is estimated, we get . . a good approxtmatton to cirng y b not averaging pixels with 
high slopes using the preset threshold. 

The noise variance estimate allows us to automatically 
set the E parameter of the surface coherence predicate (the 
maximum allowable RMS surface fit error) and two other 
thresholds to an appropriate value as described later. Note 
that we are attempting to estimate noise variance for COIZ- 
tinuous smooth sur$uce detection purposes, not for dis- 
continuity detection as in [45]. Although we do not claim 
to have solved the automatic threshold selection problem, 
the three relevant thresholds are directly tied to the geo- 
metric and statistical properties of the data via empirical 
relationships providing good performance for many im- 
ages. Other noise variance estimation techniques, such as 
computing the mean square difference between a median 
filtered version of an image and the original image, are 
currently being evaluated. 

VII. SURFACE TYPE LABELING 

Differential geometry states that local surface shape is 
uniquely determined by the first and second fundamental 
forms. Gaussian and mean curvature combine these first 
and second fundamental forms in two different ways to 
obtain scalar surface features that are invariant to rotu- 
tions, translations, and changes in parameterization [8]. 
Therefore, visible surfaces in range images have the same 
mean and Gaussian curvature from any viewpoint under 
orthographic projection. Also, mean curvature uniquely 
determines the shape of graph surfaces if a boundary 
curve is also specified [40] while Gaussian curvature 
uniquely determines the shape of convex surfaces and 
convex regions of nonconvex su@zces [23], [55]. There 
are eight fundamental viewpoint independent surface types 
that can be characterized using only the sign of the mean 
curvature (H) and Gaussian curvature (K) as,shown in Fig. 

pi 
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Fig. 3. Surface type labels from surface curvature sign. 

3. Gaussian and mean curvature can be computed directly 
from a range image using window operators that yield 
least squares estimates of first and second partial deriva- 
tives as in [2], [6], [48]. The key point is that every pixel 
in an image can be given a surface type label based on the 
values of the pixels in a small neighborhood about that 
pixel. 

Surface curvature estimates are extremely sensitive to 
noise because they require the estimation of second deriv- 
atives, in which high frequency noise is amplified. In fact, 
8-bit quantization noise alone can seriously degrade the 
quality of surface curvature estimates unless large win- 
dow sizes are used (at least 9 X 9). Yet reliable estimates 
of surface curvature sign can still be computed in the pres- 
ence of additive noise and quantization noise [lo]. Since 
we need to compute five different derivative estimates to 
compute surface curvature, we could use large N x N 
derivative estimation window operators (N odd), or we 
can smooth the image with a small L x L window oper- 
ator (L odd), store the smoothed values at higher preci- 
sion, and operate on the smoothed image with smaller M 
x M derivative estimation window operators (M odd) 
where L + M = N + 1. Assuming window separability 
and therefore linear time requirements, the former re- 
quires time proportional to 5N whereas the latter requires 
time proportional to N + 4M + 1. The relative weighting 
factors used in determining the derivative and smoothing 
window coefficients have an important influence on the 
quality of the derivative estimates. In our experiments 
with g-bit images, we obtained good consistent results 
using one 7 x 7 binomial weight (approximately Gauss-  
ian) smoother and five 7 X 7 equally weighted least 
squares derivative estimation operators with over 30 per- 
cent fewer computations than the equivalent 13 x 13 win- 
dows. For reference purposes, we list the specific num- 
bers needed for this particular computation. 

Since all our operators are separable, window masks 
can be computed as the outer product of two column vec- 
tors. The binomial smoothing window may be written as 
[S ] = s’ ZT where the column vector ? is given by 

s’ = Q  [l 6 15 20 15 6 l]r, (14) 

For 7 X 7 binomial smoothing window, it is clear that we 
should try to maintain an extra 12 bits ( 12 = 2 log, (64)) 
of fractional information in the intermediate image 
smoothed by [S]. For an L X L binomial smoother, 
2L - 2 bits of fractional information should be main- 
tained. The equally weighted least-squares derivative es- 
timation window operators are given by 

. 
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[DJ = &a; [DJ = i&a; [DJ = ii,a,T but adjacent regions with the same label. Therefore, it is 
not always possible, in general, to simply isolate a four- 

[DJ = &il,T [DJ = &a; (15) connected region of pixels of a  particular surface type la- 

where the column vectors d’,, d’,, a2 for a  7 x 7 window 
bel and identify that region as a single surface of the ap- 

are given by 
propriate type for surface fitting purposes. Hence, there 
is a need for a general purpose method to isolate useful 

d’,=3[1 11 11 1 l]r (16) 
interior seed regions from the larger regions of identical 
surface type labels extracted from the surface type label 

2, = g-3 -2 -1 0 1 2 3]r (17) image U4.i). 

22 = & [5 0 -3 -4 -3 0 51T (18) VIII. SEED REGION EXTRACTION 

The partial derivative estimate images are computed via 
We  adopted the following strategy that breaks the un- 

wanted connections with other adjacent regions and at- 
the appropriate 2-D image convolutions (denoted *): tempts to provide small, maximally interior regions that 

&(i,j) = D, * S * g(i;j) are good for surface fitting. The largest connected region 
of any fundamental surface type in the surface type label 

i?,(i,j) = D, * S * g(i,j) (19) image is isolated (denoted ROT) and is then eroded (con- 

g,,(i,j) = D,,” * S * g(i,j) 
tracted) repetitively (using a 3 X 3 binary region erosion 
operator) until the region disappears. After the kth con- 

&,(i, j) = D,, * S * g(i, j) traction (erosion), there exists a largest four-connected 
subregion R; in the pixels remaining after the k contrac- 

&,(i,j) = &, * S * g(i, j) (20) tions of the original region. If we record ] R; 1, the number 

Mean (H) and Gaussian (K) curvature images are com- of pixels in the largest connected subregion, as a function 

puted using the partial derivative estimate images: 

H(i, j) = 
(1 + gZ(i,j)) &,(i,j) + (1 + 62(&j)) Sdi,j) - %,(i,j) g,(i,j) fL(4.i) 

2(J1 + gi(i, j) +  g’v(i, j))” 

(21) 

K(i, j) = 
guu(i, j) S,,(i,j) - LW). 

(1 + gt(i, j) + g”u(4 j))’ 
(22) 

A toleranced Signum function 

i 

+1 ifx > E 

sgn, (x) = 0 if 1x1 I E (23) 
-1 ifx < E 

is used to compute the individual surface curvature sign 
images sgn,(H( t, j ) and sgn,(K(i, j )) using a prese- 
lected zero threshold E. For our experimental results, we 
used eH = 0.03 and eK = 0.015 for 7 x 7 windows. Ide- 
ally, these thresholds should depend on the noise variance 
estimate, but the algorithm performance is not very sen- 
sitive to these numbers for reasonable quality images. 

The surface curvature sign images are then used to de- 
termine the surface type image: 

T(i, j) = 1 + 3(1 + sgncH(H(i, j)) 

+ (1 - whK(Wi,j)). (24) 

This equation is shown in table form in Fig. 3. Fig. 1  
displayed the eight fundamental shapes. Depending on the 
number of digitized bits and the amount of noise in the 
original image and the window sizes used in derivative 
estimation, regions of a  given surface type label tend to 
connect (in the sense of four-connectedness) with distinct, 

of the number of contractions k, a  contraction projile for 
the original region is created. Contraction profiles for five 
regions of a  surface type label image (for the coffee cup 
range image) are shown in Fig. 4. A seed region size 
threshold tseed for the minimum number of pixels required 
to be in a seed region (e.g., 10) is a preselected parame- 
ter. If we examine the contraction profile, there will al- 
ways be an contraction number k such that ) Rky J 1 tS& 
and ] Rkf ’ I < tSeed. The region RF is selected as the seed 
region (or kernel region) for subsequent surface fitting and 
region growing. The circles in Fig. 4  indicate the size of 
the selected seed region. The threshold tseed must always 
be greater than or equal to the minimum number of points 
required for the simplest surface fit (i.e., 3  points for a  
plane). 

The fundamental purpose of the contraction profile 
computation for seed region extraction is to find a small 
enough isolated region that 1) is not inadvertently con- 
nected to any separate, but adjacent surface regions, and 
2) is far enough inside the boundaries of the actual surface 
primitive to provide good surface fitting. The 3 x 3 ero- 
sion operation (i.e., zero out pixels that have zero-valued 
neighbors and leave other pixels alone) is a simple, com- 
mon image processing operation that can be accomplished 
in less than a video frame time on existing image pro- 
cessing hardware. Other methods for obtaining seed re- 
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functions to be used. A particular function type (or fit or- 
der) is referred to as mk where 1 I mk %  1 F 1. The gen- 
eral fitting function of type mk is denoted z = f( mk, 2:; 
x, y). The general surface fitting process, denoted 4, 
maps the original image data g (x, y  ), a connected region 
definition RF, and the current fit order mk into the range 
space 6l” x 6l+ where 61i+ is the set of possible errors 
(nonnegative real numbers) : 

(ii;, E:) = Lf(mk, Z?;, g) 

and has the property that the error metric 

(25) 

k- Amk 
61 - II f ( , 2:; x3 Y> - l?(X? Y)& (26) 

is the minimum value attainable for all functions of the 
form specified by mk. Equally weighted least-squares SUr- 
face fitting minimizes the error metric 

Seed Region 
Sm Threshold 

Selected 
Seed Region SIZE 

A 

I . 

Fig. 4. Contraction profiles for five surface type regions. 

gions are possible, but this method is simple and poten- 
tially very fast. 

IX. ITERATIVE VARIABLE ORDER SURFACE FITTING 

A plane is always fitted first to the small seed region 
using equally weighted least squares. If the seed region 
belongs to a surface that is not extremely curved, a plane 
will fit quite well to the digital surface defined by the orig- 
inal image data. If the plane fits the seed region within 
the maximum allowable RMS error threshold E,,, = 
WIUims, then the seed is allowed to grow. The value of wl 
was empirically set to 2.5 in our experiments to allow for 
variations in the image noise process. If not, the seed is 
fitted with the next higher-order surface (e.g., biqua- 
dratic), and the algorithm proceeds similarly. When the 
seed is allowed to grow, the functional description of the 
surface over the seed region is tested over the entire image 
to determine what pixels are compatible with the seed re- 
gion as described in the next section. 

This surface fitting process may be stated more pre- 
cisely as follows. Let I be the rectangular image region 
over which a hypothetical piecewise smooth function z = 
g(x, y) is defined. Let Z?,“=” denote the seed region pro- 
vided by the seed extraction algorithm that is assumed to 
be contained in the unknown actual region RI in the im- 
age: Rfi,“=” G  RI C I. The seed region Rf=’ must be con- 
verted to a full region description Z?, that approximates the 
desired region description RI. 

Now, let a’ f be the parameter vector associated with the 
functional fit to the pixel values in the given region & of 
the kth iterative surface fit. Let 03’ denote the set of all 
parameter vectors for the set of approximating functions 
F, and let 1 F I be the number of different types of surface 

(27) 

where I Z?F ( is the number of pixels in the region Z?F (the 
area of the region). The parameter vector 2: and the sur- 
face fit order mk are passed onto the region growing pro- 
cedure if the RMS fit error test and the regions test are 
passed. Otherwise, mk is incremented and the higher order 
surface is fitted. If all four fit orders were tried and the 
error was never less than the threshold E,,,, the seed re- 
gion is rejected by marking off the pixels in the surface 
type label image, and then continuing by looking for the 
next largest connected region of any surface type. 

A, RMS Fit Error Test 
The RMS fit error test tests the surface fit error, which 

measures the variance of the error of the fit due to the 
noise in the data, against the maximum allowable fit error 
as determined from the noise variance estimate for the 
image: E: < E,,, = w~(T,~~. If the error is small enough, 
the surface fit passes the test; otherwise, it fails. The coef- 
ficient wI = 2.5 is an empirically determined parameter. 

B. Regions Test 
The regions test is required because it is possible for a 

lower order function to fit a higher order function over a 
finite region within the maximum allowable fit error 
threshold even though the lower order fit is not appropri- 
ate. It is possible to detect the presence of a higher order 
function in the data (without letting the fit error increase 
all the way up to the error threshold) by analyzing the 
distribution of the sign of the fit errors (residual errors) at 
each individual pixel of the fit. We have generalized the 
runs test of nonparametric statistics [28] to assist in the 
detection of higher order behavior. This test is discussed 
in detail in [8], and is summarized here. 

Consider that three long residual-sign intervals occur 
when fitting a line to a slowly bending curve as in Fig. 5. 
Fitting a plane to a small portion of a sphere is very sim- 
ilar except that two large residual-sign regions occur as is 
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One-Dimensional Runs Test 

Residual Error Sign Function 

Test for 
Large Slgned 
Error Regions 

Fig. 5. Runs test and regions test ideas for noiseless data examples. 

also shown in Fig. 5. The regions test is performed as 
follows: 1) For each original pixel value in the region l?: 
lying above the fitted surfacef( mk, a:; X, y), turn a pixel 
OIZ in a positive residual error image; for each pixel below 
the surface, turn a pixel on in a negative error image (all 
pixels initially off in both images). 2) Perform one 3 X 3 
erosion on each error image and count the pixels left in 
the largest connected region in each image. 3) If either 
count is greater than r, percent of the size of the current 
region 1 Rf (, then increase the fit order mk. The experi- 
mental results used a regions test threshold of r, = 0.9 + 
0.2Uimg percent, which was determined empirically. 

X. REGION GROWING 

After a surface of order mk is fitted to the region t?: in 
the kth iteration, the surface description is used to grow 
the region into a larger region where all pixels in the larger 
region are connected to the original region and compatible 
with the approximating surface function for the original 
region. The parallel region growing algorithm accepts as 
input the original digital surface g (x, y), the approximat- 
ing function J”( mk, iif; X, y) and the surface fit error E; 
from the surface fitting algorithm. It does not use the re- 
gion definition until later. To determine the zeroth-order 
“surface continuity” compatibility of each pixel p E I with 
the approximating surface description, the polynomial 
based prediction for the pixel value and the actual pixel 
value 

f(p) = P(mk, 8; X(P), Y(P)) and 

Z(P) = &(P>? Y(P)) w 
are compared to see if the pixel p is compatible with the 
approximating surface function. If the magnitude of the 
difference between the function value and the digital sur- 
face value is less than the allowed tolerance value, de- 
noted woe:, then the pixel p is added to the set of com- 
patible pixels, denoted C(mk, Zi:, e:), which are com- 

patible with the surface fit to the region l?:. Otherwise, 
the pixel is incompatible and discarded. The result of this 
process is the compatible pixel list: 

C(mk, iif, E:) = {p E I: 12(p) - z(p)1 5 WOE:). 

(29) 
This set of compatible pixels C( * ) is essentially a thresh- 
olded absolute value image of the difference between the 
original image data and the image created by evaluating 
the function fat each pixel. For our experimental results, 
the factor w. = 2.8 was used. This ensures that approxi- 
mately 99.5 percent of all samples of a smooth surface 
corrupted by normally distributed measurement noise will 
lie within this error tolerance. This factor has been found 
to work well in the presence of other types of noise also. 

The compatible pixel list is then post processed to re- 
move any pixels that do not possess “surface normal con- 
tinuity” compatibility with the approximating surface. Let 
& ( p) and &( p) denote the first partial derivative esti- 
mates of the local surface as computed from the image 
data at the pixel p via convolutions as mentioned earlier. 
Let & ( p) and g,(p) denote the first partial derivatives 
of the approximating surface as computed from the poly- 
nomial coefficients at the pixel p. Let i? be the unit normal A 
vector as determined by the data, and let Z be the unit 
normal vector as determined by the approximating sur- 
face: 

n; = Hu -&?u IIT 
Jl + g; + ,J; 

i = 1-h --A IIT 
Jl +&+&’ 

(30) 
A pixel is compatible in the sense of surface normal con- 
tinuity if the angle between the two unit normals is less 
than some threshold angle 8,: 

,. - 
cos-l (Z * ii) 5 et. (31) 

For our experimental results, the threshold angle is given 
by 8, = 12 + 16q,s degrees, where the coefficients were 
determined empirically. The test may be rewritten in the 
following form to avoid square roots and to incorporate 
the derivative values directly: 

(&I - &)’ + (&I - &J2 + (&&J - &m2 

5 sin2 (0,). (32) 
Since the compatibility test for surface normal continuity 
involves many computations per pixel, it is only applied 
to those pixels that have passed the compatibility test for 
surface continuity. Excellent segmentation results have 
been obtained without the surface normal continuity test 
on many images that lack small orientation discontinui- 
ties. However, a data-driven smooth-surface segmenta- 
tion algorithm must always perform the test to ensure that 
growing regions do not inadvertently grow over small or 
noisy orientation discontinuities. 
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A. Region Iteration 
W h e n  the parallel region growing computat ion has  op-  

erated on  every pixel, the compatible pixel list 
C(mk, ?if, E!) C I is complete. The  largest connected 
region in this set of pixels that over laps the seed re ion 

4+1 Z?f must then be  extracted to create the next region RI . 
This process is denoted A ( * ). The  output region 8:’ ’ 
must have  the property that it is the largest connected re- 
gion in the list of compatible pixels satisfying 

fi: fl Z?:” #  4  = NullSet (33) 

because it is possible to get larger connected regions in 
the compatible pixel list than the connected region cor- 
responding to the seed region. The  iterative process of 
region definition via largest, overlapping, connected re- 
gion extraction may be  expressed as  follows: 

Zt:+’ = A(C(mk, Z:, E:), lif) = @(Rf) (34) 

where 9  ( * ) represents all operat ions required to compute 
the region RF’ ’ from the region Z?:. It is interesting to note 
that since the regions of an  image form a  metric space [8], 
the desired solution region is a  fixed point R = 9(R) of 
the mapping 9  ( * ). 

The  new region is then considered as  a  seed region and  
processed by  the surface fitting algorithm 

(ii:“, $+I) = Lf(mk+‘, I?:+‘, g) (35) 

to obtain a  new parameter  vector and  a  new surface fit 
error. If this region is al lowed to grow again el k+l <  %lax, 
then the corn atible 

P 
pixel list is recomputed 

C(mk+‘, 2if+‘, e1 +’ ), the largest connected over lapping 
region of C( * ) is extracted, and  so on  until the termina- 
tion criteria are met. 

B. Sequential Versus Parallel Region Growing 
The region growing process is formulated above  for a  

parallel implementation where bivariate polynomials are 
evaluated over  images and  regions. It must be  noted that 
this simple, parallel region growing formulation is equiv- 
alent to more complicated, sequential, spiraling region 
growing approaches until the last iteration. At the last 
iteration, the processing of the compatible pixel list be-  
comes an  important feature of the segmentat ion algo- 
rithm. After the growing region has  been  accepted,  any  
other sufficiently large, reasonably shaped regions in the 
compatible pixel list are also accepted as  part of the same 
surface. For example, in the coffee cup range image 
shown in the experimental results section, the flat back-  
g round visible through the handle of the cup is correctly 
ass igned to the larger background surface without high- 
level knowledge, only the surface compatibility concepts.  
Thus,  nonadjacent  compatible regions can be  labeled as  
such during the surface acceptance stage without further 
postprocessing operat ions because of the parallel region 
growing process during the last iteration prior to accep-  
tance. On  a  sequential  machine, sequential  region grow- 
ing methods can offer faster per formance for the other it- 

erations, but the parallel formulation only takes a  few 
seconds on  a  VAX 11/780 for the 128  x 128  images 
shown in the experimental results section. 

XI. TERMINATION RULES 

The termination criteria are expressed as  the following 
set of rules: 

1) IF ) #  ( =  (@ ( for any  j <  k, THEN stop! Basi- 
cally, this rule states the condit ion that we are looking for 
a  fixed point of the mapping G  in the metric space of im- 
age  regions. Note that only the size of the region needs  
to be  checked from iteration to iteration, not the detailed 
region description. 

2) IF e: >  emax AND mk 2  1  F 1, THEN stop! The  im- 
age  data is varying in a  way that the highest order function 
cannot  approximate. 

3) At least two iterations are required for a  given sur- 
face fit order mk before the algorithm is al lowed to stop. 

These rules state the essential concepts involved in ter- 
minating the surface fitting iteration. There is also a  max-  
imum limit on  the number  of possible iterations to prevent 
extremely long iterations. In all tests done  to this point, 
the maximum limit of 30  iterations has  never  been  reached 
and  the average number  of iterations is approximately 
eight. 

XII. SURFACE ACCEPTANCE AND REJECTION DECISIONS 

After the surface growing iterations have terminated, 
we are left with the set of compatible pixels and  the con- 
nected surface region itself a long with the function pa-  
rameters and  the fit error. For growth surface regions that 
exceed the error threshold emax,  but not by  much,  an  ac- 
ceptance zone is def ined above  the error threshold such 
that surface regions within the acceptance zone are ac- 
cepted. The  acceptance threshold used for our  experi- 
ments is 50  percent greater than E,,, =  W ieims where wl 
=  2.5. Surface regions with fit errors beyond the accep-  
tance zone are rejected. 

W h e n  a  surface region is rejected for any  reason, the 
seed region responsible for the surface region is marked 
off in the surface type label image as  having been  pro- 
cessed,  which prohibits the use of the same original seed 
region again. W h e n  a  surface region is accepted,  all pix- 
els in that region are similarly marked off in the surface 
type label image so that they are not considered for future 
seed regions. In this respect, surface rejection and  surface 
acceptance are similar. However,  the surface acceptance 
process also updates the region label image, the recon- 
struction image, and  the error image. In addition, the ac- 
ceptance process dilates the accepted region description 
and  checks if there are any  connected groups of pixels in 
that dilated region that are surface-continuity compatible 
with the accepted surface and  connected with the accepted 
region. Surface-normal compatibility is not required when 
adding these pixels because of the difficulty in getting 
accurate surface normal estimates near  surface region 
boundaries.  
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XIII. EXPERIMENTAL RESULTS 
The surface-based segmentation algorithm has been ap- 

plied successfully to more than 40 test images. In this 
section, the segmentation algorithm’s performance on six 
range images and three intensity images is discussed. The 
following set of images is displayed for each input image: 

1) original gray scale image (upper left). 
2) surface type label image (lower left). 
3) region label image segmentation plot (lower right). 
4) reconstructed gray scale image (upper right). 
The surface type label image shows the coarse “initial 

guess” segmentation provided by labeling each pixel with 
one of eight labels according to the sign of the mean and 
Gaussian curvature. Each region in this image is an iso- 
lated set of connected pixels that all have the same surface 
type label. The region label image shows the final refined 
segmentation obtained from the iterative region-growing 
algorithm. Each region in this image is the support region 
over which a particular polynomial surface function is 
evaluated. The reconstructed image is computed from the 
region label image and the list of surface parameters, and 
it shows the visual quality of the approximate surface rep- 
resentation. For each image, we also include the noise 
variance estimate computed from the orginal image and 
an error statistic computed from the original-reconstruc- 
tion difference image. 

When a user runs the program on an image, the name 
of the image is typically the only input required by the 
program. All internal parameters are either fixed or au- 
tomatically varying based on the noise variance estimate. 
The user does have the option to change five of the fixed 
internal parameters and to override the three automati- 
cally set thresholds: 1) the maximum allowed RMS fit er- 
ror fmax, 2) the surface normal compatibility angle thresh- 
old 19,, and 3) the regions test threshold r,. Eight of the 
nine images shown here were obtained without any ad- 
justments whatsoever, but more interesting results were 
obtained by overriding the automatically set thresholds for 
the computer keyboard range image, which has nonsta- 
tionary noise. This was necessary because of the station- 
arity assumption of the current noise variance estimation 
algorithm, which allows us to describe the image noise 
with a single number. 

A. Interpretation of Intensity Image Results 
The entire segmentation algorithm is based only on the 

knowledge of piecewise-smooth surfaces and digital sur- 
faces. Since intensity images are also digital surfaces, the 
algorithm can be applied to intensity images for segmen- 
tation purposes. It is important to understand that the di- 
mensionality of a digital surface is the same regardless of 
the meaning of the sensed values at each pixel. And since 
the difference between range images and intensity images 
is the interpretation of the sensed values (depth versus 
light intensity), the difference in the algorithm output lies 
in how the surface segmentation is interpreted. Intensity 
image surface primitives are only surface function ap- 

proximations to the intensity image data and nothing 
more. The segmentation results will be useful when in- 
tensity image surfaces correspond to physical surfaces in 
a scene. This is of course equivalent to an implicit as- 
sumption that edge detection approaches use: the bound- 
aries of intensity image surfaces correspond to the bound- 
aries of physical surfaces in a scene. However, our image 
description is much richer than most edge-based image 
descriptions because not only are guaranteed closed-curve 
edges of regions detected, but the approximate value of 
every single image pixel is encoded in the polynomial 
coefficients. If intensity image surface primitives can be 
reliably extracted, it is possible to apply shape from shad- 
ing ideas [58] to intensity surface primitives [14]. 

B. Coffee Cup Range Image (ERIM) 

The coffee cup range image is a 128 x 128 8-bit image 
from an ERIM phase-differencing range sensor [ 1081. The 
segmentation results are shown in Fig. 6. The measured 
noise variance is cimg = 1.02, and the mean absolute de- 
viation between the final reconstructed image and the 
original image is E( ( e( i, j ) ( ) = 1.46. The final seg- 
mentation clearly delineates the outside cylindrical sur- 
face of the cup, the foot of the cup, the inside cylindrical 
surface of the cup, the background table surface (which 
was recognized as a single surface with three subregions 
despite the nonadjacency of the region visible through the 
handle and the small hole in the side of the cup), and the 
cup handle surface (which is represented as two surfaces 
due to the twisting of the surface from this view). Al- 
though this image is easy to segment by many other meth- 
ods, the subtle difference in surface variations between 
the foot and the main body of the cup is difficult to detect 
with an edge detector. Two small meaningless surfaces 
did arise on the steeply sloped sides of the cup because 
the laser range sensor has difficulty obtaining good results 
when most of the laser energy is reflected away from the 
sensor. Note that although this algorithm knows nothing 
about cylinders, the cylindrical surface of the cup is ad- 
equately segmented. 

Fig. 7 shows discrete contour lines for the original im- 
age (left) and the reconstructed image (right). These con- 
tour lines bound regions of constant range. This presen- 
tation is needed to adequately appreciate the shape 
information in the noiseless reconstructed image as com- 
pared to the noisy original image. The background ap- 
pears to be curved due to image parameterization distor- 
tions caused by the range sensor’s two orthogonal axis 
mirrors and equal angle increment sampling as discussed 
in the Appendix. Fig. 8 shows the variations in RMS fit 
error, region size, and surface fit order as a function of 
the region growing iteration number for the background 
surface. Fig. 9 shows the actual polynomial coefficients 
used in the image reconstruction for the six primary re- 
gions: 1) background, 2) cup body, 3) cup interior, 4) top 
of handle, 5) bottom of handle, and 6) foot of cup. The 
mean absolute error (el), the standard deviation (e2), and 
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Fig. 6. Segmentation results for coffee cup range image. 

Fig. 7. Range contour lines for original and reconstructed images. 

Fig. 8. Fit error, region size, and surface order versus iteration number. 

Polynomial Crkph Surfacea for '/img/range/cofcupl' (128 x 128 Image) 
I 2 I a 3 3 3 22 3 4 4 
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g= 0.000634434843 h= 0.01667110329 i= -0.002683064026 
j= -0.003846896677 k= 8.273602966.-06 1= -1.84330636*-06 
IP= -0.0001033402269 n= 7.022812268~06 o= 6.766861748e-06 
0.862173 1.04462 2.04707 (el.e2,max) 846 Pxll in Rgn 

Surf# 4 Bicubic Surface 
a= -66663.34666 b= 1086.103360 c= 660.0673791 
d= -6.936330046 a= -7.006112872 f= -1.772838004 
g= 0.02117382282 h= 0.01207493126 i= 0.01646967941 j=O.O01442366468 
0.693086 0.870873 1.04343 (01,=2,*max) 86 Pxlm in Rgn 

Surf# 6 Biquartic Surfaca 
a= 68478.67644 b= -4177.347606 c= 6663.461039 
d= -62.08408674 a- 61.16736637 f= -78.3777114 
g= 0.02146723210 h= 0.080323446 i= -0.30414P7426 
j= 0.2363116629 k= 0.001884292Q74 1= -0.006693080286 
F 0.001788868803 II= 0.0003022406187 o= -0.001836806161 
1.67884 1.03 6.13262 (aI.a2,amax) 107 Pxla in Rgn 

Surf# 6 Biquadratic Surface 
a= 16.6160474 b= 4.368161068 c= O.QlO2166606 
d= 0.0009697936663 .= -0.03381976184 f= -0.0100Q901368 
1.30028 1.61381 3.97869 (mi,m2,max) 146 Pxla in Rgn 

Fig. 9. Bivariate polynomial coefficients describing coffee cup surfaces. 
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Fig. 10. Segmentation results for computer keyboard range image. 

the maximum error (emax) are listed for the region as well 
as the number of pixels in the accepted region (statistical 
outliers not included). 

C. Computer Keyboard Range Image (ERM) 
The computer keyboard range image is a 128 x 128 

6-bit image from the ERIM range sensor. The segmenta- 
tion results are shown in Fig. 10. The measured noise 
variance is wirng = 1.68, and the mean absolute deviation 
between the final reconstructed image and the original im- 
age is E( ( e (i, j ) ( ) = 1.96. The surface type label image 
shows the uneven distribution in the additive noise field. 
The smooth surface of the keyboard body has very little 
noise in comparison with the noise on the keys them- 
selves. This results from the specularity of the key sur- 
faces and diffuseness of the keyboard body. This nonsta- 
tionarity of the noise disobeyed the stationarity 
assumption of the noise estimation program and the au- 
tomatically set thresholds did not provide the segmenta- 
tion quality of other images. Therefore, manually set 
thresholds were used for the results shown here. Some 
individual keys have been segmented whereas other keys 
were grouped together. However, the center of each key 
is available from the surface type label image if needed. 
Although it cannot be seen in this presentation of results, 
each key center is represented as a small isolated pit or 
valley region surrounded by ridge and peak regions rep- 
resenting the surrounding parts of the key. 

D. Ring on Steps (ERM) 
The ring on steps range image is a noisy 128 X 128 

8-bit image from the ERIM range sensor. The segmenta- 

tion results are shown in Fig. 11. The ring has a rectan- 
gular cross section and the step lower part of the steps is 
cut off at an oblique angle. The measured noise variance 
is eimg = 2.05, and the mean absolute deviation between 
the final reconstructed image and the original image is 
E(le(i,j)l) = 3.31. This image is the noisiest range 
image in results documented here. The steeply sloped sur- 
faces are much noisier than the other surfaces as occurred 
in the coffee cup image. Fig. 12 shows the contour lines 
for the original image (left) and the reconstructed image 
(right). The noiseless quality of the reconstructed image 
is quite apparent in this presentation. 

E. Auto Part (INRIA) 
The original data for the auto part was acquired from 

the INRIA range sensor (made available courtesy of Prof. 
T. Henderson of Univ. of Utah and INRIA) and was for- 
matted as a long list of (x, y, z) points. Although the data 
was easily divided into scan lines, a different number of 
points occurred on each scan line, and the points were not 
regularly spaced. This data was converted to 128 X 128 
8-bit range image by a separate processing step not doc- 
umented here. The segmentation results for this auto part 
range image are shown in Fig. 13. The measured noise 
variance is cirng = 0.60, and the mean absolute deviation 
between the final reconstructed image and the original im- 
age is E( I e (i, j > I ) = 1.48. This 2.5-D segmentation is 
similar to 3-D segmentations published in [33], [ 121, [52]. 

F. Cube with Three Holes 
The cube with three holes drilled through it provides an 

interesting nonconvex combination of flat and cylindrical 
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Fig. 11. Segmentation results for ring on steps range image 

/b/img/range/ringbloe 

Fig. 12. Range contour lines for original and reconstructed images 

surfaces. This range image was created using a depth- 
buffer algorithm on a 3-D solid model created using 
SDRUGEOMOD and adding pseudo-Gaussian noise. 
The segmentation results are shown in Fig. 14. The mea- 
sured noise variance is eimg = 1.89, and the mean abso- 
lute deviation between the final reconstructed image and 
the original image is E( I e (i, j ) ) ) = 2.94. The three lin- 
ear dihedral edges of the cube have been determined to 
subpixel precision by intersecting the planar descriptions 
for the three planes. The results here show the raw seg- 
mentation in the region label image. 

G. Road Scene Range Image (ERIM) 
The road scene range image is a 128 X 128 range image 

from the ERIM sensor. The segmentation results are 
shown in Fig. 15. The measured noise variance is cimg = 

1.82, and the mean absolute deviation between the final 
reconstructed image and the original image is 
E( ( e( i, j ) I ) = 0.96. The edges of the road are clearly 
delineated in the segmentation results. The false edge 
crossing the road results from the limited bending capa- 
bility of the biquartic polynomial within the tolerances 
specified by the automatic threshold setting mechanisms. 
This edge can be removed in several ways: 1) the error 
tolerances can be increased manually, 2) higher order sur- 
faces can be used, or 3) the range data can be precorrected 
(resampled) to eliminate the geometric distortions pro- 
duced by equal angle increment sampling in scanning laser 
radars that use two mirrors rotating around orthogonal 
axes as discussed in the Appendix. 

H. Road Scene Intensity Image 
A different road scene is represented in the 128 X 128 

e-bit intensity image. The intensity image segmentation 
results are shown in Fig. 16. The measured noise variance 
is Uimg = 2.27, and the mean absolute deviation between 
the final reconstructed image and the original image is 
E( le(i, j)l) = 5.48. The edges of the road are clearly 
delineated, and the quality of the image reconstruction is 
quite good. A faster version of the segmentation algo- 
rithm might be used for navigation by growing fixed im- 
age regions directly in front of the vehicle in both regis- 
tered range and intensity images. The polynomial surface 
primitives will grow only over the image regions corre- 
sponding to the road. The complementary information in 
the range and intensity images can be combined to avoid 
obstacles and plan paths over smooth surfaces. 
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Fig. 13. Segmentation results for auto part range image. 

Fig. 14. Segmentation results for cube with three holes range image. 

I. Space Shuttle Intensity Image E( I e(i, j)( ) = 4.32. The reconstructed image lacks de- 
tail whenever the detail in the original image consists of 

The segmentation results for an image of a space shuttle only a few pixels (10 or less) or is only one pixel wide. 
launch are shown in Fig. 17. The measured noise variance For example, a small piece of the gantry tower is missing 
is (J,,, = 2.71, and the mean absolute deviation between in the reconstructed image. The surface type label image 
the final reconstructed image and the original image is segmentation appears completely incoherent when com- 
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Fig. 16. Segmentation results for road scene intensity image 

pared to the original shuttle image. This is unlike most J. House Scene Intensity Image (Univ. of Mass.) 
range images where some structure is usually perceivable. 
However,  it still provided enough grouping information A house scene, which has been segmented by many 
to the region growing algorithm to produce the final seg- other techniques in the literature, was used to test the per- 
mentation. The sky, the smoke clouds, the main tank, and formance of the surface-based segmentation algorithm. 
the bright flames are isolated as intensity-image surface The segmentation results for the 256 x 256 &bit house 
primitives. scene image are shown in Fig. 18. Owing to the sequen- 
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Fig. 17. Segmentation results for space shuttle intensity image. 

Fig. 18. Segmentation results for house scene intensity image. 

tial nature of the algorithm, segmentation processing time the shutters, the side of the house, the 
is related to image complexity, and several CPU hours on trees are all well segmented. The tree 
a VAX 1 l-780 were needed to compute these results con- textured, but are still adequately segn 
sisting of 136 intensity surface primitives. The measured the final processing of coalesced unexpl 
noise vanance 1s (Time = 3.93, and the mean absolute de- the smoothness of the tree region in the 
viation between the- final reconstructed image and the age. The quality of the image reconstm 
original image is E( 1 e( i, j ) I) = 9.44. The sky, the roof mentation were obtained with the exact 
of the house, the lawn, the garage door, the man’s pants, nal parameters used for five of the range 

chimney, and the 
: regions are very 
nented because of 
ained pixels. Note 
reconstructed im- 

action and the seg- 
same set of inter- 
images. We know 
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of no  other algorithm that can claim this type of segmen-  
tation per formance on  such a  wide variety of images. 

XIV. CONCLUSIONS AND FUTURE DIRECTIONS 

The experimental results obtained by  applying the sur- 
face-based segmentat ion algorithm with a  fixed set of in- 
put parameters to a  large test database of over  40  images, 
including range and  intensity images, indicates that data- 
dr iven segmentat ion of digital surfaces based on  a  piece- 
wise-smooth surface model,  surface curvature sign, and  
polynomial surface approximations is feasible and  pro- 
vides excellent results. Nine sets of image results are in- 
c luded here to document  these claims. 

This sur face-based approach is very general  in many  
respects. Flat surfaces are descr ibed explicitly as  being 
flat, and  arbitrary curved surfaces are descr ibed as  being 
curved within the context of the same variable-order sur- 
face fitting algorithm. Most techniques in the literature 
need  to handle flat and  curved (quadric) surfaces as  sep-  
arate special cases. No a  priori assumptions about  surface 
convexity, surface symmetry, or object shape are used.  
The  final segmentat ion/reconstruct ion description is 
dr iven by  the content of the data, not by  expected high- 
level models as  is done  in many  other approaches.  More- 
over, the exact same algorithm with the exact same set of 
parameters is shown to be  capable of segment ing range 
images and  intensity images. W e  believe that any  image 
that can be  represented by  a  piecewise-smooth surface 
over  sufficiently large regions (more than lo-30 pixels) 
can be  segmented well by  this algorithm. 

The  basic sign-of-curvature/iterative variable-order fit- 
ting approach is applicable to the segmentat ion of signals 
in any  number  of dimensions, not just scalar functions of 
two variables. The  method is shown to be  successful for 
edge  interval segmentat ion in [HI. If one-pixel wide edges  
are available, x  and  y can be  parameter ized as  a  function 
of arc length yielding a  2-vector function of a  single 
variable. Only three sign-of-curvature labels are needed  
for each  1-D function: concave up, concave down,  and  
flat. In the future, we hope  to be  able to apply the algo- 
rithm to signals represent ing scalar functions of three 
variables, such as  dynamic scenes and  3-D images from 
CAT scanners.  In that case, 27  sign-of-curvature labels 
are needed,  and  approximating functions require many  
coefficients (20 for a  tricubic). 

Perception of surfaces plays a  key role in image under-  
standing. W e  have shown experimentally that the seg- 
mentat ion of range images into scene surfaces can be  data- 
dr iven and  need  not involve higher level knowledge of 
objects. The  perceptual organization capabilit ies of the 
sur face-based image segmentat ion algorithm appear  to 
also be  worthwhile capabilit ies for intensity image seg- 
mentat ion as  is shown via experimental results. More re- 
search is needed  to determine how higher level knowledge 
should be  used in relating intensity-image surface primi- 
tives to the real scene surfaces. 

Better methods of noise estimation are needed  to im- 
prove the automatic threshold selection process. For non-  

stationary noise, it may be  necessary to store an  estimate 
of the noise var iance for each  pixel or region in the image. 
The  noise var iance estimates must then be  consulted dur- 
ing each iteration. W e  are also looking into various types 
of adapt ive smoothing, such as  in [98], to improve the 
quality of the partial derivative estimates used to compute 
surface curvature and  check surface normal compatibility. 
Also, various applications will require different types of 
surface models. The  shape description needs  for NC ma- 
chining may be  quite different than those for surface shape 
matching in 3-D object recognit ion, and  neither applica- 
tion may be  able to use the extracted polynomial surface 
primitives in the current form descr ibed here. Thus,  the 
conversion of the shape information into more useful 
forms for given applications is another  key issue that must 
addressed.  

APPENDIX 

EQUAL ANGLE INCREMENT SAMPLING 

Formulas for calculating the geometr ic distortion intro- 
duced by  equal  angle increment sampling for range sen- 
sors with two orthogonal axis rotating mirrors and  with 
spherical azimuth/elevation scanning mechanisms are in- 
c luded here. Let z, x, y  be  3-D Cartesian coordinates with 
z represent ing depth from the x, y  focal plane. Let r, 8, 4  
be  3-D orthogonal axis angular  coordinates used for range 
sensors with two orthogonal axis mirrors. Let r, 13, $  be  
3-D spherical coordinates used for azimuth-elevation 
range sensors.  

The  transformations from orthogonal axis angular  co- 
ordinates to Cartesian coordinates are given by  the fol- 
lowing: 

x(r, e,+) =  
r tan 0  

Jl +  tan2 8 + tan2 4  
(36) 

y(r, 0, 4) =  
r tan 4  

Jl +  tan’ e + tan2 4  
(37) 

z(r, 8, 4) =  
r 

Jl + tan2e+tan24’ 
(38) 

Note the symmetry between the horizontal and  vertical 
angles. The  inverse transformations are given by  

t-(x, y, z) =  Jx2 + y2 + z2 (39) 
X 

e(x, z) =  tan-’ z 
0  

+(y, z) =  tan-’ i 
0  

(41) 

Note that horizontal angle 8  is not a  function of the ver- 
tical Cartesian coordinate y and  that the vertical angle 4  
is not a  function of the horizontal Cartesian coordinate x. 

The  spherical coordinate transformation from (x, y, z) 
to (r, 0, 4) coordinates is given by  the following equa-  
tions where $  is the elevation angle and  8  is the azimuth 
angle: 
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x(r, 8, +) = r cos 4 sin 8 (42) 
y(r, II/) = r sin $ (43) 

z(r, 8, Ic/) = r cos * cos 8. P) 

The inverse transformations for r and 0 are identical to 
the orthogonal axis case, but the expression for the ele- 
vation angle is given by 

$(x, y, z) = tan-’ (Jr&J. (45) 

Note that rl, depends also on x in addition to y and z. 
Hence, the only difference between orthogonal axis an- 
gular coordinates and spherical coordinates is in the ver- 
tical angles 4 and $. 

The “warping” of surfaces in image coordinates by 
equal angle increment sampling in 8,and 4 or $, which 
was mentioned in the text, can be understood by compar- 
ing the depth expression for Cartesian coordinates to the 
depth expressions for orthogonal axis angular coordinates 
and spherical coordinates: 

Z(X, y) = d(r (x, Y))' - (x2 + Y2) (46) 

40, 44 = de, 4.4 
JI + tan2 e + tan2 4 

(47) 

z(e, +) = r(e, $) cos e cos t+b. (48) 
Flat surfaces in z(x, y) data will appear curved in z( 8, 
4) data or z( 8, Ic/) data because of the differences in sur- 
face parameterization. If given range images from an or- 
thogonal axis coordinate z ( 0,4 ) range sensor or spherical 
coordinate z ( 8, II/ ) range sensor, the Cartesian x and y 
coordinates can be computed for each angle pair (( 0, 4) 
for orthogonal axis angular coordinates or (8, rl/ ) for 
spherical coordinates ): 

.bde, 44 = de, 4) tan 0 

Xspher(e, +) = 0, $1 tan e (49) 

hde, 4) = 40, 4) tan 4 

Yspherw +) = Jz2(ey IC/) + X&o, IC/) tan II/. (50) 
The “difficulty” with these x, y coordinates, from an im- 
age processing viewpoint, is that they do not lie on an 
equally spaced grid of image pixels. If desired, interpo- 
lation can be used to resample the surface data to obtain 
an equally spaced sampled Cartesian orthographic projec- 
tion z (x, y ) range image, but this is not necessary in many 
cases. Since most of the range images in this paper use a 
relatively small field of view, the range images can be 
segmented and approximate surface shape can be recon- 
structed directly without resampling. Once the appropri- 
ate image regions have been segmented, accurate physical 
surface shape in Cartesian coordinates can be computed 
(if all range sensor parameters are known) by computing 
the Cartesian x, y, z coordinates from the angular coor- 
dinates at each pixel in the segmented image regions and 
then fitting new graph surfaces to the Cartesian data. 
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