
1

The Ball-Pivoting Algorithm
for Surface Reconstruction

Fausto Bernardini Joshua Mittleman Holly Rushmeier Cl´audio Silva Gabriel Taubin

Abstract—The Ball-Pivoting Algorithm (BPA) computes a triangle mesh
interpolating a given point cloud. Typically the points are surface samples
acquired with multiple range scans of an object. The principle of the BPA is
very simple: Three points form a triangle if a ball of a user-specified radius
� touches them without containing any other point. Starting with a seed
triangle, the ball pivots around an edge (i.e. it revolves around the edge
while keeping in contact with the edge’s endpoints) until it touches another
point, forming another triangle. The process continues until all reachable
edges have been tried, and then starts from another seed triangle, until all
points have been considered. We applied the BPA to datasets of millions of
points representing actual scans of complex 3D objects. The relatively small
amount of memory required by the BPA, its time efficiency, and the quality
of the results obtained compare favorably with existing techniques.

Keywords—3D scanning, shape reconstruction, point cloud, range image.

I. I NTRODUCTION

Advances in 3D data-acquisition hardware have facilitated the
more widespread use of scanning to document the geometry of
physical objects for archival purposes or as a step in new product
design. A typical 3D data acquisition pipeline consists of the
following steps (adapted from [1]):
Scanning:Acquisition of surface samples with a measurement
device, such as a laser range scanner or a stereographic system.
Data registration: Alignment of several scans into a single co-
ordinate system.
Data integration: Interpolation of the measured samples, or
points derived from the measured samples, with a surface repre-
sentation, usually a triangle mesh.
Model conversion:Mesh decimation/optimization, fitting with
higher-order representations etc.

This paper focuses on the data integration phase. We present
a new method for finding a triangle mesh that interpolates an un-
organized set of points. Figure 1 shows a closeup view of a 14M
triangle mesh obtained by running our algorithm on hundreds
of scans of Michelangelo’s Florentine Piet`a. The model took 30
minutes to compute on a Pentium II PC.

The method makes two mild assumptions about the samples
that are valid for a wide range of acquisition techniques: that
the samples are distributed over the entire surface with a spatial
frequency greater than or equal to some application-specified
minimum value, and that an estimate of the surface normal is
available for each measured sample.

A. Main Contributions

� The method is conceptually simple. Starting with a seed trian-
gle, it pivots a ball around each edge on the current mesh bound-

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598. email: ffausto, mittle, holly,
taubin g@watson.ibm.com

Claudio Silva’s current address: AT&T Labs-Research, Shannon Lab-
oratory, 180 Park Avenue, Florham Park, NJ 07932-0971.csil-
va@research.att.com

Fig. 1. Section of Michelangelo’s Florentine Piet`a. This 14M triangle mesh was
generated from more than 700 scans using the ball pivoting algorithm.

ary until a new point is hit by the ball. The edge and point define
a new triangle, which is added to the mesh, and the algorithm
considers a new boundary edge for pivoting.
� The output mesh is a manifold subset of an alpha-shape [2] of
the point set. Some of the nice properties of alpha-shapes can
also be proved for our reconstruction.
� The Ball Pivoting Algorithm (BPA for short) is efficient in
terms of execution time and storage requirements. It exhibited
linear time performance on datasets consisting of millions of in-
put samples. It has been implemented in a form that does not
require all of the input data to be loaded into memory simulta-
neously. The resulting triangle mesh is incrementally saved to
external storage during its computation, and does not use any
additional memory.
� The BPA proved robust enough to handle the noise present
in real scanned 3D data. It was tested on several large scan-
ned datasets, and in particular was used to create models of
Michelangelo’s Florentine Piet`a [3] from hundreds of scans ac-
quired with a structured light sensor (Visual Interface’s Virtuoso
ShapeCamera).

The rest of the paper is structured as follows: In section II
we define the problem and discuss related work. In section III
we discuss the concepts underlying the Ball-Pivoting Algorithm,
and in section IV describe the algorithm in detail. We present
results in section V, and discuss open problems and future work
in section VI.

II. BACKGROUND

Recent years have seen a proliferation of scanning equipment
and algorithms for synthesizing models from scanned data. We
refer the reader to two recent reviews of research in the field [4],



2

[5]. In this section we focus on the role interpolating meshing
schemes can play in scanning objects, and why they have not
been used in practical scanning systems.

A. Interpolating Meshes in Scanning Systems

We define the scanning problem: Given an object, find a con-
tinuous representation of the object surface that captures fea-
tures of a length scale2d or larger. The value ofd is dictated
by the application. Capturing features of scale2d requires sam-
pling the surface with a spatial resolution ofd or less. The sur-
face may consist of large areas that can be well approximated by
much sparser meshes; however in the absence ofa priori infor-
mation we need to begin with a sampling resolution ofd or less
to guarantee that no feature is missed.

We consider acquisition systems that produce sets of range
images, i.e. arrays of depths, each of which covers a subset
of the full surface. Because they are height fields with regular
sampling, individual range images are easily meshed. The in-
dividual meshes can be used to compute an estimated surface
normal for each sample point.

An ideal acquisition system would return samples lying ex-
actly on the object surface. Any real measurement system in-
troduces some error. However, if a system returns samples with
an error that is orders of magnitude smaller than the minumum
feature size, the sampling can be regarded as perfect. A surface
can then be reconstructed by finding an interpolating mesh with-
out additional operations on the measured data. Most scanning
systems still need to account for acquisition error. There are t-
wo sources of error: error in registration; and error along the
sensor line of sight. Estimates of actual surface points are usu-
ally derived by averaging samples from redundant scans. These
estimates are then connected into a triangle mesh.

Most methods for estimating surface points depend on data
structures that facilitate the construction of the mesh. Two class-
es of methods have been used successfully for large datasets;
both assume negligible registration error and compute estimates
to correct for line-of-sight error. The first of these classes is vol-
umetric methods, such as that introduced by Curless and Lev-
oy [6]. In these methods, individual aligned meshes are used
to compute a signed-distance function on a volume grid encom-
passing the object. Estimated surface points are computed as the
points on the grid where the distance funtion is zero. The struc-
ture of the volume then facilitates the construction of a mesh
using the marching cubes algorithm [7].

The second class of methods are mesh stitching methods,
such as the technique of Soucy and Laurendeau [8]. Disjoint
height-field meshes are stitched into a single surface. Disjoin-
t regions are defined by finding areas of overlap of different
subsets of the set of scans. Estimated surface points for each
region are computed as weighted averages of points from the
overlapping scans. Estimated points in each region are then re-
triangulated, and the resulting meshes are stitched into a single
mesh. Turk and Levoy developed a similar method [9], which
first stitches (or zippers) the disjoint meshes and then computes
estimated surface points.

We observe that in both classes of methods, the method of
estimating surface points need not be so closely linked to the
method for constructing the final mesh. In the volumetric ap-

proach, a technique other than marching cubes could be used
for finding a triangle mesh passing through the estimated sur-
face points. In the mesh-joining approaches, a technique for
finding a mesh connecting all estimated surface points could be
used in place of stitching together the existing meshes. Most
importantly, with an efficient algorithm for computing a mesh
which joins points, any method for computing estimated surface
points could be used, including those that do not impose addi-
tional structure on the data and do not treat registration and line-
of-sight error separately. For example, it has been demonstrated
that reducing error in individual meshes before alignment can
reduce registration error [10].

We are developing a method that moves samples within
known scanner error bounds to conform the meshes to one an-
other as they are aligned. Our current implementation of this
method was used to preprocess the data shown in the results
section. The method will be described in a future paper.

Finally, it may be desirable to find an interpolating mesh from
measured data even if it contains uncompensated error. The pre-
liminary mesh could be smoothed, cleaned, and decimated for
use in planning functions. A mesh interpolating measured points
could also be used as a starting point for computing consensus
points.

B. State of the Art for Interpolating Meshes

Existing interpolating techniques fall into two categories –
sculpting-based [11], [12], [4] and region-growing [13], [14],
[15], like the BPA. In sculpting-based methods, a volume tetra-
hedralization is computed from the data points, typically the 3D
Delaunay triangulation. Tetrahedra are then removed from the
convex hull to extract the original shape. Region-growing meth-
ods start with a seed triangle, consider a new point and join it to
the existing region boundary, and continue until all points have
been considered.

The strength of sculpting-based approaches is that they often
provide theoretical guarantees for the quality of the resulting
surface, e.g. that the topology is correct, and that the surface
converges to the true surface as the sampling density increases
(see e.g. [16], [17]). However, computing the required 3D De-
launay triangulation can be prohibitively expensive in terms of
time and memory required, and can lead to numerical instabil-
ity when dealing with datasets of millions of points. The goal
of the BPA is to retain the strengths of previous interpolating
techniques in a method that exhibits linear time complexity and
robustness on real scanned data.

III. SURFACE RECONSTRUCTION ANDBALL -PIVOTING

The main concept underlying the Ball-Pivoting Algorithm is
quite simple. Let the manifoldM be the surface of a three-
dimensional object andS be a point-sampling ofM . Let us
assume for now thatS is dense enough that a�-ball (a ball of
radius�) cannot pass through the surface without touching sam-
ple points (see figure 3 for a 2D example). We start by placing
a�-ball in contact with three sample points. Keeping the ball in
contact with two of these initial points, we “pivot” the ball until
it touches another point, as illustrated in figure 2 (more details
are given in section IV-C). We pivot around each edge of the
current mesh boundary. Triplets of points that the ball contacts



3

(a) (b) (c)

Fig. 3. The Ball Pivoting Algorithm in 2D. (a) A circle of radius� pivots from sample point to sample point, connecting them with edges. (b) When the sampling
density is too low, some of the edges will not be created, leaving holes. (c) When the curvature of the manifold is larger than1=�, some of the sample points
will not be reached by the pivoting ball, and features will be missed.

n


�i; �j

xm

�

�

y

lk sk

�k

ck

sijo

�o

cijo

Fig. 2. Ball pivoting operation. See section IV-C for further details. The piv-
oting ball is in contact with the three vertices of triangle� = (�i; �j ; �o),
whose normal isn. The pivoting edgee(i;j) lies on thez axis (perpendicu-
lar to the page and pointing towards the viewer), with its midpointm at the
origin. The circlesijo is the intersection of the pivoting ball withz = 0.
The coordinate frame is such that the centercijo of the ball lies on the pos-
itive x axis. During pivoting, the�-ball stays in contact with the two edge
endpoints�i; �j , and its center describes a circular trajectory with center
in m and radiusjjcijo�mjj. In its pivoting motion, the ball hits a new data
point�k. Letsk be the intersection of a�-sphere centered at�k with z = 0.
The centerck of the pivoting ball when it touches�k is the intersection of
 with sk lying on the negative halfplane of oriented linelk.

form new triangles. The set of triangles formed while the ball
“walks” on the surface constitutes the interpolating mesh.

The BPA is closely related to alpha-shapes [18], [2]. In fact
every triangle� computed by the�-ball walk obviously has an
empty smallest open ballb� whose radius is less than� (see [2],
page 50). Thus, the BPA computes a subset of the 2-faces of
the�-shape ofS. These faces are also a subset of the 2-skeleton
of the three-dimensional Delaunay triangulation of the point set.
Alpha shapes are an effective tool for computing the “shape”
of a point set. The surface reconstructed by the BPA retains
some of the qualities of alpha-shapes: It has provable recon-
struction guarantees under certain sampling assumptions, and
an intuitively simple geometric meaning.

However, the 2-skeleton of an alpha-shape computed from a

noisy sampling of a smooth manifold can contain multiple non-
manifold connections. It is non-trivial to filter out unwanted
components. Also, in their original formulation, alpha-shapes
are computed by extracting a subset of the 3D Delaunay trian-
gulation of the point set, a data structure that is not easily com-
puted for datasets of millions of points. With the assumptions
on the input stated in the introduction, the BPA efficiently and
robustly computes a manifold subset of an alpha-shape that is
well suited for this application.

In [16], sufficient conditions on the sampling density of a
curve in the plane were derived which guarantee that the alpha-
shape reconstruction is homeomorphic to the original manifold
and that it lies within a bounded distance. The thorem can be
easily extended to surfaces (stated here without proof): Suppose
that for the smooth manifoldM the samplingS satisfies the fol-
lowing properties:
1. The intersection of any ball of radius� with the manifold is
a topological disk.
2. Any ball of radius� centered on the manifold contains at
least one sample point in its interior.

The first condition guarantees that the radius of curvature of
the manifold is larger than�, and that the�-ball can also pass
through cavities and other concave features without multiple
contacts with the surface. The second condition tells us that
the sampling is dense enough that the ball can walk on the sam-
ple points without leaving holes (see figure 3 for 2D examples).
The BPA then produces a homeomorphic approximationT of
the smooth manifoldM . We can also define a homeomorphism
h : T 7!M such that the distancejjp� h(p)jj < �.

In practice, we must often deal with less-than-ideal sam-
plings. What is the behavior of the algorithm in these cases? Let
us consider the case of real scanned data. Typical problems are
missing points, non-uniform density, imperfectly-aligned over-
lapping range scans, and scanner line-of-sight error.1

The BPA is designed to process the output of an accurate
registration/conformance algorithm (see section II), and does
not attempt to average out noise or residual registration errors.
Nonetheless, the BPA is robust in the presence of imperfect data.

1Some types of scanners also produce “outliers”, points that lie far from the
actual surface. These outliers occur more frequently at the boundaries of range
images, or in the presence of sharp discontinuities. Outlier removal is best done
with device-dependent preprocessing. The scanner used to acquire the data pre-
sented in the results section is not affected by this problem.



4

(a) (b) (c)

Fig. 4. Ball pivoting in the presence of noisy data. (a) Surface samples lying “below” surface level are not touched by the pivoting ball and remain isolated (and are
discarded by the algorithm). (b) Due to missing data, the ball pivots around an edge until it touches a sample that belongs to a different part of the surface. By
checking that triangle and data point normals are consistently oriented, we avoid generating a triangle in this case. (c) Noisy samples form two layers, distant
enough to allow the� ball to “walk” on both layers. A spurious small component is created. Our seed selection strategy avoids the creation of a large number of
these small components. Remaining ones can be removed with a simple postprocessing step. In all cases, the BPA outputs an orientable, triangulated manifold.

We augment the data points with approximate surface nor-
mals computed from the range maps to disambiguate cases that
occur when dealing with missing or noisy data. For example, if
parts of the surface have not been scanned, there will be holes
larger than� in the sampling. It is then impossible to distinguish
an interior and an exterior region with respect to the sampling.
We use surface normals (for which we assume outward orienta-
tion) to decide surface orientation. For example, when choosing
a seed triangle we check that the surface normals at the three
vertices are consistently oriented.

Areas of density higher than� present no problem. The pivot-
ing ball will still “walk” on the points, forming small triangles.
If the data is noise-free and� is smaller than the local curvature,
all points will be interpolated. More likely, points are affected
by noise, and some of those lying below the surface will not
be touched by the ball and will not be part of the reconstructed
mesh (see figure 4(a)).

Missing points create holes that cannot be filled by the pivot-
ing ball. Any postprocessing hole-filling algorithm could be em-
ployed; in particular, BPA can be applied multiple times, with
increasing ball radii, as explained in section IV-F. However, we
do need to handle possible ambiguities that missing data can in-
troduce. When pivoting around a boundary edge, the ball can
touch an unused point lying close to the surface. Again we use
surface normals to decide whether the point touched is valid or
not (see figure 4(b)). A triangle is rejected if the dot product of
its normal with the surface normal is negative.

The presence of misaligned overlapping range scans can lead
to poor results if the registration error is similar to the pivoting
ball size. Undesired small connected components lying close to
the main surface will be formed, and the main surface affected
by high frequency noise (see figure 4(c)). Our seed selection
strategy avoids creating a large number of such small compo-
nents. A simple postprocessing that removes small components
and surface smoothing [19] can significantly improve the result
in these cases, at least aesthetically.

Regardless of the defects in the data, the BPA is guaranteed
to build an orientable manifold. Notice that the BPA will always
try to build the largest possible connected manifold from a given
seed triangle.

Choosing a suitable value for the radius� of the pivoting ball
is typically easy. Current structured-light or laser triangulation

scanners produce very dense samplings, exceeding our require-
ment that intersample distance be less than half the size of fea-
tures of interest. Knowledge of the sampling density character-
istics of the scanner, and of the feature size one wants to capture,
are enough to choose an appropriate radius. Alternatively, one
could analyze a small subset of the data to compute the point
density. An uneven sampling might arise when scanning a com-
plex surface, with regions that project into small areas in the
scanner direction. The best approach is to take additional scans
with the scanner perpendicular to such regions, to acquire addi-
tional data. Notice however that the BPA can be applied multi-
ple times, with increasing ball radii, to handle uneven sampling
densities, as described in section IV-F.

IV. T HE BALL -PIVOTING ALGORITHM

The BPA follows the advancing-front paradigm to incremen-
tally build an interpolating triangulation. BPA takes as input
a list of surface-sample data points�i, each associated with a
normalni (and other optional attributes, such as texture coordi-
nates), and a ball radius�. The basic algorithm works by find-
ing aseed triangle(i.e., three data points(�i; �j ; �k) such that
a ball of radius� touching them contains no other data point),
and adding one triangle at a time by performing the ball pivoting
operation explained in section III.

The front F is represented as a collection of linked lists of
edges, and is initially composed of a single loop containing the
three edges defined by the first seed triangle. Each edgee(i;j)
of the front, is represented by its two endpoints(�i; �j), the
opposite vertex�o, the centercijo of the ball that touches all
three points, and links to the previous and next edge along in
the same loop of the front. An edge can beactive, boundaryor
frozen. An activeedge is one that will be used for pivoting. If it
is not possible to pivot from an edge, it is marked asboundary.
The frozenstate is explained below, in the context of our out-
of-core extensions. Keeping all this information with each edge
makes it simpler to pivot the ball around it. The reason the front
is a collection of linked lists, instead of a single one, is that as
the ball pivots along an edge, depending on whether it touches
a newly encountered data point or a previously used one, the
front changes topology. BPA handles all cases with two simple
topological operators,join andglue, which ensure that at any
time the front is a collection of linked lists.



5

Algorithm BPA(S, �)

1. while (true)

2. while (e(i;j) = get activeedge(F))
3. if (�k = ball pivot(e(i;j)) &&

(not used(�k) jj on front(�k)))
4. output triangle(�i; �k; �j)
5. join(e(i;j), �k, F)
6 . if (e(k;i) 2 F) glue(e(i;k), e(k;i),F)
7 . if (e(j;k) 2 F) glue(e(k;j), e(j;k), F)
8 . else
9 . mark as boundary(e(i;j))

10. if ((�i; �j ; �k) = find seedtriangle())
11. output triangle(�i; �j ; �k)
12. insert edge(e(i;j),F)
13. insert edge(e(j;k), F)
14. insert edge(e(k;i),F)
15. else
16. return

Fig. 5. Skeleton of the BPA algorithm. Several necessary error tests have been
left out for readability, such as edge orientation checks. The edges in the
frontF are generally accessed by keeping a queue of active edges. Thejoin
operation adds two active edges to the front. Theglueoperation deletes two
edges from the front, and changes the topology of the front by breaking a
single loop into two, or combining two loops into one. See text for details.
Thefind seedtriangle function returns a�-exposed triangle, which is used
to initialize the front.

The basic BPA algorithm is shown in figure 5. Below we de-
tail the functions and data structures used. In particular, we later
describe a simple modification necessary to the basic algorithm
to support efficient out-of-core execution. This allows BPA to
triangulate large datasets with minimal memory usage.

A. Spatial queries

Both ball pivot andfind seedtriangle (lines 3 and 10 in fig-
ure 5) require efficient lookup of the subset of points contained
in a small spatial neighborhood. We implemented this spatial
query using a regular grid of cubic cells, or voxels. Each voxel
has sides of sizeÆ = 2�. Data points are stored in a list, and
the list is organized using bucket-sort so that points lying in the
same voxel form a contiguous sublist. Each voxel stores a point-
er to the beginning of its sublist of points (to the next sublist if
the voxel is empty). An extra voxel at the end of the grid stores
a NULL pointer. To visit all points in a voxel it is sufficient to
traverse the list from the node pointed to by the voxel to the one
pointed to by the next voxel.

Given a pointp we can easily find the voxelV it lies in by
dividing its coordinates byÆ. We usually need to look up all
points within2� distance fromp, which are a subset of all points
contained in the 27 voxels adjacent toV (includingV itself).

The grid allows constant-time access to the points. Its size
would be prohibitive if we processed a large dataset in one step;
but an out-of-core implementation, described in section IV-E,
can process the data in manageable chunks. Memory usage can

be further reduced, at the expense of a slower access, using more
compact representations, such as a sparse matrix data structure.

B. Seed selection

Given data satisfying the conditions of the reconstruc-
tion theorem of section III, one seed per connected compo-
nent is enough to reconstruct the entire manifold (function
find seedtriangleat line 10 in figure 5). A simple way to find a
valid seed is to:
� Pick any point� not yet used by the reconstructed triangula-
tion.
� Consider all pairs of points�a; �b in its neighborhood in order
of distance from�.
� Build potential seed triangles�; �a; �b.
� Check that the triangle normal is consistent with the vertex
normals,i.e. pointing outward.
� Test that a�-ball with center in the outward halfspace touches
all three vertices and contains no other data point.
� Stop when a valid seed triangle has been found.
In the presence of noisy, incomplete data, it is important to se-
lect an efficient seed-searching strategy. Given a valid seed, the
algorithm builds the largest possible connected component con-
taining the seed. Noisy points lying at a distance slightly larger
than2� from the reconstructed triangulation could form other
potential seed triangles, leading to the construction of small set-
s of triangles lying close to the main surface (see figure 4(c)).
These small components are an artifact of the noise present in
the data, and are usually undesired. While they are easy to elim-
inate by post-filtering the data, a significant amount of compu-
tational resources is wasted in constructing them.

We can however observe the following: If we limit ourselves
to considering only one data point per voxel as a candidate ver-
tex for a seed triangle, we cannot miss components spanning a
volume larger than a few voxels. Also, for a given voxel, con-
sider the average normaln of points within it. This normal ap-
proximates the surface normal in that region. Since we want our
ball to walk “on” the surface, it is convenient to first consider
points whose projection onton is large and positive.

We therefore simply keep a list of non-empty voxels. We
search these voxels for valid seed triangles, and when one is
found, we start building a triangulation using pivoting opera-
tions. When no more pivoting is possible, we continue the
search for a seed triangle from where we had stopped, skipping
all voxels containing a point that is now part of the triangulation.
When no more seeds can be found, the algorithm stops.

C. Ball Pivoting

A pivoting operation (line 3 in figure 5) starts with a trian-
gle � = (�i; �j ; �o) and a ball of radius� that touches its three
vertices. Without loss of generality, assume edgee(i;j) is the
pivoting edge. The ball in its initial position (letcijo be its cen-
ter) does not contain any data point, either because� is a seed
triangle, or because� was computed by a previous pivoting op-
eration. The pivoting is in principle a continuous motion of the
ball, during which the ball stays in contact with the two end-
points ofe(i;j), as illustrated in figure 2. Because of this con-
tact, the motion is constrained as follows: The centercijo of the
ball describes a circle which lies on the plane perpendicular to



6

e(i;k)

�o

�j

e(k;j)

e(i;j)

�k

�i

Fig. 6. A join operation simply adds a new triangle, removing edgee(i;j)from
the front and adding the two new edgese(i;k) ande(k;j).

e(i;j) and through its midpointm = 1
2 (�j + �i). The center of

this circular trajectory ism and its radius isjjcijo �mjj. Dur-
ing this motion, the ball may hit another point�k. If no point
is hit, then the edge is a boundary edge. Otherwise, the triangle
(�i; �k; �j) is a new valid triangle, and the ball in its final posi-
tion does not contain any other point, thus being a valid starting
ball for the next pivoting operation.

In practice we find�k as follows. We consider all points in a
2�-neighborhood ofm. For each such point�x, we compute the
centercx of the ball touching�i; �j and�x, if such a ball ex-
ists. Eachcx lies on the circular trajectory aroundm, and can
be computed by intersecting a�-sphere centered at�x with the
circle . Of these pointscx we select the one that is first along
the trajectory. We report the first point hit and the correspond-
ing ball center. Trivial rejection tests can be added to speed up
finding the first hit-point.

D. The join and glue operations

These two operations generate triangles while adding and re-
moving edges from the front loops (lines 5-7 in figure 5).

The simpler operation is thejoin, which is used when the ball
pivots around edgee(i;j), touching anot usedvertex�k (i.e., �k
is a vertex that is not yet part of the mesh). In this case, we
output the triangle(�i; �k ; �j), and locally modify the front by
removinge(i;j) and adding the two edgese(i;k) ande(k;j) (see
figure 6).

When�k is already part of the mesh, one of two cases can
arise:
1. �k is an internal mesh vertex, (i.e., no front edge uses�k).
The corresponding triangle cannot be generated, since it would
create a non-manifold vertex. In this case,e(i;j) is simply
marked as a boundary edge;
2. �k belongs to the front. After checking edge orientation to
avoid creating a non-orientable manifold, we apply ajoin oper-
ation, and output the new mesh triangle(�i; �k; �j). The join
could potentially create (one or two) pairs of coincident edges
(with opposite orientation), which are removed by theglueop-
eration.
The glue operation removes from the front pairs of coinciden-
t edges, with opposite orientation (coincident edges with the

(a) (b) (c)

(d) (e) (f)

Fig. 8. Example of a sequence ofjoin andglueoperations. (a) A new triangle
is to be added to the existing front. The four front vertices inside the dashed
circle all represent a single data point. (b) Ajoin removes an edge and
creates two new front edges, coincident with existing ones. (c), (d) Twoglue
operations remove coincident edge pairs. (d) also shows the next triangle
added. (e) Only one of the edges created by thisjoin is coincident with an
existing edge. (f) Oneglueremoves the duplicate pair.

same orientation are never created by the algortihm). For ex-
ample, when edgee(i;k) is added to the front by ajoin operation
(the same applies toe(k;j)), if edgee(k;i) is on the front,glue
will remove the pair of edgese(i;k); e(k;i) and adjust the front
accordingly. Four cases are possible, as illustrated in figure 7.

A sequence ofjoin andglue operations is illustrated in fig-
ure 8.

E. Out-of-core extensions

Being able to use a personal computer to triangulate high-
resolution scans allows inexpensive on-site processing of data.
Due to their locality of reference, advancing-front algorithms
are suited to very simple out-of-core extensions.

We employed a simple data-slicing scheme to extend the al-
gorithm shown in figure 5. The basic idea is to cache the portion
of the dataset currently being used for pivoting, to dump data
no longer being used, and to load data as it is needed. In our
case, we use two axis-aligned planes�0 and�1 to define the ac-
tive region of work for pivoting. We initially place�0 in such
a way that no data points lie “below” it, and�1 above�0 at
some user-specified distance. As each edge is created, we test
if its endpoints are “above”�1; in this case, we mark the edge
frozen. When all edges remaining in the queue arefrozen, we
simply shift �0 and�1 “upwards”, and update allfrozen into
activeedges, and so on. A subset of data points is loaded and
discarded from memory when the corresponding bounding box
enters and exits the active slice. Scans can easily be prepro-
cessed to break them up into smaller meshes, so that they span
only a few slices, and memory load remains low.

The only change required in the algorithm to implement this
refinement is an outer loop to move the active slice, and the
addition of the instructions to unfreeze edges between lines 1–2
of figure 5.



7

e(i;k) e(k;i)

�i

�k

e(k;i)

�i

�k

e(i;k) e(i;k)

�k

�i

e(k;i) e(i;k)

�k

�i

e(k;i)

(a) (b) (c) (d)

Fig. 7. A glueoperation is applied whenjoin creates an edge identical to an existing edge, but with opposite orientation. The two coincident edges are removed,
and the front adjusted accordingly. There are four possible cases: (a) The two edges form a loop. The loop is deleted from the front. (b) Two edges belongto
the same loop and are adjacent. The edges are removed and the loop shortened. (c) The edges are not adjacent, and they belong to the same loop. The loop is
split into two. (d) The edges are not adjacent and belong to two different loops. The loops are merged into a single loop.

F. Multiple passes

To deal with unevenly sampled surfaces, we can easily extend
the algorithm to run multiple passes with increasing ball radii.
The user specifies a list of radiif�0; : : : ; �ng as input parame-
ters. In each slice, for increasing�i; i = 0; : : : ; n, we start by in-
serting the points in a grid of voxel sizeÆ = 2�i. We let BPA run
until there are no more active edges in the queue. At this point
we incrementi, go through all front edges, and check whether
each edge with its opposite vertex�o forms a valid seed triangle
for a ball of radius�i. If it is, then it is added to the queue of
active edges. Finally, the pivoting is started again.

G. Remarks

The BPA algorithm was implemented in C++ using the Stan-
dard Template Library. The whole code is less than 4000 lines,
including the out-of-core extensions.

The algorithm is linear in the number of data points and
uses linear storage, under the assumption that the data density
is bounded. This assumption is appropriate for scanned data,
which is collected by equipment with a known sample spacing.
Even if several scans overlap, the total number of points in any
region will be bounded by a known constant.

Most steps are simpleO(1) state checks or updates to queues,
linked lists, and the like. With bounded density, a point need
only be related to a constant number of neighbors. So, for ex-
ample, a point can only be contained in a constant number of
loops in the advancing front. The two operationsball pivotand
find seedtriangleare more complex.

Each ball pivot operates on a different mesh edge, so the
number of pivots isO(n). A single pivot requires identifying
all points in a2� neighborhood. A list of these points can be
collected from 27 voxels surrounding the candidate point in our
grid. With bounded density, this list has constant sizeB. We
perform a few algebraic computations on each point in the list
and select the minimum result, allO(1) operations on a list of
sizeO(1).

Eachfind seedtrianglepicks unused points one at a time and
tests whether any incident triangle is a valid seed. No point is

considered more than once, so this test is performed onlyO(n)
times. To test a candidate point, we gather the same point-list
discussed above, and consider pairs of points until we either find
a seed triangle or reject the candidate. Testing one of these trian-
gles may require classifying every nearby point against a sphere
touching the three vertices, in the worst case,O(B3) = O(1)
steps. In practice, we limit the number of candidate points and
triangles tested by the heuristics discussed in section IV-B.

An in-core implementation of the BPA usesO(n+ L) mem-
ory, whereL is the number of cells in the voxel grid. TheO(n)
term includes the data, the advancing front (which can only in-
clude each mesh edge once), and the candidate edge queue. Our
out-of-core implementation usesO(m+ L0) memory, wherem
is the number of data points in the largest slice andL0 is the size
of the smaller grid covering a single slice. Since the user can
control the size of slices, memory requirements can be tailored
to the available hardware. The voxel grid can be more compactly
represented as a sparse matrix, with a small (constant) increase
in access time.

V. EXPERIMENTAL RESULTS

Our experiments for this paper were all conducted on one
450MHz Pentium II Xeon processor of an IBM IntelliStation
Z Pro running Windows NT 4.0.

In our experiments we used several datasets: “clean” dataset
(i.e., points from analytical surface, see figure 9); the dataset-
s from the Stanford scanning database (see figure 11(a)-(c));
and a very large dataset we acquired ourselves (and the main
motivation of this work), a model of Michelangelo’s Florentine
Pietà [3] (see figure 11(d)).

To allow flexible input of multiple scans and out-of-core exe-
cution, our program reads its input in four parts: a list of individ-
ual scans to be converted into a single coherent triangle mesh;
and for each scan, a transformation matrix, a post-transform
bounding box (used to quickly estimate the mesh position for
assignment to a slice), and the actual scan, which is loaded only
when needed.



8

Dataset # Pts # Scans � # Slices # Triangles Mem. Usage I/O Time CPU Time

Clean 11K 1 4 - 22K 4 1.2secs 1.8secs

Bunny 361K 10 0.3, 0.5, 2 - 710K 86 4.5secs 2.1
Dragon 2.0M 71 0.3, 0.5, 1 - 3.5M 228 22secs 10.1
Buddha 3.3M 58 0.2, 0.5, 1 - 5.2M 325 48secs 16.9

Out of core
Dragon 2.1M 1452 0.3, 0.5, 1 23 3.5M 137 1.0 19.8
Buddha 3.5M 1122 0.2, 0.5, 1 24 5.2M 155 2.1 26.8
Pietà 7.2M 770 1.5, 3, 6 24 14M 180 2.5 28.5

Fig. 10. Summary of results.# of Ptsand# of Scansare the original number of data points and range images respectively.� lists the radii of the pivoting balls,
in mm. Multiple radii mean that multiple passes of the algorithm, with increasing ball size, were used.# Slicesis the number of slices into which the data is
partitioned for out-of-core processing.# of Trianglesis the number of triangles created by BPA.Mem. Usageis the maximum amount of memory used at any
time during mesh generation, in MB.I/O Timeis the time spent reading the input binary files; it also includes the time to write the output mesh, as an indexed
triangle set, in binary format.CPU Timeis the time spent computing the triangulation. All times are in minutes, except where otherwise stated. All tests were
performed on a 450MHz Pentium II Xeon.

(a) (b)

(c) (d)

Fig. 11. Results. (a) Stanford bunny. (b) Stanford dragon. (c) Stanford Buddha. (d) Preliminary reconstruction of Michelangelo’s Florentine Piet`a.



9

Fig. 9. Results. “Clean” data computed from an analytical surface.

A. Experiments

The table in figure 10 summarizes our results. The “clean”
dataset is a collection of points from an analytical surface.

The Stanford Bunny, Dragon and Buddha datasets are mul-
tiple laser range scans of small objects. The scanner used to
acquire the data was a CyberWare 3030MS.

These data required some minor preprocessing. We used the
Standordvrip program to connect the points within each individ-
ual range data scan to provide estimates of surface normals. We
also removed the plane carvers, large planes of triangles used
for hole-filling by algorithms described in [6]. This change was
made only for aesthetic reasons; BPA has no problem handling
the full input.

In order to confirm the effectiveness of our out-of-core ca-
pabilities, we modified the Stanford Dragon by subdividing
each range mesh into several pieces, multiplying the original 71
meshes to over 7500. A similar preprocessing was also applied
to the Buddha dataset. We note that such decompositions can
be performed efficiently for arbitrarily large range scans (which
do not necessarily need to fit in memory) by the techniques de-
scribed in [20].

The Pietà data has undergone extensive preprocessing during
and after scanning and registration that is out of the scope of
this paper. The data is large enough that it cannot be processed
in-core, and is only processed in slices. The scanning of the
Pietà also included the capture of multiple color images with
calibrated lighting, from which reflectance and normals maps to
augment the geometric data are computed (see [21]).

VI. CONCLUSIONS

In this paper, we introduced the Ball-Pivoting Algorithm, an
advancing-front algorithm to incrementally build an interpolat-
ing triangulation of a given point cloud. BPA has several desir-
able properties:
� Intuitive: BPA triangulates a set of points by “rolling” a�-
ball on the point cloud. The user chooses only a single parame-
ter.

� Flexible, efficient, and robust:Our test datasets ranged from
small synthetic data to large real-world scans. We have shown
that our implementation of BPA works on datasets of millions
of points representing actual scans of complex 3D objects. For
our Pietà data, we found that on a Pentiun II PC the algorithm
generates and writes to disk the output mesh at a rate of roughly
500K triangles per minute.
� Theoretical foundation: BPA is related to alpha-shapes [2],
and given sufficiently dense sampling, it is guaranteed to recon-
struct a surface homeomorphic to and within a bounded distance
from the original manifold.

There are some avenues for further work. It would be interest-
ing to evaluate whether BPA can be used to triangulate surfaces
sampled with particle systems. This possibility was left as an
open problem in [22], and further developed in [23] in the con-
text of isosurface generation.

By using weighted points, we might be able to generate trian-
gulations of adaptive samplings. The sampling density could
be changed depending on local surface properties, and point
weights accordingly assigned or computed. An extension of
our algorithm along the lines of the weighted generalization of
alpha-shapes [18] should be able to generate a more compact,
adaptive, interpolating triangulation.

We have done some initial experiments in using a smooth-
ing algorithm adapted from [19] to pre-process the data and to
compute consensus points from multiple overlapping scans to
be used as input to the BPA, while at the same time making
small refinements to the rigid alignment of the scans to each
other. Datasets used in this paper were pre-processed using our
current implementation of this algorithm.

Acknowledgments.Thanks to the Stanford University Com-
puter Graphics Laboratory, for making some of the range data
used in this paper publicly available. The Museo dell’Opera
del Duomo in Florence, Italy allowed us to scan Michelangelo’s
Pietà. We acknowledge their kind collaboration.

REFERENCES

[1] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuet-
zle, “Robust meshes from multiple range maps,” inIntl. Conf. on Recent
Advances in 3-D Digital Imaging and Modeling. May 1997, pp. 205–211,
IEEE Computer Society Press.

[2] H. Edelsbrunner and E. P. M¨ucke, “Three-dimensional alpha shapes,”
ACM Trans. Graph., vol. 13, no. 1, pp. 43–72, Jan. 1994.

[3] J. Abouaf, “The Florentine Piet`a: Can visualization solve the 450-year-old
mystery?,” IEEE Computer Graphics & Applications, vol. 19, no. 1, pp.
6–10, Feb. 1999.

[4] F. Bernardini, C. Bajaj, J. Chen, and D. Schikore, “Automatic reconstruc-
tion of 3D CAD models from digital scans,”International Journal of Com-
putational Geometry and Applications, vol. 9, no. 4 & 5, pp. 327–370,
Aug.-Oct. 1999.

[5] R. Mencl and H. Müller, “Interpolation and approximation of surfaces
from three-dimensional scattered data points,” inProceeding of Euro-
graphics ’98. Eurographics, 1998, State of the Art Reports.

[6] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” inComputer Graphics Proceedings, 1996,
Annual Conference Series. Proceedings of SIGGRAPH 96, pp. 303–312.

[7] W. Lorensen and H. Cline, “Marching cubes: a high resolution 3d surface
construction algorithm,” Comput. Graph., vol. 21, no. 4, pp. 163–170,
1987.

[8] M. Soucy and D. Laurendeau, “A general surface approach to the integra-
tion of a set of range views,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 17, no. 4, pp. 344–358, Apr. 1995.

[9] G. Turk and M. Levoy, “Zippered polygonal meshes from range images,”
in Computer Graphics Proceedings, 1994, Annual Conference Series. Pro-
ceedings of SIGGRAPH 94, pp. 311–318.



10

[10] C. Dorai, G. Wang, A. K. Jain, and C. Mercer, “Registration and integra-
tion of multiple object views for 3D model construction,”IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp.
83–89, Jan. 1998.

[11] C. Bajaj, F. Bernardini, and G. Xu, “Automatic reconstruction of surfaces
and scalar fields from 3D scans,” inComputer Graphics Proceedings,
1995, Annual Conference Series. Proceedings of SIGGRAPH 95, pp. 109–
118.

[12] N. Amenta, M. Bern, and M. Kamvysselis, “A new voronoi-based surface
reconstruction algorithm,” inProc. SIGGRAPH ’98, July 1998, Computer
Graphics Proceedings, Annual Conference Series, pp. 415–412.

[13] J.-D. Boissonnat, “Geometric structures for three-dimensional shape rep-
resentation,”ACM Trans. Graph., vol. 3, no. 4, pp. 266–286, 1984.

[14] R. Mencl, “A graph-based approach to surface reconstruction,”Computer
Graphics Forum, vol. 14, no. 3, pp. 445–456, 1995, Proc. of EURO-
GRAPHICS ’95.

[15] A Hilton, A Stoddart, J Illingworth, and T Windeatt, “Marching triangles:
Range image fusion for complex object modelling,” inProc of IEEE In-
ternational Conference on Image Processing, Laussane, 1996, vol. 2, pp.
381–384.

[16] F. Bernardini and C. Bajaj, “Sampling and reconstructing manifolds us-
ing alpha-shapes,” inProc. of the Ninth Canadian Conference on Com-
putational Geometry, Aug. 1997, pp. 193–198, Updated online version
available at www.qucis.queensu.ca/cccg97.

[17] Nina Amenta and Marshall Bern, “Surface reconstruction by voronoi fil-
tering,” in Proc. 14th Annual ACM Sympos. Comput. Geom., 1998, pp.
39–48.

[18] H. Edelsbrunner, “Weighted alpha shapes,” Technical Report UIUCDCS-
R-92-1760, Dept. Comput. Sci., Univ. Illinois, Urbana, IL, 1992.

[19] Gabriel Taubin, “A signal processing approach to fair surface design,”
in Proc. of SIGGRAPH ’95. ACM SIGGRAPH, Aug. 1995, Computer
Graphics Proceedings, Annual Conference Series, pp. 351–358.

[20] Yi-Jen Chiang, Cl´audio T. Silva, and William Schroeder, “Interactive out-
of-core isosurface extraction,” inProc. IEEE Visualizatioń98, Nov. 1998,
pp. 167–174.

[21] H. Rushmeier and F. Bernardini, “Computing consistent normals and col-
ors from photometric data,” inProc. of the Second Intl. Conf. on 3-D
Digital Imaging and Modeling, Ottawa, Canada, October 1999, To ap-
pear.

[22] Andrew P. Witkin and Paul S. Heckbert, “Using particles to sample and
control implicit surfaces,” inProceedings of SIGGRAPH ’94 (Orlando,
Florida, July 24–29, 1994), Andrew Glassner, Ed. ACM SIGGRAPH, Ju-
ly 1994, Computer Graphics Proceedings, Annual Conference Series, pp.
269–278, ACM Press, ISBN 0-89791-667-0.

[23] Patricia Crossno and Edward Angel, “Isosurface extraction using particle
systems,” inIEEE Visualization9́7, Roni Yagel and Hans Hagen, Eds.
IEEE, Nov. 1997, pp. 495–498.


