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Abstract

The creation of three-dimensional digital content by scanning real objects has become common practice in graphics applica-
tions for which visual quality is paramount, such as animation, e-commerce, and virtual museums. While a lot of attention has been
devoted recently to the problem of accurately capturing the geometry of scanned objects, the acquisition of high-quality textures is
equally important, but not as widely studied.

In this paper, we focus on methods to construct accurate digital models of scanned objects by integrating high-quality texture
and normal maps with geometric data. These methods are designed for use with inexpensive, electronic camera-based systems
in which low-resolution range images and high-resolution intensity images are acquired. The resulting models are well-suited for
interactive rendering on the latest-generation graphics hardware with support for bump mapping.

Our contributions include new techniques for processing range, reflectance, and surface normal data, for image-based registra-
tion of scans, and for reconstructing high-quality textures for the output digital object.
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I. INTRODUCTION

Three-dimensional scanners are used increasingly to capture digital models of objects for animation, virtual

reality, and e-commerce applications for which the central concerns are efficient representation for interactiv-

ity and high visual quality. Most high-end 3D scanners sample the surface of the target object at a very high

resolution. Hence, models created from the scanned data are often over-tesselated, and require significant

simplification before they can be used for visualization or modeling. Texture data is often acquired together

with the geometry, however a typical system merely captures a collection of images containing the particular

lighting conditions at the time of scanning. When these images are stitched together, discontinuity artifacts

are usually visible. Moreover, it is rather difficult to simulate various lighting conditions realistically or to

immerse the model in a new environment. The scanning system used to perform the experiments described

in this paper is equipped with a high-resolution digital color camera that acquires intensity images under

controlled lighting conditions. Detailed normal and albedo maps of the surface are computed based on these

images. By comparison, geometry is captured at lower resolution, typically enough to resolve only the major

shape features. The benefits of such a system are twofold. First, it allows for the use of relatively inexpen-

sive hardware by eliminating the need for dense geometric sampling and by taking advantage of digital color
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Fig. 1. The visual quality of textures for the model of a statue obtained from multiple overlapping scans is enhanced with our
image-based fine-registration and weighted averaging techniques. The left image shows the final texture reconstructed from 20
overlapping scans. The two small images illustrate a detail from a highly carved area of the hair before (top) and after (bottom)
image-based registration. The fine chisel marks become clearly visible after the registration.

cameras that are quickly gaining in resolution while dropping in price. Second, the generated models are

more readily usable in a visualization or modeling environment which exploits the hardware-assisted bump

mapping feature increasingly available in commercial-grade 3D accelerators.

In general, the issue of acquiring and reconstructing high-quality texture maps has received less attention

than the issue of capturing high-quality geometry. In this work, we build upon existing techniques developed

for texture acquisition, reconstruction, and image registration to generate maps of high visual quality for the

scanned objects. Particularly because the noise and inaccuracies of our scanner are greater than those of

high-end systems, we wish to exploit in full all the geometric and image information acquired to improve the

visual quality of the final representation.

In this paper we introduce a novel texture reconstruction framework that uses illumination-invariant albedo

and normal maps derived from the calibration-registered range and intensity images. The albedo maps are

used in a unique way to refine a geometry-only registration of the individual range images. After the range

data is integrated into a single mesh, the resulting object is partitioned into a set of patches. New textures

are reconstructed by projecting the maps onto the patches and combining the best data available at each point

using weights that reflect the level of confidence in the data. The weighted averaging lowers noise present in

the images, while the fine registration avoids blurring, ghosting, and loss of fine texture details, as shown by



3

into a single mesh

Surface

A
registration

F

C

Texture-to-geometry

B

D

E

Integration of scans
illumination invariants

Texture map

Computation of

images
Range Intensity

images

parameterization

Registration

synthesis

Fig. 2. The sequence of steps required for the reconstruction of a model from multiple overlapping scans.

the results in Figure 1.

II. RELATED WORK

A variety of techniques are used to capture digital models of physical objects, including CAT scans [1]

and structure from motion applied to video sequences [2]. We restrict our discussion to methods involving

instruments that capture range images (in which each pixel value represents depth) and intensity images (in

which each pixel is proportional to the incident light.) A detailed summary of such methods can be found

in [3].

The basic operations necessary to create a digital model from a series of captured images are illustrated in

Figure 2. After outliers are removed from the range images, they are in the form of individual height-field

meshes (scans.) Step A is to align these meshes into a single global coordinate system. In high-end systems

registration may be performed by accurate tracking. For instance, the scanner may be attached to a coordinate

measurement machine that tracks its position and orientation with a high degree of accuracy. In less expensive

systems an initial registration is found by scanning on a turntable, manual alignment, or approximate feature

matching [4], [5]. The alignment is then refined automatically using techniques such as the Iterative Closest

Point (ICP) algorithm of Besl and McKay [6] or the technique of Chen and Medioni [7]. Recent multiview

registration algorithms include [8], [9].

In step B the scans are integrated into a single mesh. The integration may be performed by zipper-

ing/stitching [10], [11], isosurface extraction from volumes [12], [13], or interpolating mesh algorithms [14]
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applied to error-corrected points.

To relate a texture map to the integrated mesh, in step C the surface is parameterized with respect to a 2D

coordinate system and texture coordinates are interpolated between mesh vertices. A simple parameterization

is to treat each triangle separately [13], [15] and to pack all of the individual texture maps into a larger texture

image. However, the use of mip-mapping in this case is limited since adjacent pixels in the texture may not

correspond to adjacent points on the geometry. Another approach is to find patches of geometry which are

height fields that can be parameterized by projecting the patch onto a plane. Stitching methods [1] use this

approach by simply considering sections of the scanned height fields as patches. Marschner [16] subdivides

the surface into individual patches by starting with seed triangles distributed over the object, and growing

regions around each seed. Harmonic maps are found to establish a 2D coordinate system for each patch, so

individual patches need not be height fields.

Parallel to acquiring geometry, intensity images are captured to obtain information about the albedo of the

surface. Such images may be recorded with electronic or traditional cameras or by using polychromatic laser

technology [15]. In step D, these images are aligned to the corresponding geometry. In some cases the image

acquisition is decoupled from the geometry acquisition [16], [17], [1]. The camera intrinsic and extrinsic

parameters for the images are estimated by manual or automatic feature matching. The advantage is that

acquisition modalities that cannot capture surface reflectance can be used for capturing geometry.

In most cases, however, the alignment is performed by calibration. Geometry and intensity are captured

simultaneously from scanners with a measured transformation between sensing devices. The resolution of the

intensity image may be the same as that of the range image or even higher. When the resolution is the same,

texture mapping is unnecessary since a color can be assigned to each vertex. Nevertheless, such a represen-

tation is inefficient and geometric simplification is typically performed before the surface parameterization

step.

The main benefit of obtaining intensity and range images simultaneously is that the intensity information

can be used in the registration process in step A. Various approaches have been developed to use intensity

images in registration. Johnson and Kang [13] use color as an additional coordinate in the ICP optimization.

This avoids local minima in the solution in areas that have no geometric features, but have significant varia-

tions in the intensity. For models with pronounced geometric and intensity features, the method has proven

to be very effective. A drawback is having to combine position and color data with different ranges and error
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characteristics. For subtle feature variations, these can cause one type of data to erroneously overwhelm the

other. Schütz et al. [18] introduce empirically computed normalization factors to define a coupling distance

that accounts for position, normal and color differences. A number of researchers have used information

in intensity images to avoid the spatial search required by ICP. These methods use scans that have been

aligned approximately, generally by manual means. Weik [19] uses intensity and intensity gradient images

from the approximately aligned scans after they are transformed into a common camera view. Locations of

corresponding points on overlapping scans are inferred based on the difference between intensity values at

a given pixel and the gradient at that pixel. Pulli [20] performs a full image registration to find correspond-

ing points. Similar to Weik’s method, one intensity image is projected into the camera view of the second,

using the approximate alignment. A planar perspective warping [21] of the first image is then computed to

match the rendered image of the second scan. For each corresponding pixel of the two images, under the

computed transformation, a pair of points from the two scans is generated. A least-squares optimization is

then performed to compute a registration matrix. Both Weik’s and Pulli’s methods require operations on the

full high-resolution intensity images. A high degree of overlap is required, and scan-to-scan variability in

illumination introduces error. Fine scale geometry is matched only if these details are revealed by lighting in

the images. Both methods are effective if there are substantial albedo variations in the scans that dominate

illumination variations. Gagnon et al. [22] avoid full image operations in an alternative non-ICP method for

using intensity images to refine an initial manual alignment. Pairs of range images are aligned manually by

marking three points on overlapping intensity images. The locations of the matching points are refined by

searching their immediate neighborhoods using image cross-correlation [23]. A least-squares optimization

follows to determine a general 3D transformation that minimizes the distances between the point pairs.

After intensity images are aligned to geometry, illumination invariant maps are computed to estimate the

surface albedo (step E.) The number of scans versus the number of intensity images, as well as the resolution

of the scans compared to the resolution of the images are issues that have to be considered. For a small

number of scans and a large number of intensity images obtained under calibrated lighting conditions, the full

Bidirectional Reflectance Distribution Function (BRDF) can be estimated [24]. If many scans are required to

represent an object and only a few high-resolution intensity images are captured per scan, photometric stereo

techniques can be used to estimate Lambertian reflectance [25]. Alternatively, if the range and intensity

images have the same resolution, the geometry can be used to compute reflectance from a single image [26].
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In step F the final texture is reconstructed. The illumination invariant images are mapped onto the inte-

grated, parametrized surfaces. The main concerns at this step are that the final texture is as sharp as the best

input images, that seams between scans or texture patches are not visible, and that all information available

is fully exploited to maximize the signal-to-noise ratio. To maintain sharpness, Rocchini et al. [1] propose

a stitching approach that uses a single illumination invariant map at any given surface point. Continuity in

sharp features between adjoining maps is maintained by a local texture adjustment at texture boundaries. This

requires high-quality input maps that have no visible noise and no scan-to-scan chromatic differences. Map

adjustment techniques such as this, as well as deghosting methods for image mosaics [21], decouple texture

from geometric variations. This may cause noticeable artifacts when these variations are correlated (e.g.,

dents and scratches that reveal underlying material with different reflectance properties.) To avoid jumps in

color appearance and to reduce noise, Johnson and Kang [13] combine information from multiple overlap-

ping scans. Marschner [16] estimates Lambertian reflectance at each texture pixel in the reconstruction step,

using every data value from captured images covering the point. Each data value is weighted by the relative

angle to the camera view, light source and specular direction in the captured image. In this case, if texture

alignment is imperfect blurring or ghosting artifacts may be generated. Pulli et al. [20], [27] do not explicitly

form texture images associated with the geometry, but propose a dynamic, view-dependent texturing algo-

rithm which determines a subset of the original images taken from view direction close to the current view,

and synthesizes new color images from the model geometry and input images.

III. OVERVIEW

In this section we present our approach to each of the steps described in the previous section. Our goal

is to produce a model of high visual quality, rather than to acquire a dense geometric representation. We

propose two new techniques for the registration and reconstruction steps, respectively. They are outlined in

this overview and will be described in more detail in Sections IV and V.

A. Scan Acquisition and Processing

We use a scanning system in which range and intensity images are obtained simultaneously and are regis-

tered via a priori calibration. The scanner is a hybrid multi-view/photometric system built around the Visual

Interface Virtuoso [28]. Range images are captured by a multi-camera stereo system which projects a striped

pattern onto the target object. The system produces range images that are converted to individual triangle
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meshes (scans) with an approximate intersample distance of 2 mm and submillimeter depth accuracy.

Intensity images are recorded under five calibrated lighting conditions and have a much higher resolution

than the geometric scans (between 0:25 mm and 0:5 mm intersample distance, depending on surface orienta-

tion.) The intensity images are processed to extract RGB albedo, normal, and weight (confidence) maps for

each scan. This photometric processing involves using the approximate knowledge of the underlying geom-

etry to account for imperfections in the measuring system, as well as global compensation of variations in

camera response [25], [29].

We refer to the images that contain the RGB albedo and normals generically as texture maps. Holes may

occur in these textures where photometric processing fails whenever fewer than three light sources are visible

at a point. In such regions, the textures are filled using the normals of the underlying mesh and data from just

one or two of the associated intensity images. A weight map encodes a degree of confidence in the data at

each pixel of a texture map. The weight includes the effects of distance to the camera, angle to the camera

view direction, whether a photometric normal was computed, and the distance to the edge of the scan. The

boundaries between photometric values and underlying values are smooth, as are the corresponding weights,

so that abrupt changes in the final texture will not be visible.

The acquisition of intensity images aligned with the corresponding range images and the photometric

processing just described correspond to steps D and E in Figure 2.

B. Registration

We begin the scan registration step A with a pairwise manual alignment to estimate the position of each

scan with respect to a global coordinate system. This step is performed at the same time with the removal of

outliers in the range data. Next, the initial manual registration is refined using a variation of the multiview

ICP algorithm [8]. Our ICP solution uses geometric information only.

Like Johnson and Kang [13] and Schütz et al. [18], we seek to produce high-quality texture maps by com-

bining information from multiple overlapping scans at each pixel. However, we avoid the mixing of position

and color, and the use of empirical weights, by performing an image-based alignment after the geometry-

based registration has converged. Similarly to Gagnon et al. [22], we use image matching to refine the

alignment. However, our method is different in a number of critical ways. First, since this is a refinement

step, we compare images that are reprojected onto the same camera view to account for geometric distortions.
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Second, instead of manually selecting three points to be matched, we have implemented an automatic selec-

tion procedure that identifies a larger number of samples in areas with significant image structure. Finally, we

use images that are consistent with each other by processing them according to methods described in [29].

Our registration method has some similarities with the one proposed by Pulli [20]. Pulli also uses images to

find matching points pairs, projects them back onto the range scans to find corresponding surface points, and

then minimizes a functional of their pairwise distances. However, rather than relying on a full-image warping

transformation to find matching points on overlapping scans, we do local searches on small regions based on

image correlation. The local searches avoid the need for a hierarchical image registration method, and bound

the adjustments to a small search range, since the initial alignment has already been improved by ICP. Also,

rather than considering each pair of corresponding pixels as a valid match, we automatically select a subset of

sample pixels in areas rich of detailed image features (derived from the albedo or normal maps) to minimize

the occurrence of false matches.

The basic idea of our image-based registration algorithm is to use detail maps computed from the texture

maps to generate highly-accurate pairs of corresponding points on the scans by matching their image neigh-

borhoods. The scans are considered for alignment one at a time, in random order, while the others remain

fixed, as suggested in [8]. Given a scan to be aligned, sample points are selected automatically on its detail

map in regions where interesting features are present. The detail maps corresponding to all overlapping scans

are then projected onto the current image plane and a search is performed in the neighborhood of each sample

point for a best match in the overlapping areas of the projected maps. The resulting pairs of image point sam-

ples are back-projected onto their corresponding geometry and used to compute a rigid transformation that

minimizes the sum of squared distances between corresponding points. The transformation thus obtained is

applied to the moving scan, and the process is repeated until a convergence criterion is satisfied.

C. Surface Reconstruction and Parameterization

Having obtained a tightly aligned set of scans, we proceed to integrate them into a seamless triangle mesh

(step B.) We use a technique called Ball Pivoting [14], which efficiently generates a triangle mesh by inter-

polating an unorganized set of points.

Next, we determine a suitable surface parameterization (step C) to allow for an efficient computation of

texture maps that cover the entire object without overlapping. Since we wish to use mip-mapping techniques,
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we partition the surface into patches and assign one texture image to each patch, rather than parameterizing

the mesh one triangle at a time.

Our texture reconstruction technique uses all the acquired data at each point as opposed to stitching together

pieces of the initial scans. Hence, we do not use the initial scans as texture patches. Instead, a new partition

of the geometry into height-fields is computed by a greedy approach that begins with a number of seed

triangles and grows the surface regions around them until a maximum patch size or maximum slope deviation

is reached. Each patch is then projected in the direction which maximizes its total projected area, providing

a simple local parameterization.

More sophisticated techniques for partitioning a mesh into patches suitable for texture computation have

been proposed, see for example [30], [31], [16], [32]. Any method that provides a mapping from the texture

image assigned to the patch onto the patch geometry could be used in our approach, and it is reasonable to

expect that any of the methods cited above would generate a smaller number of patches and a more even

allocation of texture pixels per surface area than what we obtain with our simple greedy strategy. However,

we found that for the datasets used in our experiments our technique provided patches of sufficient quality.

D. Texture Reconstruction

Once the model is partitioned into height-field patches, albedo and normal maps are reconstructed for

each patch by combining the information in all overlapping textures (step F.) For each pixel of a texture to

be computed, all textures that have information about its albedo and normal are identified. Corresponding

values are combined using a weighting scheme that takes into account the confidence in each value while

avoiding discontinuities at patch-to-patch and scan-to-scan transitions (see also Figure 9.) Occlusions must

also be handled correctly. In practice, since the amount of data involved in this phase may be quite large, it is

important to organize the required computations efficiently.

IV. IMAGE-BASED REGISTRATION

The goal of image-based registration is to improve the geometry-based alignment of scans that make up

a 3D object by taking into account additional information contained in the high-resolution detail maps com-

puted for each scan.

Detail maps are generated from albedo and normals maps. Depending on the application, they may be sin-

gle or multi-channel images. In our experiments we use grey-scale albedo maps and geometry-invariant maps
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Fig. 3. (a), (b) Example and (c) two-dimensional diagram of the image-based registration algorithm. Three scans are involved:
scan Sm (blue), with corresponding detail map Dm is being registered to the two overlapping scans S i (red) and Sj (green).
Detail maps Di andDj are mapped onto their respective geometry and rendered onto the image plane of cameraC m, generating
reprojected images ~Di and ~Dj (the three images Dm, ~Di and ~Dj are shown cropped in (b). ~Di and ~Dj are drawn with a little
offset in (a) and (c) for illustrative purposes.) In the ideal case of perfect scans and no registration error, these images would be
pixel-by-pixel the same as Dm in the areas of overlap. Assuming some registration error, we consider a set of sample points
on detail map Dm, distributed in areas where interesting image features are present. Starting with a sample point t 1m on Dm,
corresponding to geometric point p1m on Sm, we search in the neighborhood of the corresponding point t 1i on ~Di for a point
b1i that maximizes image correlation (initial and final points are shown with yellow and magenta dots, respectively, on the
images in (b).) The point b1i is then back-projected onto the scan Si into p1i . The process is repeated to generate a set of pairs
of corresponding points (pkm; p

k
h); h = i; j. A rigid transformation is computed that minimizes the sum of squared distances

between corresponding points.
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derived from the normals. The proposed image-based registration algorithm makes use of image matching

to identify pairs of corresponding points on the high-resolution detail maps. Subsequently, these pairs are

back-projected onto the scans and used to derive a rigid transformation that minimizes the distance between

corresponding points in a least-squares sense [6].

Figure 3 illustrates our method using a simple example consisting of three scans S i, Sj , and Sm, with their

respective detail maps, Di, Dj, and Dm, and cameras Ci, Cj, and Cm. For the purposes of this example,

Si and Sj are fixed, while Sm is being moved to achieve better alignment with respect to Si and Sj. The

detail maps Di and Dj are rendered onto the image plane of camera Cm, generating projected detail maps

~
Di and ~

Dj , respectively. Ideally, in the absence of noise and errors in the initial alignment, the images Dm,

~
Di, and ~

Dj would be identical in the areas of overlap. A sample point selected in such an area in one image

would identify precisely the same feature in all overlapping images. In practice, corresponding features may

appear shifted due to misalignment. Let t1m be a sample point on Dm with pixel coordinates (u; v) that are

inside the overlap region of Dm with ~
Di and let t1i be the point on ~

Di with the same coordinates: t1i = (u; v).

A correlation-based search is conducted in a neighborhood of t1i to identify a point b1i for which the image

area around it best matches the area around t
1

m. The points t1m and b
1

i are back-projected onto p
1

m 2 Sm and

p
1

i 2 Si, respectively, and the pair (p1m; p
1

i ) is saved. The process is repeated for other sample points on Dm

where there is overlap with either ~
Di or ~

Dj . Finally, after all samples are processed, the pairs (pkm; p
k
h=i;j) are

used to compute a rigid transformation that improves the position of scan Sm with respect to Si and Sj in the

least-squares sense [6].

Our image-based registration algorithm is described in pseudocode in Figure 4. The input consists of the

scans to be registered with their initial registration matrices, as well as their corresponding detail maps, depth

maps, bounding boxes, and lists of sample points. In addition, the calibration parameters of the intensity-

capture camera are considered known. These parameters include the position and orientation of the camera

in the local frame of each scan, its field-of-view angle, and the pixel size of the output image. Knowledge of

these parameters allows us to define a camera that matches the view of the capture camera. With the exception

of the bounding boxes which are stored in memory for the entire duration of the alignment, all other data is

loaded on demand. The output is a set of registration matrices (one per scan) that defines the new, more

accurate alignment. The main steps of the algorithm are described next.
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Input: scans to be registered: S1; : : : ; SN

initial registration matrices: M1; : : : ;MN

detail maps: D1; : : : ; DN

depth maps: Z1; : : : ; ZN

bounding boxes: B1; : : : ; BN

lists of sample points: L1; : : : ; LN

where Lm = f(tm; pm)jtm 2 Dm; pm 2 Smg

camera parameters: C

Output: accurate registration matrices: M1; : : : ;MN

Algorithm Image-Based Registration

1. read B1; : : : ; BN

2. while (convergence criterion not satisfied)
3. (m1; : : : ; mN) = random permutation (2; : : : ; N)

4. for (m = m1; : : : ; mN)

5. Cm = camera (Mm; C)

6. register scan (m;Cm)

Procedure register scan (m;Cm)

1. read Dm; Zm; Lm

2. for (i = 1; : : : ; N) and (i 6= m)

3. read Si; Di

4. if (Bm intersects Bi)

5. ~
Di = project scan (Si; Di; Cm)

6. Omi = compute image overlap (Dm;
~
Di)

7. if (jOmij > min overlap)
8. for ((tm; pm) 2 Lm) and (tm 2 Omi)

9. ti = tm

10. bi = find best match (tm; Dm; ti;
~
Di)

11. pi = back project (bi; Si; Cm) 2 Si

12. insert pair (pm; pi; pairs list)
13. if (jpairs listj � 3)

14. Mm = compute rigid transform (pairs list)

Fig. 4. Skeleton of the image-based registration algorithm.

A. Selection of Sample Points

Prior to the actual alignment, a list of sample points Lm is computed for each scan Sm. We use image-

processing techniques to identify points tkm; k = 1; : : : ; nm in the detail map Dm. The goal is to select points

in areas of rich content that pertain to matching by cross-correlation, rather than to identify precise image

features. In addition, for each t
k
m we also compute the corresponding point pkm 2 Sm under the perspective



13

projection defined by the capture camera.

(a) (b)

(c) (d)

Fig. 5. Selection of sample points from detail maps using edge detection.

We have experimented with a variety of techniques, including selection based on moment invariants and

several edge-detection methods. For the test cases described in this paper, we used an edge-detection tech-

nique which is illustrated in Figure 5. Figure 5(a) shows a portion of the original detail image. First, the

detail image is slightly blurred using a Gaussian filter to reduce the noise. Next, horizontal and vertical Sobel

operators are applied separately to the blurred image. The two resulting edge images are combined into one

that contains at each pixel the largest of the corresponding values at that pixel (see Figure 5(b)). A threshold-

ing operation is applied next to filter out regions with low gradient variation. The threshold value is selected

automatically, based on the image histogram. The result is a bitmap that contains values of one where the

gradient variation is above the threshold and zero elsewhere (see Figure 5(c)). This bitmap is used to select

sample points in regions where edges have been identified. Before selecting the points, all pixel values are set

to zero where the corresponding weights in the weight map are below a given confidence threshold, since we

do not want any samples in these areas (see Figure 5(d).) For the actual selection, a regular grid is superim-

posed onto the bitmap to ensure that selected points are distributed over the entire image. The first non-zero

pixel encountered in each grid cell in row-wise order is selected as the sample point corresponding to that cell
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and is inserted into the list of samples. During alignment, points in the list are considered in random order to

ensure that all meaningful regions of the image contribute to the registration process. We emphasize that we

use the edge bitmap solely for the purpose of selecting samples. The actual image matching is performed by

cross-correlation on the detail maps in the neighborhood of each sample point.

B. Projection of Detail Maps

For the alignment of a given scan Sm (procedure register scan in Figure 4), the pairs of points to be matched

are selected based on corresponding points in the detail map Dm and the detail maps of overlapping scans.

To compare two detail maps Dm and Di, they have to be rendered from the same camera position, i.e., Dm is

compared to ~
Di, the projection of Di onto the image plane of the camera Cm (see Figure 3.)
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Fig. 6. Occlusions example: point p1i is visible from camera position Ci, but not from Cm. Since the detail map Di is projected
onto the image plane of Dm, this point must be discarded. The depth map Zm corresponding to scan Sm is used to mask
points of Si which are not visible from Cm. In contrast, point p2i is visible from Cm and its texture is recorded onto ~Di. The
red and blue curves identify the two scans Sm and Si, respectively. The areas of ~Di that receive texture from scan Si are also
highlighted in blue.

A simple way to perform such projections is to render scan Si with the detail image Di as its texture, using

camera Cm. However, this approach produces incorrect results in the presence of scan self-occlusions or

occlusions from other scans, as shown in Figure 6. To avoid this problem, a depth map Zm is stored with each

scan. This is simply a binary dump of the z-buffer created by rendering Sm using its own camera Cm. Before

rendering Si from camera position Cm, the z-buffer is preloaded with the depth map Zm. A small offset � is

added to prevent z-buffer contention and to account for alignment errors between Sm and Si. The occluded

parts of Si are now correctly discarded, and the corresponding regions in the projected detail map ~
Di receive

no texture. Figure 6 shows two contrasting situations: point p1i is occluded by p1m and thus the corresponding
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pixel t1i 2 ~
Di remains black, whereas point p2i is visible from Cm and thus t2i receives texture values from Di.

C. Identification of Matching Pairs

Given a pair of detail maps Dm and ~
Di, both rendered from the same camera position Cm, the algorithm

first computes an overlap bitmap Omi. A pixel in this bitmap is set to one if and only if both Dm and ~
Di have

a weight at that pixel that is larger than the confidence threshold. If there is sufficient overlap, the sample

points (tm; pm) 2 Lm for which tm is inside the overlap region are processed one-by-one, until a prespecified

number of matching pairs is found or until all points have been processed.
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Fig. 7. Sliding-window search for the point maximizing cross-correlation between image neighborhoods. The search starts at
point ti 2 ~Di, marked in black. The green area is cross-correlated to the corresponding area in Dm. The operation is repeated
for areas centered in all pixels within the search region outlined in red. The pixel corresponding to the center of the maximum
cross-correlation area is marked in red. The search window is moved to the new center and a new iteration starts.

For a given sample (tm; pm) such that tm 2 Dm has pixel coordinates (u; v), we define a point ti 2 ~
Di with

the same coordinates. Ideally, tm and ti mark the same image feature on Dm and ~
Di, i.e., scans Sm and Si are

perfectly aligned. In practice, ti may be slightly offset with respect to the feature marked by tm due to errors

in the alignment of the scans. Our strategy is to search in the neighborhood of ti for another point bi that is

a better match for tm, and to use the corresponding point pi = back projection(bi; Si; Cm) 2 Si as the

match of pm in the final alignment. The search for bi is performed using a sliding-window cross-correlation

approach which is outlined in Figure 7.

The radius of the search region for the cross-correlation and the size of the correlation window are de-

fined taking into account the resolution of the scanning system and the maximum registration error after the

geometry-based alignment. In our case, given a linear intersample distance of the scanner of approximately

2 mm and a residual error after the geometry-based alignment of less than 4 mm, we define a conservative

radius of 7 mm (i.e., 14 pixels assuming a 0:5 mm resolution in the detail maps) for the search area around

each point ti. A cross-correlation is performed in this area using a window of 15 mm radius (i.e., 30 pixels),

also a fairly conservative choice to ensure that significant features around each point are included.

The location within the search area that yields the highest value for the correlation coefficient defines the
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best match position bi. Only pairs for which the correlation value is above a certain threshold are used to

refine the alignment. We compute the correlation coefficient of n data points (tkm; t
k
i ) according to Pearson’s

formula [23], �2 = s
2

mi=smmsii, where

smm =
X
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m)
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n
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Cross-correlation is known to be a time-consuming procedure. For efficiency, we replace an exhaustive search

in a 14-pixel radius area with a sliding window approach that is faster to compute. We restrict the radius of

the search area to 3 pixels and we allow it to slide in the direction of the best correlation for a predefined

number of times. An obvious problem with this method is that the search may terminate by finding a local

maximum of the correlation function and thus the global maximum is never reached. We compensate for this

drawback by identifying a larger number of points than are actually needed. An alternative solution is to allow

the search window to slide out of a local maximum with a given probability dependent on the surrounding

values.

D. Multiple Iterations and Convergence

Our image-based registration method generally performs multiple iterations to allow each scan to adjust its

position with respect to its neighbors. The number of iterations is typically determined by some convergence

criterion. In our experiments, we use as a measure of convergence the change in the mean square error

between consecutive iterations. If this change is small, the algorithm stops. At each iteration, the scans are

considered for alignment one-by-one, in random order. The scan currently being aligned moves in search for

a better position with respect to all other scans, which are considered temporarily fixed. Culling is used to

speed up the procedure by considering only scans with intersecting bounding boxes.

This image-based registration algorithm has several advantages. It takes into account high-resolution in-

formation in the captured images to fine-tune the geometric alignment of scans. The fine-tuning is performed

via image matching involving a simple and efficient cross-correlation procedure that is restricted to small

areas around selected sample points. Specific image features need not be identified. Any image processing
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technique that allows for finding feature-rich regions in the input images is well-suited for the selection of

the sample points. The sampling method presented is completely automatic and requires no manual interven-

tion. Occlusions are handled simply and efficiently by comparing depth values stored in precomputed depth

buffers.

There is a potential residual registration error due to the lower resolution and line-of-sight error of the

range scans. The effect of these two sources of error is alleviated by two factors. First, these errors are

randomly distributed around a mean value, so that using a large number of sample points, and having multiple

overlapping scans at each point, tends to average out the error. Second, both errors are nearly perpendicular

to the image plane of the albedo and normal maps, and contribute minimally to ghosting artifacts in the

resulting textures. The line-of-sight error affects all methods that rely on reprojecting matching image points

on the corresponding range scans as a step in computing the registration transformation [13], [19], [20], [22],

although it has greater impact in our system given our assumption of lower resolution range scans compared

to the intensity images. In applications where a greater registration accuracy in the direction normal to the

surface must be achieved, the normal maps could be used to locally refine the geometry obtained from the

range scans, and to estimate with increased resolution the position of points on the surface. Increased accuracy

could also be obtained by interleaving steps of registration and line-of-sight error correction. These ideas will

be explored in future work.

V. TEXTURE RECONSTRUCTION

The goal of texture reconstruction is to generate seamless texture maps covering the model. To make

maximum use of the acquired data, texture maps are recalculated based on the integrated mesh. For a given

scan, albedo and normal data may now be obtained in regions where there is no geometry available from that

scan.

The input to the texture reconstruction process consists of the collection of height-field patches that form a

partition of the model surface and the finely registered scans with the recomputed albedo, normal, and weight

maps. A mapping between geometry and corresponding textures is defined as an orthogonal projection in the

direction that maximizes the projected patch area (see Figure 9.)

The pixel size of a texture is determined based on the projected size of the corresponding patch and on a

user-specified parameter representing the desired number of pixels per unit of length. All individual texture
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(a) (b) (c) (d)

Fig. 8. Calculation of the final weight map for a section of a scan used to reconstruct the model in Figure 1. (a) Intensity image.
(b) Preliminary weight map based on the ratio of projected to true area for each pixel. (c) Preliminary weight map based on the
photometric calculations. (d) Final weight image.

maps are combined using the weight maps defined in Section III. Figure 8 shows the calculation of the

final weight map for a section of a scan as the combination of two preliminary weight maps. For illustrative

purposes, the relative weights in each weight image are shown with a color map with black as zero, and the

hues from blue to red corresponding to increasing non-zero weights. Figure (a) shows a section of an intensity

image for one of the scans used to create the model in Figure 1. Figure (b) shows the first preliminary weight

map for this section of the scan based on the ratio of projected to true area for each pixel. This ratio is

computed as the cosine of the surface normal to the camera direction divide by the square of the distance to

the camera. Occlusion boundaries, such as the tip of the nose in this image, are detected, and a weight of zero

is assigned to each occlusion boundary. By setting these pixels to zero, occlusion boundaries are treated in

the same manner as the edges of the scan. Figure (c) shows the second preliminary weight map based on the

photometric calculations. If a surface normal can be computed from photometric data for a pixel it is assigned

a high weight. If such a normal can not be computed, but there is an underlying surface normal value, a much

lower, but non-zero value is assigned. A smooth transition (indicated by the transition from red to blue in

Figure (c)) is applied between the photometric and non-photometric areas, so that there will not be a sudden

spatial break in the contribution of this scan to the final result. The values of Figure (b) and (c) are multiplied

and rescaled to form the final weight image, shown in Figure (d). The last step in computing the final weights

in (d) is to compute a smooth transition from areas with non-zero weight, to the edge values which have a

weight of zero. The weights are stored as 0-255 values. The quantization accounts for the large black area in

the lower right of this example, where the values in both images (b) and (c) are low, and the values are further

reduced by the transitioning to the nose silhouette edge. Because weights are generated per scan and not per
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Fig. 9. (a) Two-dimensional diagram of texture remapping. An albedo map A is computed for patch P , which is parameterized as
a height field onto the image plane of A. Three scans S i, Sj , and Sk have camera frusta intersecting patch P and are considered
for the remapping. For each pixel a on textureA, consider the corresponding point p on patch P . This point projects onto points
ai, aj and ak in the albedo maps of the three scans, and onto w i, wj and wk in the corresponding weight maps. The resulting
albedo value for a is (wiai + wjaj + wkak)=(wi + wj + wk). This weighting scheme avoids discontinuities at transitions
between patches or between scans within the same patch. (b) Examples of occlusions.

patch, transitions across patch boundaries are not visible. Also, since the weights for each scan decrease with

distance to the scan border, scan-to-scan boundaries are not visible.

The computation of a value for each texture pixel is illustrated in Figure 9. In this example, an albedo map

A is computed for patch P . The three scans Si, Sj, and Sk have camera frusta that intersect the bounding box

of patch P and are considered for the reconstruction.

A straightforward solution to the remapping problem is to use ray-casting. However, the time required to

process all ray-mesh intersections makes this procedure prohibitively expensive. Another method to combine

the albedo maps of the three scans into A is to define an orthogonal camera and then render P multiple

times, with each of the albedo and weight maps from the three scans as its texture. The rendered images are

accumulated using weighted averaging. This approach is also inefficient and produces incorrect results in the

presence of occlusions. Consider the situation in Figure 9(b): points p1 and p2 receive values from the maps

associated with scan Si, even though they are occluded when rendered from camera position Ci. Similar to

the method described in Section IV depth values are used to filter out occluded points.

Specifically, to compute an albedo map A for a patch P , accumulation buffers for albedo, normals, and

weights are created and initialized. P is then sampled at points corresponding to each pixel of A. This can

be done by defining an orthogonal camera that matches the projection of P onto A, then scan-converting the

primitives in patch P into a z-buffer.

We use the inverse viewing transformation to convert each pixel (u; v) and the associated depth to world
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coordinates that are stored in a point map. We start the processing of each overlapping scan by loading its

albedo, normal, weight and depth map, and by defining a perspective camera matching the actual camera that

was used to capture the intensity images. We then consider each pixel of A. We retrieve the corresponding

patch point from the point map, and use the viewing transformation to map the point into pixel coordinates

(u; v) and its depth relative to the perspective camera. We compare the depth of the point with the value stored

in the depth map Zi for the scan. If the depth is larger than the stored value (minus a small offset to account

for numerical errors), then the point is occluded and therefore no longer considered. Otherwise, we fetch the

albedo, normal and weight values at location (u; v) in the corresponding maps, and update the accumulation

buffers. After all the scans have been processed, accumulated albedo and normal values are divided by the

accumulated weight.

By pre-sampling the patch geometry and by fetching values from all maps simultaneously, computations

are streamlined. Occlusions are handled simply and efficiently by comparing depth values in precomputed

depth buffers. Image and geometric information are loaded on demand, to allow processing of large sets of

scans that do not fit in memory. The only information stored for all scans is the view-frustum of the capture

camera and the bounding box of each patch to allow view frustum culling at the bounding box level.

VI. RESULTS

We demonstrate our new methods with results for three qualitatively different test objects. One is a 26 cm

tall vase, with few geometric features and sharp surface color variations. The second is a 12 cm tall piece

of clay with no surface color variations, but a lot of small scale geometric variations. The third object is a

section of a large marble statue with subtle variations in both geometry and color, shown in Figure 1.

For the vase, the major challenges are accurate alignment for an object with few geometric features, and

maintainance of sharp textures. The use of image-based alignment improves the geometric alignment, and

maintains sharpness, as illustrated in Figure 10. Twenty scans, shown textured-mapped with the original

intensity images in Figure (a), were acquired to cover the full vase. Figure (b) shows a portion of one of the

five captured intensity images for one of the scanner positions. The acquired image contains both specific

illumination and some noise. The albedo map obtained from the five calibrated images, mapped on the

corresponding scanned geometry, is shown in Figure (c). The effects of illumination have been removed,

but noise remains. Figure (d) shows the albedo maps reconstructed from multiple overlapping scans, using
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(a)

(b)

(c)
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(e)

Fig. 10. The vase dataset. (a) The twenty scans used to reconstruct the vase. (b) Intensity image captured by the scanner.
(c) Computed albedo map. (d) Reconstructed albedo without image-based registration. (e) Same as (d) with image-based
registration. (f) Photograph of the vase. (g) Rendering of a computer model of the vase reconstructed from the twenty scans.
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geometry-based registration only. The noise has been damped out by averaging, but the imperfect alignment

causes ghosting artifacts. The same map after the image-based registration refinement is shown in Figure (e).

On the 2 to 3 mm thick grapes stems ghosting artifacts are far less apparent. A photograph of the vase, lit

by a small lamp from the front, is shown in Figure (f). The full reconstructed vase, lit from the direction

of the viewpoint with parallel light, is rendered in Figure (g). Note the sharpness of the texture achieved

through image-based alignment. We did not attempt to simulate the directional characteristics of the small

lamp illuminating the vase in the photograph. The viewing parameters are similar, but not identical. The

20 scans used comprise a total of 418 thousand range data points. The final reconstructed model is a 200

thousand triangle mesh. We started with 150 sample points per detail image. For each scan, we limited the

number of matching pairs used to a maximum of 10 in each region of overlap with another scan. For this

test, the image-based registration required a total of 115 minutes on a 450MHz Pentium II, using 35MB of

memory and six iterations. Texture reconstruction was completed in 30 minutes.

The clay object is shown in Figure 11. Figures (a) and (b) show intensity images associated with two

scans of the clay. The two scans have one side of the block in common. The common side can be identified

visually, however the illumination for the two scans is quite different. For these scans, that show no albedo

variations, detail images were computed from the normals images. To obtain values that were independent

of the coordinate system, the detail images were computed by taking the dot product of the normal at each

pixel with the average of normals in a small neighborhood. The resulting detail images for the two scans are

shown in Figures (c) and (d). Since the common surface between the two scans is almost flat, ICP did a poor

job aligning the scans, as shown in the result in Figure (e) (lit from the far left to reveal relief.) Comparing

the small features in Figure (e) with the features apparent in the original intensity images shows considerable

ghosting. Figure (f) shows the result after the texture alignment. Most of the ghosting has been removed, and

the true features are more clearly defined.

The views required to scan the section of statue in Figure 12 were restricted by its setting shown in Fig-

ure (a). The 20 scans captured are shown in Figure (c). For the statue, the major challenge is obtaining sharp

details in the normals maps that indicate small toolmarks in the geometry as seen in the black and white pho-

tograph in Figure (b). Figures (d) and (e) show a comparison of the reconstructed normals maps before and

after image-based registration. Illumination from a glancing angle accentuates the fine details on the head

ornament. The details are clearer after the image-based registration. The reconstructed model can be relit us-
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(a) (c) (e)

(b) (d) (f)

Fig. 11. (a), (b) Intensity images associated with two scans of a clay object. (c), (d) Detail images for the two scans, derived from
the normal maps. (e) Result after ICP registration (lit from the far left to reveal relief.) (f) Result after the texture alignment.
Most of the ghosting has been removed, and the true features are more clearly defined.

ing the detail normals and albedo. Figures (f) and (g) show the statue under two different lighting conditions.

The 20 scans used comprise a total of 207 thousand range data points. The final reconstructed model is a

200 thousand triangle mesh. As for the vase, we started with 150 sample points per detail image and limited

the number of matching pairs used to a maximum of 10 for each pair of overlapping scans. Image-based

alignment of the 20 source scans completed in 148 minutes for six iterations. Texture reconstruction required

an additional 35 minutes.

VII. CONCLUSIONS

We have demonstrated an approach for generating texture maps for the efficient representation of scanned

objects with high visual quality. We use a novel image-based registration algorithm that takes into account

high-resolution information in the captured images. The geometric alignment is improved by matching image

structure around automatically selected points. The refined alignment allows us to reconstruct sharp textures.
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(a) (b)

(c)

(d) (e)

(f) (g)

Fig. 12. (a) Black and white photograph showing the section of statue in Figure 1 in context. (b) Black and white photograph
showing a closeup view. (c) The 20 scans used to reconstruct the head. (d), (e) Normal map before and after image-based
registration. (f), (g) The reconstructed model of the statue rendered under two different lighting conditions.
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Our texture reconstruction approach uses a unique weighting scheme to combine the best information at each

texture pixel that reduces noise and which eliminates the evidence of any scan or patch boundaries.

We are considering future work in a number of directions. We are exploring the interleaving of geometric

ICP, image-based alignment, and line-of-sight error correction in our pipeline. We conjecture that accounting

for line-of-sight errors during alignment will produce better registration results. We also seek to improve our

method for generating texture patches. Currently, we use a relatively simple greedy approach that does not

guarantee an optimal set of patches.

While three-dimensional scanning is being used with increasing frequency, it remains a relatively expensive

and labor-intensive process. Significant research is required to refine the entire acquisition and model building

pipeline. Focusing on methods that employ inexpensive hardware to produce high visual quality will make

this technology accessible to a much broader audience.
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