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Figure 1: This paper describes how single facade textures of arbitrary resolution can be converted to semantic 3D models of high visual
quality. Left: rectified facade image as input. Middle left: facade automatically subdivided and encoded as shape tree. Middle right: resulting
polygonal model. Right: rendering of final reconstruction including shadows and reflections enabled by semantic information.

Abstract

This paper describes algorithms to automatically derive 3D models
of high visual quality from single facade images of arbitrary res-
olutions. We combine the procedural modeling pipeline of shape
grammars with image analysis to derive a meaningful hierarchi-
cal facade subdivision. Our system gives rise to three exciting ap-
plications: urban reconstruction based on low resolution oblique
aerial imagery, reconstruction of facades based on higher resolu-
tion ground-based imagery, and the automatic derivation of shape
grammar rules from facade images to build a rule base for procedu-
ral modeling technology.

CR Categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism
I.6.3 [Simulation and Modeling]: Applications

Keywords: Procedural Modeling, Image-based Modeling, Urban
Reconstruction, Design Computation, Architecture

1 Introduction

This paper addresses the following problem: given a single image
of a building facade as input, how can we automatically compute
a 3D geometric model that (1) looks like a plausible interpretation
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of the input image, (2) has much higher resolution and visual qual-
ity than the input image, and (3) includes a semantic interpretation.
The proposed method is designed to work with input textures of
arbitrary resolution. First, our method is able to enhance simple
textured building mass models constructed from aerial images (see
Fig. 2). While current models allow for stunning images from a
bird’s eye view, the resolution of geometry and textures is not suffi-
cient for important applications where a user navigates near ground
level. For example, a virtual training application for emergency re-
sponse will require interaction with a detailed model of high visual
quality and realism including semantic information for meaningful
simulation. Other applications in the entertainment industry, urban
planning, visual impact analysis, driving simulation, and military
simulation have similar requirements. The second type of data we
consider are single images from ground-based photographs (an ex-
ample is given in Fig. 1). In this context modeling based on single
facade images provides a simple and robust modeling framework.
For example, a modeler could use imagery from the internet or a
commercial supplier to quickly create an interesting urban model.

Our research problem is related to computer graphics and computer
vision. While computer graphics techniques fulfill the quality cri-
teria of most applications, the predominant method of large-scale
reconstruction is to invest several man years of labor. Therefore,
recent techniques in computer graphics are interested in efficient
large-scale modeling [Parish and Müller 2001; Müller et al. 2006],
but these techniques do not allow to establish a very close resem-
blance to a real environment. In computer vision there is a wide
range of strategies for urban reconstruction, but there is only very
limited work in the area that is helpful to our task: reconstruction
from single facade images. Firstly, this is an ill-conditioned prob-
lem. Secondly, the driving applications are only just ramping up.

In our approach, we mimic the procedural modeling pipeline from
computer graphics to subdivide a facade texture in a top-down man-
ner into elements such as floors, tiles, windows, and doors. We use
image analysis to ensure a meaningful subdivision corresponding
to the input image. The major contributions of this paper are as
follows: (1) We introduce the usage of mutual information to ex-
tract the high-level facade structure by detecting repetitions. (2) We
propose a novel method to derive a top-down subdivision scheme
by combining computer vision techniques and procedural modeling
methods based on architectural knowledge. (3) We automatically
infer shape grammar rule sets from complex images.
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Figure 2: The method can be applied to enhance state-of-the-art
oblique aerial imagery. Left: close-up view of original texture (note
the blur due to the low resolution). Right: our reconstruction.

1.1 Related Work

In the 70’s, Stiny introduced the seminal idea of shape gram-
mars [Stiny 1975] as a formal approach to architectural design.
Shape grammars were successfully used for the construction and
analysis of architectural design [Stiny and Mitchell 1978; Koning
and Eizenberg 1981; Flemming 1987; Duarte 2002]. The direct
application of shape grammars in computer graphics is intrinsi-
cally complex. The strategy of recent work in computer graphics
was to simplify the geometric rules [Stiny 1982], but to extend the
derivation mechanisms [Parish and Müller 2001; Wonka et al. 2003;
Marvie et al. 2005; Müller et al. 2006]. Shape grammars could be
complemented by cellular textures [Legakis et al. 2001] to generate
brick layouts and generative mesh modeling [Havemann 2005] to
generate facade ornaments. Many aspects of procedural architec-
tural modeling in computer graphics are inspired by concepts intro-
duced by L-systems [Prusinkiewicz and Lindenmayer 1991], such
as geometry sensitive rules [Prusinkiewicz et al. 1994], the incor-
poration of computer simulation [Měch and Prusinkiewicz 1996],
and artistic high-level control [Prusinkiewicz et al. 2001] .

In computer graphics, several techniques for matching shapes to 3D
point clouds exist. Related to our method is the approach presented
by [Ramamoorthi and Arvo 1999]. They recover generative models
from 3D range data by automatically selecting the best suited hi-
erarchy of shape operators and adjusting their parameters. In com-
puter vision, a similar variety of algorithms for matching high-order
structures to images exist. For example, Han and Zhu [2005] pro-
posed a two step method that first detects rectangles in a perspec-
tive image (bottom-up) and then merges the rectangles with an at-
tributed graph grammar (top-down). In contrast, our facade-specific
interpretations include top-down influences from the very start.

Urban reconstruction algorithms make use of a wide variety of
input data, for example: ground-based facade images [Debevec
et al. 1996; Jepson et al. 1996; Dick et al. 2001; Wang et al.
2002; Lee et al. 2002; REALVIZ 2007], interactive editing using
aerial images [Ribarsky et al. 2002], aerial images combined with
ground-based panorama images [Wang et al. 2006], ground-based
laser scans combined with aerial images [Früh and Zakhor 2001],
ground-based and airborne laser scans [Früh and Zakhor 2003],
ground-based laser scans combined with facade images [Karner
et al. 2001], and LIDAR, aerial images, and ground-based im-
ages [Hu et al. 2006]. In practice, several systems still resort to
semi-automatic methods, e.g. [Lee and Nevatia 2003; Takase et al.
2003; Bekins and Aliaga 2005]. Generally, in these systems, a user
is assisted by computer vision methods [Debevec et al. 1996] dur-
ing modeling. Most automatic processes need to rely on simplifica-
tions, such as considering windows as dark rectangles [Alegre and
Dellaert 2004; Brenner and Ripperda 2006] or limiting the appear-
ance of facade elements to pre-specified types, even when leaving
some freedom in the values of their parameters [Dick et al. 2004].
The problem is simplified if 3D data is available as depth displace-
ments between elements (e.g. windows vs. walls) yield a strong,

additional cue for their segmentation [Schindler and Bauer 2003;
Dick et al. 2004; Brenner and Ripperda 2006]. In [Lee and Nevatia
2004], a single image approach for window detection is presented
that, similar to [Schindler and Bauer 2003], fully relies on the de-
tection and analysis of edges. This is a notoriously fragile operation
when taken on its own, and comes at the price of only being able to
deal with windows placed in otherwise homogeneous facades. Our
method is less prone to such low-level fragility - as we exploit high-
order symmetries early on - and is able to detect additional facade
structures like ledges and window sills.

1.2 Overview

The proposed solution consists of four parts organized as stages in
a pipeline. This pipeline transforms a single image into a textured
3D model including the semantic structure as a shape tree. We use
a top-down hierarchical subdivision analogous to splitting rules in
procedural facade modeling [Wonka et al. 2003; Bekins and Aliaga
2005; Müller et al. 2006] (see Fig. 3).

Figure 3: Our system computes a hierarchical subdivision of fa-
cades. This subdivision scheme was successfully employed in the
procedural modeling literature by various authors.

The input images can stem from ground-based or aerial imagery.
In practice, urban reconstruction is done by semi-automatic meth-
ods based on [Debevec et al. 1996]. Most of these implementations
(e.g. [REALVIZ 2007]) can automatically extract various types of
texture atlases. Thus, rectified facade textures including corre-
sponding real-world sizes (from the reconstructed model) can be
easily extracted from such photogrammetric urban models. How-
ever, there are various public tools for rectification for cases where
such rectification is still needed. We used an automatic rectification
tool of our own (described in appendix A). In the following we give
a short description of the individual stages and fill in details in later
sections:

Facade structure detection: The input is a single rectified facade
image. In section 2 we describe an algorithm to automatically sub-
divide the facade image into floors and tiles by using mutual infor-
mation. A tile is an important concept from procedural modeling
that denotes an architectural element such as a window or door in-
cluding the surrounding wall (depicted in Fig. 3).

Tile refinement: The input to this stage is a facade image subdi-
vided into tiles including clustering information describing which
groups of tiles are similar. This stage (see section 3) segments in-
dividual tiles into smaller rectangles. We make use of the transla-
tional symmetry in order to achieve a robust subdivision. This stage
draws from split grammars [Wonka et al. 2003].

Element recognition: The stage described in section 4 matches
smaller image rectangles from the previous stage with 3D objects
from a library of architectural elements. Finally we output a 3D
textured model including the semantic structure as a shape tree.

Editing and Shape Grammar Rule Extraction: Semantic facade
interpretation can be used for various editing operations, including
the extraction of shape grammar rules from the previously derived
shape tree (see section 5).
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2 Determination of Facade Structure

The goal of this stage is to detect the general structure in a facade
and to subdivide it accordingly. The input is a single image and the
output a subdivision into floors and tiles. Additionally, we compute
symmetry information so that we know for each pixel the location
of corresponding pixels in symmetric tiles. Fig. 4 shows an exam-
ple subdivision computed by this algorithm. Please note that while
this example is fairly symmetric, it is already challenging due to
complex shadowing and different window appearances.

Figure 4: In the first stage of the process, the facade is automatically
subdivided into tiles (illustrated as red lines). Moreover, similar tile
appearances are detected and registered in groups.

The algorithm has three steps. Firstly, we detect similar image re-
gions using mutual information (MI). Secondly, we create a data
structure called Irreducible Facade (IF) that allows us to encode
information about the symmetries that govern the floors and tiles.
Thirdly, we analyze the IF to find the optimal, further subdivision of
the tiles. Key to this algorithm is the detection of translational sym-
metry in step 2 before we compute splitting lines in step 3. This not
only improves the robustness of the algorithm, but also guarantees
that similar elements are split at corresponding positions.

2.1 Mutual Information

In probability theory and information theory, the MI of two random
variables is a quantity that measures the mutual dependence of the
two variables. It quantifies the Kullback-Leibler distance [Kullback
1959] between the joint distribution, P(A = a,B = b), and the prod-
uct of their marginal distributions, P(A = a) and P(B = b), that is

MI(A,B) = ∑
a,b

P(a,b) log
P(a,b)

P(a) ·P(b)
, (1)

where A and B are two random variables. MI was proposed as a
similarity measure on image intensities for 3D rigid registration in
medical imaging by Wells et al. [1996]. It does not assume any sim-
ple or one-to-one relationship between the intensities. This gives
MI the flexibility that we seek.

In order to utilize MI to measure the similarity between image re-
gions R1 and R2, the intensity values of the corresponding position
pairs are considered. The joint and marginal intensity distributions
are taken to be the normalized joint and marginal histograms of
those pairs. The MI-based similarity MI(I(R1), I(R2)) measures
the statistical dependence between intensities at corresponding po-
sitions in regions R1 and R2. Accordingly, I(R1) and I(R2) are
the intensities at corresponding image locations in R1 and R2. Next
we describe how MI is used to find similar image regions.

2.2 Symmetry Detection

In this step we use MI to find similar floors and tiles in the image.
In the vertical direction, we expect translational symmetry of floors,
even though the bottom and top floors often differ. In the horizon-
tal direction, floors often exhibit an ordered sequence of repeated
patterns or ‘tiles’. Our algorithm searches first for symmetry in the
vertical and then in the horizontal direction. In the following, we
will describe the solution for the vertical direction. The solution for
the horizontal direction is very similar and we will only indicate the
minor differences.

Let Ry,h denote the rectangular image region with a lower left cor-
ner of (0,y) and upper right corner of (imagewidth,y + h). For the
repetition detection in the vertical direction we need to analyze the
similarity between Ry1,h and Ry2,h for arbitrary values of y1, y2 and
h. These three parameters span a 3D search space, which is too big
to be explored exhaustively, given the time MI takes to compute.

The problem is simplified by only analyzing adjacent regions Ry,h
and Ry−h,h. This, of course, restricts the order that can be found.
On the other hand, the vast majority of cases correspond to such
contiguous, periodic tiling. The similarity between two adjacent
regions with height h is computed by:

S(y,h) = MI(I(Ry,h), I(Ry−h,h)). (2)

We use an exhaustive search strategy to compute S(y,h) for all po-
sitions y, and a range of parameters for h. The range specifies rea-
sonable architectural floor heights. We use 3m < h < 5.5m for all
examples in the paper and video (in the horizontal direction there
is a larger variety of tile sizes, ranging from 0.5m to 9m). The
search yields the best symmetry value Smax(y) = maxh S(y,h) for
each horizontal image line and the corresponding value hmax(y) =
argmaxh S(y,h) that indicates the height resulting in the best sym-
metry value (see Fig. 5). Please note that the values for hmax(y)
are fairly constant, but that peaks in Smax(y) do not correspond to
natural splitting lines in the image or floor divisions for that matter.

Figure 5: The symmetry detection of a facade image in the vertical
direction. For each line in the facade image we show the best sym-
metry value and the corresponding height. The red lines are where
Smax(y) reaches a local maximum.

2.3 The Irreducible Facade

The IF is a data structure that encodes the facade’s symmetry based
on the computation from the previous section. The IF is a kind of
collage IF(x,y) that stores a list of pixels instead of a single pixel
at each location (x,y), i.e. a collage of stacks of original, similar
image fragments. The IF summarizes the facade, with pixels at
symmetric positions now collapsed into the stack pixel lists. The
idea is that the IF exhibits no further symmetries, hence the name
‘irreducible’. Fig. 6 right shows the IF for the facade in Fig. 5. If no
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symmetry can be detected in the original image, then it will be its
own IF. The concept of a miniature image that captures all essential
information has been presented also by [Jojic et al. 2003]. Their
epitomes encode local texture but do not preserve geometric prop-
erties (e.g. lines are not mapped to lines). Hence epitomes are not
meaningful images themselves, making them inappropriate here.

The IF is computed as follows: (1) IF(x,y) is initialized to be iden-
tical to the facade image. (2) We iteratively select the postition
y = argmax(Smax(y)) and shrink the image by shifting the region
Ry−hmax(y),hmax(y) over the region Ry,hmax(y). The pixels of the re-
gion on top are added to the pixel list of the region under it. In
practice we store indices to the original image, so that the operation
becomes reversible. We compute a new value Smax(y) by setting
it to the minimum of the two overlapping positions. This ensures
stable clustering. Fig. 6, left, shows the result of stacking up similar
floors for the input image of Fig. 5. The collage consists of three
such floor stacks and a top cornice. Then a similar step removes the
horizontal repetitions within the floors, resulting in the right part of
the figure. (3) The algorithm terminates when no more symmetry
can be found i.e. no value Smax(y) exceeds the threshold 0.75∗τmax,
where τmax is the best similarity score. Fig. 6 shows a result. Next
we pass the IF to the next step and find splitting lines in the image.

Figure 6: Left: the facade from Fig. 5 after removing the verti-
cal symmetry. Right: further removing of the horizontal symmetry
yields the Irreducible Facade. Please note that we use the average
pixel color for display purposes.

2.4 Structure Subdivision

Splitting lines subdivide the IF into ‘floors’, vertically, and ‘tiles’,
horizontally within the floors. When the splitting lines are com-
puted in the IF we implicitly know them for other symmetric ele-
ments and can expand them into a full facade subdivision.

After analyzing many facade images, the following strategy sug-
gested itself: include horizontal splitting lines where vertical edges
are rare and horizontal edges are dense, and vertical splitting lines
in the opposite case. Relying on perfect edge extraction would ren-
der the process fragile, but we can nevertheless hope that traces of
edges will be found at the tile centers where frames of windows or
doors are expected to appear. The following two functions are used
to signal the presence of horizontal or vertical edges:

hor(x,y) = max{(
∂ I
∂y

)2 −α |∇I|2,0}

= max{(1−α)(
∂ I
∂y

)2 −α(
∂ I
∂x

)2
,0}

ver(x,y) = max{(
∂ I
∂x

)2 −α |∇I|2,0}

= max{(1−α)(
∂ I
∂x

)2 −α(
∂ I
∂y

)2
,0} (3)

where ∂ I
∂

is the partial differential operator and ∇I = ( ∂ I
∂x ,

∂ I
∂y ) is the

gradient operator. We used α = 0.9 for all results in this paper. The

preference for a horizontal splitting line at position y or a vertical
one at position x is made dependent on the values of two interest
functions:

Ver(y) = (∑
x

ver(x,y))∗gσ (y)−β (∑
x

hor(x,y))∗gσ (y)

Hor(x) = (∑
y

hor(x,y))∗gσ (x)−β (∑
y

ver(x,y))∗gσ (x) (4)

where gσ (·) = 1
2πσ 2 e−

|·|2

2σ2 is the Gaussian kernel and ∗ is the (one-
dimensional) convolution operator. The first and second terms en-
code the density of vertical and horizontal edges respectively (hori-
zontal and vertical edges in the opposite case). β is a small constant
parameter with value 0.1 for all examples. Furthermore, we use
σ = 1m for all examples. High values of Ver (or Hor) will accrue
in regions with strong vertical (or horizontal) edges. Based on this
interest function, we can extract a set of potential positions {yi} (or
{xi}) for the splitting line at the local minima. If we want to in-
clude a horizontal splitting line, Ver(y) should go through a local
minimum at its y position. As can be seen, it strongly penalizes any
presence of vertical lines and if the horizontal line is chosen, it is a
locally dominant feature. Finally, an exhaustive search is employed
for the optimal combination of these potential positions {Yi}⊂ {yi}
with the constraint of prior knowledge of the floor height (we re-
strict the floor height to be between 3m and 5.5m):

{Yi} = argmin
{ŷi}

∑i Ver(ŷi)

||{ŷi}||
, with 3 < Δŷi < 5.5,{ŷi} ⊂ {yi} (5)

where || · || denotes the number of elements in a set and Δŷi = ŷi+1−
ŷi. Similarly, the inclusion of vertical splitting lines follows from
the optimization

{Xi} = argmin
{x̂i}

∑i Hor(x̂i)

||{x̂i}||
, with 0.5 < Δx̂i < 9,{x̂i} ⊂ {xi} (6)

The result of this optimization is shown as red lines in Fig. 1, sec-
ond from the left, which actually shows the subdivision on the IF,
symmetrically unpacked onto the original facade.

3 Subdivision of Facade Tiles

At this stage we want to subdivide the detected tiles into smaller re-
gions. We propose an algorithm which recursively selects the best
splitting line in the region under consideration. See Fig. 7 for an
example. This structure subdivision is a concept used in procedu-
ral modeling and will automatically create a hierarchy of elements.
Such a hierarchy will be essential for further analysis, such as the
generation of rules for a shape grammar.

Figure 7: In the second stage of the process, the tiles are hierarchi-
cally subdivided (illustrated as blue lines). Each image represents
one step of the subdivision.

Because individual tiles are noisy, the splitting algorithm exploits
the knowledge about repetitions which is embedded in the IF. Fig. 8
left illustrates how noise makes the subdivision of individual tiles
very unreliable. Therefore, the algorithm analyzes similar struc-
tures in other tiles to synchronize the derivation and in so doing,
significantly improves the result (see Fig. 8 right). The algorithm
works as follows:
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initialize all tiles

while non-leaf and non-subdivided region left

find best split candidate for each region

synchronize splits of tiles within same group

globally synchronize all split candidates

subdivide regions into new regions

mark non-subdivided regions as leafs

mark small new regions as leafs

A region is a leaf node if it does not split any further or if it is
smaller than a given minimum size τsize, which has been set to 5
pixels for most examples (depending on sharpness). For airborne
imagery this typically results in 1-3 splitting steps and for ground-
based images we obtain about 2-5 splits. The splitting procedure
consists of two main components: the selection of an optimal, local
split and a global split synchronization.

Figure 8: To make the splitting process more stable, we make use
of the previously detected tile repetitions. Left: subdivided tiles
based on per-tile local split detection. Right: result if global split
synchronization is added.

3.1 Local Split Detection

The split detection algorithm aims at finding relevant edges closest
to the boundary. The algorithm evaluates all splitting lines starting
from the boundary to find the first suitable edge candidate moving
inward from the left side, right side, top side, and the bottom side.
We consider the following seven split type choices: (1) vertical dual
split i.e. symmetric left and right split at once, (2) horizontal dual
split, (3) left split, (4) right split, (5) top split, (6) bottom split, and
(7) no split. Edges cross the entire region, which initially is a tile.

In order to assess the relevance of an edge, its strength needs to be
compared against a threshold that takes account of the local noise
level. This is quantified as the averaged gradient magnitude in a
zone surrounding the boundary of the original tile. The algorithm
of section 2 puts tile boundaries in wall regions and this value there-
fore indicates the typical edge response on walls. Edges are consid-
ered relevant only if their averaged gradient strength surpasses this
wall response multiplied by a fixed factor τedge, in our experiments
set to 4. The first relevant edge that is met is taken as a candidate,
resulting in a maximum of four candidates (one for each side).

In a further selection step, we avoid edge intersections. Therefore,
the edge-responding segments of the surviving edges (see e.g. the
edge segment above the window in Fig. 9) are checked for crossing
edges. There must be no transversal edge segment across a edge-
responding segment of another detected edge.

Figure 9: This figure shows how crossed edges prohibit certain split
types and how the longest edges are selected. Cyan colored lines
illustrate the edge-responding segments of the detected split candi-
dates, and the blue lines display the winning splits. Split candidates
that cross edge-responding segments of perpendicular split candi-
dates are shown in white.

Among the remaining edge segments the longest candidate is cho-
sen. If the runner-up is parallel and has a length of at least 80%
of that of the winner, both are chosen and yield a dual split. This
tends to save on the number of iterations needed and helps to further
increase the effectiveness of the global split synchronization.

3.2 Global Split Synchronization

As can be expected the local split detection still suffers from im-
age noise. We employ a solution to exploit the resulting imperfect
symmetries based on the following ideas: (1) we can compare local
solutions among a cluster of similar tiles and (2) we can compare
local solutions among all tiles.

Figure 10: This derivation sequence illustrates the impact of the
global split synchronization. Left: the algorithm without synchro-
nization. Right: synchronization can eliminate almost all errors.
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To synchronize split solutions within a cluster we select the most
frequent split type. We then impose the most common split type
onto all members in the group. Due to imperfections in the clus-
tering, we have to carefully align the split locations. Obviously, we
can only align vertical splits within columns of tiles and horizontal
splits within rows of tiles. This may still yield imperfect symme-
tries between these columns and rows. The final step is to check
for those imperfect symmetries. The algorithm is based on a simple
idea that works very well in practice. There are only a limited set
of element sizes on each facade. Therefore, we globally cluster all
distances between parallel splitting lines and select cluster medians
as final split values. After such clustering on a per-group basis, the
process is repeated globally, using all the splitting lines extracted
for the whole facade. Fig. 10 shows the impact of the global split
synchronization step by step.

4 Matching 3D Elements

At the previous stage we obtained a subdivision of the facade im-
age. Due to the hierarchical nature of the subdivision we can also
store clustering information by storing groups of similar regions.
Subdivision of facade tiles leads to a set of rectangular regions clus-
tered into groups of similar regions. At this stage we want to match
some of the architectural elements with 3D objects in a library. This
is useful for the generation of high-quality geometric information
and can provide some semantic interpretation. The solution has
to fit the computer graphics modeling pipeline leading to two con-
straints: We need fast computation times and a general solution
working for 3D models in a library. We believe that it would be
difficult for professional modelers to create parametric templates or
complex probabilistic models as in [Dick et al. 2004].

Figure 11: At this stage, we match the detected regions with archi-
tectural elements. The figure shows the 2D representations of an
example set of 18 elements out of our 150 elements library.

In order to achieve our goal, we first create a 2D representation for
each object {ei} in the element library. The 2D representations, de-
noted as {p(ei)}, have been computed as fronto-parallel projections
in Autodesk’s Maya by using a simple MEL script that iterates over
the element library (foreach element: load element, adjust camera,
render image). Some examples can be found in Fig. 11. We can
then compute the region type T (R) for each rectangular image re-
gion R as follows:

T (R) = argmax
i

MI(I(p(ei)), I(R)). (7)

The equation above is direct and efficient. However, it may yield
some mismatches due to noise and different appearances of the
same element. Fortunately, the clustering information in the IF pro-
vides an additional constraint so that elements in the same cluster
should belong to the same type. Thus, we can determine an element

type for each cluster C as follows:

T (C) = argmax
i

∑
R∈C

MI(I(p(ei)), I(R)). (8)

Hence, the best-fitting element per cluster is selected. The inten-
sities that are also kept in the IF, allow for a backprojection of the
original textures. Furthermore, the objects in our library can con-
tain shader information, e.g. material attributes like reflecting glass.

5 Editing and Rule Extraction

At this stage of the pipeline, the resulting facade interpretation is
encoded as shape tree including elements, but does not contain
depth information. Therefore, simple editing operations are re-
quired to set the depth of the facade elements. The user can select
clusters of elements and adjust their depth interactively. Fig. 12 il-
lustrates this editing process. The added depth information is stored
in the shape tree.

Figure 12: Adjusting depth. Left: input image. Middle: automati-
cally extracted subdivision with matched elements. Right: the user
can manually adjust the depth of selected region clusters.

In a next step, we can encode the computed subdivision (i.e. the
shape tree) as shape grammar rules [Bekins and Aliaga 2005]. The
generated rules contain the hierarchical information and correct di-
mensions. In addition, we can make use of the similarity informa-
tion to encode the repetition of tiles. As example, we present the
rule set for the facade in the teaser encoded as CGA Shape [Müller
et al. 2006]. The rules for the facade structure (i.e. floors and tiles)
are encoded as combination of subdivision and repeat split:

1: facade �

Subdiv(Y,5.4,1r,3.9,0.6){ floor1 | Repeat(Y,4){floor2} | floor3 | top }

2: floor1 � Subdiv(X,5.3,1r){ tile1 | Repeat(X,3.1){ tile2 } }

3: floor2 � Subdiv(X,5.3,1r){ tile3 | Repeat(X,3.1){ tile4 } }
...

The first rule splits the facade into floors and the other rules split
each floor into tiles. Rule 1 and 3 are illustrated in Fig. 13.
The dimensions of the subdivision split operation Subdiv for non-
repetitive shapes are in absolute values and the others in relative
values according to their relative size. Due to the nature of CGA
Shape, this ensures that the resulting rule set is size-independent
and can later be used in a flexible way. If no repeating elements
exist (either in horizontal or vertical direction), the dimensions of
the first and last shape of the split are in absolute values, the others
in relative values. The following rules encode the tiles:

6: tile1 � Subdiv(X,1r,0.3){ region1B | region1T }
...
9: tile4 � Subdiv(X,1r,1.9,1r){ region4L | region4C | region4R }
...
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If we have a non-dual split type (section 3.1) as in rule 6, the subdi-
vision split divides the tile into two shapes. Note that the dimension
of the smaller shape is encoded as absolute value while the bigger
shape has ‘floating’ dimensions i.e. given as relative value. For dual
splits, as in rule 9, we decided to make the outer regions floating and
the center region absolute sized. The split dimensions of multiple-
defined shapes can be computed by averaging the split positions
(illustrated as dashed lines in Fig. 13). Therefore, the split synchro-
nization ensured the same hierarchy of split types within the same
group (note that the texture can be averaged accordingly). The next
splitting levels are encoded in a similar way:

14: region1B � Subdiv(X,1r,0.3){ region1BB | region1BT }

15: region1T � S(1r,1r,0.2) T(0,0,-0.2) I(wall)
...

If we arrive at a leaf shape as in rule 15, we set the depth of the
scope, translate it accordingly and insert a wall shape (cube) or the
matched object from the element library. We end up having a com-
plete rule set that describes the segmented facade and can be applied
to differently dimensioned facades as illustrated in Fig. 14. Also
parts of the rule set could be included in other building designs via
copy-paste. Note that this shape tree to rule set conversion could
also be done in a depth-first manner (instead of breadth-first).

Figure 13: The extracted shape tree can be automatically converted
into a CGA shape grammar rule set. The figure illustrates rule 1
(subdivision into floors), rule 3 (subdivision into tiles on middle
floors), and rule 9 (subdivision of the corresponding tile).

Figure 14: The extracted rule set is size-independent and can be
applied to copy-paste the design (or part of) onto other 3D models.

6 Results

We implemented our system in C++. The typical running time for
the first stage, described in section 2, is a couple of minutes. For
a 1600× 1200 image the average time was 3 minutes. The typical
running times of stages 2 and 3 was between 30 seconds and 90
seconds, where stage 2 requires about 90% of the computation time.

We conducted our first tests using ground-based images as input.
One example can be seen in the teaser. The side by side compar-
isons in Fig. 15 show how even high resolution imagery can be
visually enhanced with our method. To simulate airborne urban re-
construction, we generated 3D models out of aerial facade images
from buildings in San Francisco. The input images, the computed

Figure 15: Ground-based examples. Left: input textures. Right:
resulting 3D mesh with shadows and reflections applied.

subdivision and the resulting models are shown in Fig. 16 (a close-
up of the first facade is depicted in Fig. 2). In total, the method was
tested on 58 facades, which formed a representative set of down-
town buildings. Of 16 low resolution aerial images 3 could not
be handled fully automatically. Of the 42 ground-based images
10 were problematic, mostly because of extensive ornamentation,
structural irregularities (rare cases like a mezzanine), low contrast,
or large area mirror reflections (some skyscrapers act almost like
perfect mirrors).

7 Discussion

Comparison to Previous Work: Most previous work assumes that
multiple images of facades are available. However, this assumption
is not valid in the applications we consider. Firstly, state-of-the-art
aerial imagery does not have high enough resolution to allow 3D
reconstruction of details. Secondly, we have to work from existing,
single texture maps if the goal is to upgrade the quality of currently
existing 3D city models. Nonetheless, it would be interesting to
provide an option to allow for the incorporation of multiple images
in our pipeline. Moreover, rather than taking a rather bottom-up ap-
proach as found with several automated techniques, where an early
detection of facade elements tends to take prominence, the strat-
egy expounded in this paper is strongly top-down. It exploits the
far more generic repetitiveness of facade structures, not so much
strong expectations about the appearance of their subparts.
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351x408 384x779 275x132 395x473 510x571
55.2x67.4m 46.3x94.3m 45.1x22m 41.8x49.8m 59x66.1m

Figure 16: Airborne examples. Top: input facade images from
oblique aerial imagery (with pixel resolutions and real-world di-
mensions). Middle: automatically extracted subdivision. Bottom:
resulting 3D mesh with shadows and reflections applied.

Robustness and Limitations: A strength of our method is that it
works well even for low resolution textures, a challenge that has
not been tackled previously. Even though the approach is robust
in general, there are smaller and larger errors depending on the
quality of the input image and input image complexity. Fig. 17
illustrates typical failure cases. The main problems for the fully
automatic processing are heavy image noise or small irregular ele-
ments (e.g. several irregularly placed air conditioners outside of the
window boundaries). In these difficult cases MI might be unable to
detect repetitions. Also ground floors of commercial buildings are
often problematic for MI due to their non-repetitive structure. As
a consequence, vertical symmetries may be left undetected (even
if the floors above consist of the same tiles). Another problem is
posed by windows with prominent, thick frames. If τsize is smaller
than the frame’s thickness, it will be incorrectly detected as a split.
The split of that cluster has then to be reversed in the user interface.
Furthermore, our approach assumes an orthorectified image as in-
put. Strongly protruding elements, such as balconies, violate this
assumption and lead to incorrect tile subdivisions. To summarize,
if our approach is applied on less repetitive architectural facades,
we lose the structural support and run into the classic difficulties
of edge detection i.e. the operations in section 3 will be less stable.
Hence, we suggest using our technique only in urban areas with
buildings of multiple stories.

Figure 17: Failure cases. Left: The facade structure detection
cannot handle asymmetric patterns like mezzanines or non-aligned
tiles. Middle: The parameter τsize has been adjusted to detect the
window sills. As a consequence, τsize is smaller than the thickness
of the prominent window frames. Hence, the frame will be wrongly
interpreted as a split and the user has to reverse the split manually.
Right: Worst case scenario consisting of a blurry texture with low
contrast, a chaotic ground floor disturbing the MI-based repetition
detection, and image noise caused by vegetation (left).

Practical Modeling: The important aspect of our application is
that we assist the user with the most challenging part of facade
modeling: we can derive the exact dimensions, ratios and spacing
of architectural elements automatically. In practice, commercial
urban model providers use semi-automatic 3D modeling tools (to
create crude building volumes and texture them). Hence, even if
not working perfectly on all facades, our method is a useful add-
on to accelerate such modeling tools. We implemented a graphical
user interface where typical failure cases like a wrongly detected
split type can be corrected quite easily. However, if the input im-
agery consists of downtown facades with repetitive tiles not much
user interaction is required. Exceptional cases where a parameter
tuning has to be done are range adjustments due to huge floors (see
section 2.4), and adjustments of τedge due to low contrast images
(see section 3.1).

Future Work: We believe that the following two cross-related
problems are most promising for future contributions: First, the de-
velopment of a robust and practical probabilistic framework that in-
cludes bottom-up and top-down propagation of knowledge as well
as parametric templates (encoded with shape grammars). Second,
a more systematic architectural approach to the extraction of shape
grammar rules, e.g. mechanisms to automatically identify, apply
and transform matching rule sets or styles from a given library.
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A Image Rectification

To rectify facade images we implemented a variant of the algorithm
presented by Liebowitz and Zisserman [1998]. First, we compute
the gradient operator for each pixel in the image. The argument
and magnitude of the resulting gradient vector indicate the orien-
tation and reliability of a local edge respectively. Then, we apply
the Hough linear transformation on these potential edges. Since
lines are mapped into points in the Hough space, the reliable lines
have strong corresponding points and a set of lines can be auto-
matically extracted. Finally, two vanishing points are extracted by
the RANSAC optimization based on these lines. The 2D projective
transformation that transfers these two vanishing points into infinite
points can finally be used to rectify the input image.
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