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Abstract

An algorithm is presented to estimate the position of a
hand-held camera with respect to a 3d world model con-
structed from range data and color imagery. Little prior
knowledge is assumed about the camera position. The al-
gorithm includes stages that (1) generate an ordered set of
initial model-to-image mapping estimates, each accurate
only in a small region of the image and of the model, (2)
refinement of each initial estimate through a combination
of 3d-to-2d matching, robust parameter estimation, region
growth, and model selection, and (3) testing the resulting
projections for accuracy, stability and randomness. A key
issue during stage (2) is that initially the model-to-image
mapping is well-approximated by a 2d-to-2d transformation
based on a local model surface approximation, but eventu-
ally the algorithm must transition to the 3d-to-2d projection
necessary to solve the position estimation problem. The al-
gorithm accomplishes this by expanding the region along
the approximation surface first and then making a transi-
tion to expand fully in 3d. The overall algorithm is shown
to effectively determine the location of the camera over a
100m x 100m area of our campus.

1. Introduction
This paper addresses the problem of finding the location

of a camera with respect to a 3D world model. Applica-
tions include automatic navigation, automatic integration
of new information into a modeling system, and automatic
generation of model-to-image overlays. All of these will be-
come increasingly important as modeling systems, such as
Google Earth, progress toward more accurate 3d represen-
tations. For the experiments in this paper, the position of the
hand-held camera is known within 100 meters range of its
true position for street-level images, but nothing is known
about its orientation or intrinsic parameters.

A “test” image, It, from the hand-held camera is
matched against the world model. The model is constructed
from a set of pre-aligned range scans and associated in-
tensity images, {IM}, taken by a camera which is cali-

brated both extrinsically and intrinsically against the range
scanner. Surfaces constructed from the range scans are
augmented with backprojected features from the images in
{IM}. We refer to such features as “model features” and
features estimated from It simply as “test features”.

Inferring the test image location requires both establish-
ing correspondences between model features and test fea-
tures and estimating the model-to-image camera projection,
effectively calibrating the hand-held camera [16, 19]. Sev-
eral complications in the data, some illustrated in Fig. 1,
make this problem challenging, including (a) a large search
space of camera poses, (b) occlusions, (c) differences in
viewpoint and illumination between It and the images in
{IM}, (d) buildings and other objects with repetitive ap-
pearance, and (e) physical changes in the scene between
model construction and test image acquisition.

1.1. Background

Three broad categories of approaches can be considered
for this problem. One is based on extraction and match-
ing structural features, such as line segments, between the
model and the test image. This has been used in urban en-
vironments for refining an initial camera position estimate
relative to a 3d model [6, 12]. Shadow matching [15] and
laser reflectivity data have also been used in similar settings
[17]. A second approach is based on model-to-image key-
point matching [8, 9]. This has been applied to fundamental
matrix estimation [9], object recognition [8], 3d registra-
tion [11] and SLAM [11]. This requires obtaining a suffi-
cient number of correct keypoint matches to accurately esti-
mate and verify the 3d-to-2d projection, which can be prob-
lematic when there are substantial viewpoint, illumination
and structural changes between the model and the test im-
age. A third category of approaches, which includes ours,
is based on region-growing [4, 10, 13, 18]. In the closest
work, Fraundorfer and Bischof [4] address the “kidnapped
robot” problem by matching an image against a piecewise
planar (indoor) scene model, using single keypoint matches
to initialize and correlation to confirm. Our approach, de-
signed for outdoor scenes, also starts from a single keypoint



(a) 3d model (b) features backprojected on 3d model

(c) zoom-in on features (d) image at night (e) image after snow

Figure 1. Model, features and example test images. (a) shows part of the 3d model, while (b) shows the model
features superimposed on the 3d model, with (c) showing a zoomed-in view. In (b) and (c), the backprojected
model corners points are represented by spheres whose radius is proportional to the corner point scale, while
edge-like features are represented by arrows. (d) and (e) show different test images that our algorithm can
accurately localize, even though the images were taken at night and during the winter.

match, but is more robust to appearance differences and ex-
tends beyond planar surfaces.

1.2. Approach

The approach taken here is a hypothesize-and-test strat-
egy and an extension of the Dual-Bootstrap algorithm
[13, 18], originally designed for 2d-to-2d registration. A
rank-ordered set of putative initial local surface-to-image
mappings is generated. Each is considered in turn and grad-
ually grown into a complete 3d-to-2d projection. Reminis-
cent of work on alignment-based recognition [5, 7], this
exploits the assumption that a large fraction of the model
is rigid and therefore a single model-to-image projection
based on a pin-hole camera model is appropriate. Once a
final projection is generated, accuracy, stability, and consis-
tency tests are used to decide whether to accept the result,
or test the next initial mapping.

The key issues in making this strategy work are 1) how
to generate the initial local mapping given the large model
space and 2) how to switch effectively from the initial 2d-to-
2d surface-image mapping to a 3d-model-to-2d-image pro-
jection. The latter is the primary focus of the paper.

The remainder of this paper is organized as follows.
Sec. 2 describes data acquisition and model construction.
Sec. 3 presents the main algorithm. Sec. 4 describes a vari-
ety of experimental results. Finally, Sec. 5 summarizes our

contributions and concludes the paper.

2. Data, Models and Preprocessing
The 3d model is constructed from automatically-aligned

3d scans acquired using a Leica HDS 3000 LiDAR scanner,
which also produces the model image set, {IM}, acquired
using a calibrated camera having the same optical pathway.
Model images are preprocessed to extract SIFT keypoints
[8], filtering the results spatially to reduce the keypoint set
[1]. Keypoint locations are back-projected onto the model
surfaces. Each of these “model keypoints” has an associ-
ated 3d location, scale, and 3d surface normal. In addi-
tion, a plane π is fit to the LiDAR points in a reasonably
large surface area (80s×80s, where s is the LiDAR sample
spacing on the surface) surrounding the keypoint using an
M-estimator. This coarse surface approximation is used in
the initial stage of the refinement algorithm. We establish a
2d coordinate system on plane π, with the origin being the
projection of the keypoint’s location and the x axis being
the projection of the keypoint’s image gradient direction.

Each model image is also preprocessed off-line to ex-
tract features that can be viewed as a summary description
of image content. These are edge-like and corner-like fea-
tures, computed at multiple scales and spread throughout
the images, even in low-contrast regions. Details of this
computation are provided in[13, 18]. These features are



1. Generate rank-ordered initial keypoint matches:

(a) For each SIFT keypoint descriptor from the camera
image, It, find the closest k model keypoints, under
the restriction that no two model keypoints are taken
from the same scan.

(b) For each of these k matches, find the model keypoint
from the same scan that is next closest to the test image
keypoint descriptor and compute the ratio of descriptor
distances.

(c) Rank-order all matches for all image keypoints by in-
creasing value of this ratio and retain the top 30.

2. For each keypoint match in rank order:

(a) Generate an initial 2d-to-2d similarity transformation
between the model keypoint’s tangent plane, π, and
the image plane. Initialize a small region R on π.

(b) Restricted 2d-to-2d Refinement: Iterate steps of
matching of features from R, re-estimation, growth of
R along π, and model selection for the 2d-to-2d trans-
formation between π and the image plane. Repeat until
R reaches a minimum size.

(c) Full Refinement: Continue re-estimation, region
growth and refinement, now allowing consideration of
3d-to-2d camera models in addition to 2d-to-2d trans-
formations. Growth of R is restricted to staying near π
until a 3d-to-2d camera model is selected. Repeat until
growth R covers all visible parts of the model.

(d) Apply the three decision criteria to the resulting pro-
jection. Halt with success if all criteria pass.

3. Halt with failure if all initial transformations are rejected.

Figure 2. Algorithm summary.

backprojected onto the range surfaces to produce “model
features”. The distinction between model keypoints and
model features is that the model keypoints are quite sparse,
have an associated 128-component descriptor vector, and
are matched to generate initial transformations. By con-
trast, the model features are much more dense and are used
in the refinement and decision steps. An example section of
the model with associated features is shown in Fig. 1. Each
test image, It, is preprocessed in the same manner as the
model images to extract keypoints and features.

3. Algorithm

Mathematically, the goal is to estimate the calibration pa-
rameters of the hand-held camera, with the extrinsic param-
eters providing the desired pose. The estimation depends
on establishing correspondence between the model features
extracted from {IM} and the test features from It. The
algorithm is outlined in Figure 2.

3.1. Step 1: Keypoint Matching
Keypoints are matched using comparison of SIFT de-

scriptors between the test keypoints and the model key-
points. Two differences with other keypoint matching algo-
rithms are introduced here, both designed to handle the fact
that there is a large number of model keypoints across the
integrated scans, to ensure that matches are spread through-
out the model, and to ensure that matches need only be
locally-distinct. First, for each test image keypoint, pi, the
k best model keypoint matches are found under the restric-
tion that no two of the matched model keypoints are from
the same scan. In practice we use k = 4. Second, denoting
a match by (pi,qj), each of these k matches is compared
against the next best matching model keypoint q′j , under the
restriction that q′j was extracted from the same scan as qj .
(By definition q′j will not be among the list of k best model
keypoint matches.) Letting Dp be the 128-component SIFT
keypoint descriptor vector, a ratio is computed for match
(pi,qj) as

r(pi,qj) = ‖Dpi
−Dqj

‖/‖Dpi
−Dq′

j
‖. (1)

The set of matches for all test image keypoints (each key-
point contributing k matches) is sorted by increasing value
of r(pi,qj). And 30 matches with the lowest ratios are used
to generate initial model-to-image mapping estimates.

3.2. Step 2a: Initial 2d-to-2d Transformation
The initial mapping is a 2d-to-2d similarity transforma-

tion between the model keypoint’s approximation plane π
and the image plane. The translation component aligns the
model keypoint location, which is the origin on π, with the
test image keypoint location. The angle between the x axis
on π and the test image keypoint’s gradient vector gives the
rotation component. Recalling that each model keypoint has
an associated, backprojected image scale, the scale parame-
ter of the transformation is the ratio of model and test image
keypoint scales.

3.3. Step 2b: Restricted 2d-to-2d Refinement
The restricted refinement stage is designed to extract a

stable 2d-to-2d transformation between the model surface π
and the image plane before allowing consideration of 3d-to-
2d projections. This works even when the model keypoint is
taken from a surface region that is planar over only a small
area.

Model features close to π (within a few noise stan-
dard deviations) and close to the model keypoint (within
80s, where s is the sample spacing) are projected onto
the 2d coordinate system of π. These are then used by
the Dual-Bootstrap algorithm to generate a 2d-to-2d trans-
formation as though they were simply image-plane fea-
tures. This allows symmetric model-to-image and image-
to-model matching, with both sets of matches used in esti-
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Figure 3. The first row shows the 3d model
with the initial region on plane π superimposed
(left) and the test image with the corresponding,
mapped model features from within this region
(right). The second row shows the last iteration
of the restricted 2d-to-2d refinement before it pro-
ceeds to the full refinement. The third, fourth and
fifth rows show initial, intermediate and final iter-
ations of 3d-to-2d estimation. In the left column
purple indicates 2d regions, R, on plane π, while
yellow implies 3d regions R.

mating the transformation parameters. This prevents singu-
larities that can occur early in the registration process, es-
pecially when the scaling is unstable. During this restricted
refinement, the bootstrap region R is an axis-aligned rectan-
gle on plane π. R is initialized as a square with half-width
3σ + 20s, where σ is the model keypoint scale and s is the

LiDAR sample spacing.

3.3.1. Matching and Estimation. The mapping function
is denoted as T(p;θ), where θ is the parameter vector.
Given an estimate θ̂ and a set P of model features sampled
from R, for each pi ∈ P , the test-image feature point qi

closest to T(p;θ) is located, and the pair (pi,qi) is added
as a correspondence. This is done for both the corner fea-
tures and the edge-like features, each feature being matched
to features of the same type. The result is two correspon-
dence sets, denoted Cc for corners and Ce for edges. The
transformation parameters are then re-estimated by mini-
mizing

E(θ) =
∑

(pi,qi)∈Ce

ρ((T(pi;θ)− qi)>ηi/σe)

+
∑

(pi,qi)∈Cc

ρ(‖T(pi;θ)− qi‖/σc). (2)

Here, ρ is the Beaton-Tukey biweight robust loss function
(see [14]), and σc and σe are the robustly-estimated stan-
dard deviations of alignment errors for the corner and edge-
like features separately. Different error norms and standard
deviations are used because the two feature types have dif-
ferent distance measures and error properties. In particular,
with ηi being the normal to the matched edge-like feature
point in the image plane, the distance measure used is a
point-to-line distance — effectively an ICP normal distance
[3]. For corners, Euclidean distances are used. We have
found that edge-like features, being more dense and pre-
cisely located, are more important, but corner-like features
add stability.

Iteratively-reweighted least-squares is used to minimize
(2) [14]. This is combined with Levenberg-Marquardt for
models more complex than affine.

Note that Step (2c) uses a matching and estimation pro-
cess similar to what is used here. The difference is that
in the restricted estimation in Step (2b) the roles of image
features and model features are reversed in matching, pro-
ducing two more sets of correspondences in equation (2).
In Step (2c) this is not used, in part for efficiency and in
part because sufficient constraints are available to prevent
singularities.

3.3.2. Region Growth and Model Selection. Once the
parameters are estimated, the covariance matrix of the esti-
mate is obtained using the inverse of the Hessian of (2) eval-
uated at the parameter estimate θ̂. This is used to control
growth of R parallel to π, with more certainty in the esti-
mate leading to faster growth. More details are given below
for full 3d region growth (Section 3.4.2). The model selec-
tion step uses a simple, modified form of the Aikaike Infor-
mation Criterion [2]; more sophisticated measures have not
proven necessary. Four 2d-to-2d models are used: similar-
ity, affine, plane homography, and plane homography plus



radial lens distortion. Finally, region growth, and therefore
all of Step (2b), terminate when expansion of R includes all
of the selected points. This means R is large enough and
therefore the mapping is stable enough to consider switch-
ing to 3d-to-2d models.

3.4. Step (2c): Full Refinement
Step (2c) uses a similar matching and estimation process

to the one in Step (2b) (see Section 3.3.1). Here we focus
on the transition from 2d-to-2d transformation to 3d-to-2d
camera models using the model selection technique and the
details of region growth.

3.4.1. Model Selection. In full refinement, we expand R
to a volume by adding a component normal to the planar
surface of π. Initially, the width of R normal to π is 10 stan-
dard deviations (from the robust estimate of π computed by
the M-estimator), large enough to include some points as
the surface curves or crosses a crease boundary. The rectan-
gular axes of R remain aligned with the coordinate system
of π throughout the computation (for this initial estimate).

It is important to consider the challenge here. Algo-
rithms are known for estimating a 3d-to-2d camera matrix
from a planar surface [16, 19]. These estimates tend to
be unstable, however, especially for smaller planes and for
projecting 3d points far from the planes. For our problem,
this affects both camera location estimate and the decision
criteria. More specifically, our growth and refinement pro-
cess only works effectively if, when R expands, the newly-
included points can be matched reliably using the estimated
projection parameters. This fails when the camera matrix is
too unstable because matches for the new points are likely
to be incorrect, driving the transformation estimate in the
wrong direction. On the other hand, if we rely on planar
region for too long, then the planar approximation will be
inaccurate, leading again to incorrect matching and estima-
tion.

We address this using model selection, allowing compe-
tition between 2d-to-2d transformation models and 3d-to-
2d projection models. Model selection techniques generally
trade-off the stability of lower-order models and the accu-
racy of higher-order models. In our case, when R encloses
points that are only from a planar surface, model selection
should tend to choose a 2d-to-2d transformation, at least un-
til a large-enough set of features is included in R (Fig. 3).
When points from a different surface (e.g. at a boundary)
are included in R, or when the surface starts to curve sub-
stantially, a 3d-to-2d model will appear more stable earlier
in the computation, and the algorithm will choose it.

Thus, during Step (2c) points in R are used to esti-
mate both a 2d-to-2d transformation and a 3d-to-2d cam-
era projection until the algorithm selects a 3d-to-2d projec-
tion (after R has expanded sufficiently). Once the algorithm
switches to the 3d-to-2d projection, 2d-to-2d transforma-

tions are no longer considered. Prior to this, when the cho-
sen model is 2d-to-2d, matching of model features in R oc-
curs by projecting the points onto π and then, using the es-
timated 2d-to-2d transformation, onto the image plane. The
closest test image feature is then found. This generates an
element of the correspondence set for each feature.

The parameters of all transformations currently under
consideration are estimated using the same set of corre-
spondences. The covariance matrices of these estimates
are computed, and model selection is applied. For 2d-to-2d
transformations, the four models described above are used,
while for 3d-to-2d transformations four additional models
are used —- an 8-parameter reduced camera model with
only two intrinsic parameters, an 11-parameter perspective
camera, a perspective camera plus one radial lens term, and
a perspective camera plus two radial lens terms. Once a
switch is made to a higher order model, the algorithm does
not switch back, so fewer than eight models are typically
considered during any one iteration.

3.4.2. Region Growth. The region growth depends on
whether a 2d-to-2d model is used or whether a 3d-to-2d
model is used. In the former case, the model is expanded
only along π. In the latter case, expansion is allowed nor-
mal to π as well. In either case, growth is controlled by the
uncertainty in the mapping of points centered on each face
of R (four sides for growth in the plane only). To measure
this uncertainty, let Σθ be the parameter estimate covari-
ance matrix and let the Jacobian of the transformation be
J = ∂T

∂θ

(
p; θ̂

)
. The covariance matrix of the mapped point

(in the image) is
Σp = JΣθJ>. (3)

The face (side in 2d) of R is expanded outward in inverse
proportion to the trace of this “transfer-error” covariance
matrix. When the algorithm has switched to a 3d-to-2d
mapping, the uncertainty in the mapping tends to cause
slower growth normal to π than tangent to π.

3.5. Step (2d): Decision Criteria
Step (2d) terminates when R covers the field of view of

the model from the (estimated) perspective of test image It.
In this case, the algorithm evaluates the resulting 3d-to-2d
projection using the decision criteria. If these all pass, the
algorithm halts with success.

The decision criteria are straightforward adaptations
from the Dual-Bootstrap algorithm. The first is a threshold
on the robustly estimated distance between projected model
points and their corresponding image points. The second
is the stability in the transformation, measured by the trace
of the transfer error covariance matrix (3) on the bound-
aries of the region. Poorly constrained estimates (which
are likely to be based on incorrect correspondences) pro-
duce transfer error covariances with relatively large trace



(a) Night

(b) Snow

Figure 4. Checkerboard images showing the ac-
curate alignments between the test image and the
model for the two test images show in Figure 1. At
first glance, (b) appears to be misaligned, but this
is due to illusion created by snow on the narrow
ledges of the building.

values. The third criterion measures the consistency in the
constraints by measuring the distribution of the angles be-
tween mapped model features — with directions mapped
into the image plane of It — and their corresponding im-
age features. For a correct mappings the angles tend to be
clustered near 0. For challenging cases, especially involv-
ing substantial changes in viewpoint, illumination, or even
scene content, sometimes incorrect mappings fail only one
of the three criteria, making all of them necessary. As a fi-
nal comment, the decision criteria are also applied during
refinement, with higher tolerances, to quickly eliminate es-
timates that started from incorrect matches.

4. Experiments
We present experimental evidence showing the effective-

ness of our proposed algorithm. Scans were taken across
several overlapping areas of campus, covering approxi-
mately a 100m x 100m region. Nine scans, each with a
large field of view, were collected and integrated. Together
these scans contain 55,131 model keypoints. Sixty test im-
ages were collected from within the same area. These were
taken weeks or months later than the scans, including seven
at night, 17 during the winter with snow on the buildings
and the ground, and 15 from the same viewpoint but with
varying focal lengths. We use these scans and test images
to evaluate our algorithm.

The first result is simply an evaluation of how many of

Figure 5. Result on a test image involving a model
region with smaller planar surfaces. The upper left
shows the test image. The upper right shows a
synthetic image generated from 3d model at the
estimated viewpoint. The dark shadow of the tree
represents a hole in the model where data are un-
available due to occlusions. The bottom shows
a checkerboard mosaic of the two images, show-
ing no misalignments and therefore indicating the
accuracy of the estimate. Keypoint matching to-
gether with a RANSAC search failed on this model.

the test images were “correctly” located. We judge correct-
ness here by using the estimated 3d-to-2d transformation
(camera) parameters to create a synthetic image from the
model and visually compare this image against the test im-
age. If the location is correctly determined, the two im-
ages should be very similar, except for illumination differ-
ences. The images in Figure 4, Figure 5, and Figure 6 show
checkerboard mosaics created by extracting alternate blocks
of the synthetic and test images.

Of the 60 test images, the algorithm automatically and
correctly estimated the camera location of 52. For the re-
maining 8, the algorithm indicated that it could not find
an alignment. The correct alignments include images with
different appearances (Figure 4), with significant amount
of occlusion (Figure 5), and with different scalings (Fig-
ure 8(a) and Figure 8(c). A close examination revealed that
the 8 failures are due to poor image contrast, low overlap
with the model, or dramatic scaling changes.

We present two ways to quantitatively measure the ac-
curacy of our estimated camera locations. First, we took
11 test images from the same location while varying the fo-
cal length of the test image camera from 18mm to 70mm
(Fig. 8). We ran our algorithm on each test image sepa-
rately and plotted the measured camera location parameters
in a coordinate system centered on the origin of the scanner
from the closest model scan. Results indicating the stabil-
ity of these estimates are shown in Fig. 9). Further tests



Figure 6. Example result for a test image from a
part of the model containing a repetitive building
structure, with test image, synthetically-generated
image and checkerboard all shown.

(a) (b)

Figure 7. Two of the failed test images: (a) is low
contrast, while (b) has low overlap with the scans
used to form the 3d model. The latter will be fixed
with the construction of a larger world model.

show that the estimated focal-length-to-pixel-size-ratio in-
creases linearly, exactly as expected. In the second exper-
iment, we took two separate sequences, each with 3-meter
steps between test images, and applied the algorithm to each
image. We then measured the distance between locations
for adjacent frames in each sequence. The resulting val-
ues, which should each be 3 meters, are plotted in Fig. 9).
The only substantial error is in the last frame for one se-
quence, where the test camera entered an area substantially
occluded in the 3d model. Otherwise, the relative locations
are quite reliable. As a final comment on these results, run-
ning keypoint matching followed by RANSAC to estimate
the camera failed to produce reasonable results on three of
the images in the first experiment and five in the second.

We can study the reasons for the failure of using key-
point matching and then RANSAC to estimate the cameras
by considering the number and fraction of correct keypoint
matches generated in the initialization phase of our algo-
rithm. For example for the image shown in Figure 5, there
are total 63 keypoint matches that have the ratio (Equa-
tion 1) smaller than the threshold 0.8 — the threshold used
by the SIFT matching algorithm [8]). (The top 30 of these

(a) focal length 18mm (b) focal length 55mm (c) focal length 70mm

Figure 8. Samples from the test images taken
from one viewpoint with different focal lengths.

(a) Change in focal length

(b) Change in position

Figure 9. Quantitative results. The top shows the
repeatability in the camera location as the focal
length of the test image is increased. The mea-
surements are relative to the scanner position,
which has the origin (z) close to 1.7 meters above
the ground. The bottom shows estimated frame-
to-frame location differences for a sequence of im-
ages taken 3 meters apart.

are tested by our algorithm.) Only 5 of these are correct,
which we judge automatically based on consistency with
a manually-validated camera model. The cause of this is
the substantial amount of occlusion. For the after-snow im-
age in Fig. 1(e), 69 keypoint matches passed the 0.8 ratio
threshold, but only 10 are correct. For the night image in
Fig. 1(d), only 13 out of the 67 matches are correct. While
our algorithm succeeds on these images, having so few cor-
rect keypoint matches, both in terms of actual numbers and
percentages, prevents the effective use of RANSAC-style
methods.

Next, we analyze briefly how effectively our single-
keypoint initialization works. For our 52 successfully-
located test images, the refinement algorithm was success-
ful on the first initialization 15 times (29%), within the top



five initializations 28 times (54%), and within the top 20
initializations 50 times (96%). From this it is clear that the
algorithm can succeed from a small number of correct key-
point matches.

The final consideration in our experiments is to study the
effect of planarity of the initial regions on our algorithm.
We show this through examples. In Fig. 6 the visible part
of the model is dominated by two planes, while in Fig. 5,
even the initial region is non-planar. Interestingly, the algo-
rithm switched to a 3d-to-2d model at about the same itera-
tion during the computation, although the planar region was
smaller in Fig. 5.

5. Discussion and Conclusions
Our experiments have demonstrated the effectiveness of

our approach to locating a test camera image with respect
to a 3D model constructed from both LiDAR scans and as-
sociated image. Our experimental model was constructed
over about a 100m × 100m area of our campus. No prior
information is assumed about camera position and orien-
tation. The algorithm works despite significant differences
between model scan acquisition and the test images, includ-
ing illumination, viewpoint and seasonal changes. The few
failures involve low image-to-model overlap — sometimes
due to occlusions — and substantial illumination changes.
Even in these cases, the algorithm correctly indicates that it
can not determine the camera location.

The algorithm works within the hypothesize-and-test
strategy of the Dual-Bootstrap approach to registration
[13, 18]. The primary technical contribution of this paper
is a technique based on model selection for transitioning
from a locally-accurate 2d-to-2d model-to-image transfor-
mation to a full 3d-to-2d model-to-image projection. A
second, more modest contribution is a search for keypoint
matches that allows multiple matches to be considered for
each test image keypoint and that tests each keypoint match
for distinctiveness only locally. This is a first step toward
the more general problem of handling models that represent
much larger areas. The primary challenges are the increased
difficulty of initialization and handling the sheer model size.
We have shown, however, that if only one or two good key-
points matches can be found, then our refinement and de-
cision criteria together will likely turn one of them into a
correct localization of the camera.
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