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Abstract
Our goal is the production of highly accurate photore-
alistic descriptions of the 3D world with a minimum
of human interaction and increased computational effi-
ciency. Our input is a large number of unregistered 3D
and 2D photographs of an urban site. The generated 3D
representations, after automated registration, are useful
for urban planning, historical preservation, or virtual re-
ality (entertainment) applications. A major bottleneck
in the process of 3D scene acquisition is the automated
registration of a large number of geometrically complex
3D range scans in a common frame of reference. We
have developed novel methods for the accurate and ef-
ficient registration of a large number of 3D range scans.
The methods utilize range segmentation and feature ex-
traction algorithms. We have also developed a context-
sensitive user interface to overcome problems emerging
from scene symmetry.

1 Introduction
A typical 3D modeling system involves the phases of 1)
Individual range image acquisition from different view-
points, 2) Noise removal and hole filling for each range
image, 3) Segmentation of each range image (i.e. ex-
traction of lines, planes, etc.), 4) Registration of all im-
ages into a common frame of reference, 5) Transforma-
tion of each range image into an intermediate surface-
based or volumetric-based representation, 6) Merging
of all range images into a common representation (3D
model), 7) Simplification of the final 3D model, and 8)
Construction of CAD model of the scene. This paper
deals with the semi-automatic registration (fourth task)
of a large number of complex 3D scans in the same
frame of reference. We present a new and more effi-
cient range-range registration method that complements
our original work of [14]. Both of our algorithms (pre-
vious and current) are based on the automated feature-
matching of lines that have been extracted from a range

segmentation module. This matching leads to coarse
pairwise alignment between the scans that is optimized
by an Iterative Closest Point (ICP) [3] procedure. The
algorithms run under a context-sensitive user interface
that can be utilized in cases of incorrect results due
to scene symmetry. Our comprehensive solution al-
lows for mm-accurate registration of large scale urban
scenes. We present experiments from the registration of
three large urban structures.

Most methods that attack the range to range regis-
tration problem utilize one of the many variations of
the Iterative Closest Point algorithm [3, 15, 2, 11]. In
ICP the rigid transformation between two views is itera-
tively refined, while larger sets of corresponding points
between views can be extracted after each refinement
step. All ICP-type methods require the meshes to be
spatially close with respect to each other in order for
an initial set of closest point correspondence to be es-
tablished. Global ICP-type methods that compute reg-
istrations between all acquired scans include the work
of Pulli [10] and Nishino [9]. Recently a non-rigid
ICP method [4] has been proposed. Hebert [6] intro-
duced the idea of spin-images, where the initial list
of corresponding points is extracted by using a pose-
invariant representation for the range images. In the
approach of [8] a number of roughly pre-registered im-
ages are brought into fine alignment by the utilization
of a signed distance function that requires sampling of
the 3D space. We believe that our method is more effi-
cient for large-scale data sets due to the data reduction
induced by our segmentation module. Also, our method
does not assume rough pre-registration of the input data
sets. On the other hand the user should specify whether
two scans overlap or not.

The features used for registration are 3D lines ex-
tracted at the borders of segmented planar areas, and
at the intersections between segmented planar areas. A
solution to the registration problem is possible if two
pairs of correctly matched lines are found between the
two scans

���
and
���

. Only the orientation and position



of the lines are used due to the fact the endpoints can
never be exactly localized (this is an inherent problem
of all line detectors). Using these two matched pairs,
a closed-form formula provides the desired transforma-
tion ���	��

� [5, 12]. That means that a blind hypothesis-
and-test approach would have to consider all possible��� ��������������������� ��� � � pairs of lines, where�

and � are the number of lines from scans
�!�

and���
respectively. Such an approach is impractical due to

the size of the search space to be explored. For each
pair of lines we would need to compute the transforma-
tion ���	�"
�� and then verify the transformation by trans-
forming all lines from scan

� �
to the coordinate sys-

tem of scan
� �

. The algorithm [14], previously devel-
oped by our group, provides a solution to the problem
of this large exploration space, by rejecting a large num-
ber of line pairs before the expensive verification step.
In our previous work, the additional information of the
3D plane on which each extracted line lies facilitates
the search. Also, the length of the lines, and the size of
the planes is used in order to discard invalid pairs at a
preprocessing step, and in order to verify the quality of
the match at later steps. The central idea is the selection
of a robust pair of lines for the computation of an exact
rotation and of an estimated translation and of a second
pair of lines in in order to evaluate the computed trans-
formation.

In this paper a new complementary and more effi-
cient algorithm is introduced. This algorithm is sup-
ported by a context-sensitive user interface. Our regis-
tration system first extracts three major directions from
each range image by applying a range segmentation
step [13] and by clustering the extracted linear segments
and plane normals. A local object-based coordinate
system for each range image is constructed next, by
computing three major orthogonal axes.The rotational
transformation between pairs of scans can be computed
quickly and accurately by matching these major scene
axes between the scans. Candidate translations are then
estimated by matching linear segments between pairs
of rotationally aligned range images. Finally, these
candidate translations are clustered using an unsuper-
vised nearest-neighbor classification method. The cor-
rect translation vector should be in one of the major
clusters of translations (i.e. being the one appearing
most frequently). This maximization criterion though
can lead to wrong registration when the 3D scene ap-
pears symmetric either rotationally or translationally. A
user interface (see Sec. 3) has been designed to deal
with the previously mentioned cases. The user interface
has the following characteristics: a) It prompts a user to
indicate whether the registration is correct or wrong; b)

It displays other possible rotations between pairs if the
automatically computed one is incorrect; and c) It al-
lows for the direct adjustment on the transformation by
rotating one image scan and moving it along the three
major scene directions.

2 Automated Registration Method

All overlapping pairs of range scans are considered and
the transformation between the two scans is computed.
Our new automated registration process involves three
steps: 1) line and plane clustering, 2) rotation estima-
tion, and 3) translation estimation. When the transfor-
mations between all pairs are computed and verified by
the user, an ICP routine optimizes the pairwise transfor-
mations. Finally, a global registration procedure com-
putes the transformation of all scans with respect to a
selected pivot scan to stitch all scans into a common co-
ordinate system. Note that this procedure does not opti-
mize the pairwise registrations already computed.Fig. 1
shows the flowchart of our system.
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Figure 1: Flowchart of range to range registration with
user interface.

2.1 Rotation Estimation

Man-made urban scenes are characterized by sets of lin-
ear features organized in a major vertical and a number
of horizontal directions. After the segmentation phase
[13], the extracted 3D line directions and plane normals
are clustered into three major 3D directions (Fig. 2).
The clustering procedure groups all the line vectors into
clusters (a vector becomes part of the cluster if its an-
gle from the centroid of the cluster is smaller than angle
threshold). In most cases this procedure extracts three
major directions that are perpendicular to each other. In
the cases that only two major clusters are found, we can
obtain the third major direction as the cross product of
the extracted two. Thus, our main assumption is that
our 3D scene contains at least two major perpendicu-



lar directions. This is a reasonable assumption that is
commonly used in urban scene settings (see [1]).

Figure 2: Three major scene directions extracted from
two segmented range scans (different colors correspond
to different segmented planes). A correct match be-
tween the directions provides a unique solution for the
rotational transformation between the scans.After obtaining three axes #�$ � �"% � �'& �)( from the
left image, and #*$ � �"% � �'& � ( from the right image, all
possible values for the rotational matrix R that rotates��$ � �"% � �+& � � to �,$ ��%-�'&.� are computed. ��$ �"%/�+&0� is
any permutation of �210$ � �+13% � �'14& � � . There are 24
such rotation matrices that rotate the left image into the
coordinate system of the right one. However using sim-
ple heuristics, the number of candidate rotations can be
significantly reduced.

The position of each 3D point recorded refers to the
range scanner’s inner coordinate system, which is de-
fined as shown in Fig. 3. The laser generator/receptor
is the origin point of the local coordinate system. The
negative Z axis points towards the 3D scene. Let us
consider how the coordinate system changes from one
scan to another. In our algorithm, we always choose the
right image as the pivot image, and transforms all the
point coordinates in the left image into it. If the rotation
matrix is:

���
56 �07"78�07 � �.7 �� � 78� �"� � �9�� � 78� �+� � ���

:;
�

then the unit vector < =>�*?@��=BA,C representing % �
axis would be transformed into a unit-vector< � � 7D�"� �"� �"� �E� A C in the right image. In other words,� � 7 , � �"� and � �9� are the projections of % � onto the$ , % and & axes. During the scanning process, the
scanner is mostly moving on the ground level, with
at most FHGDI tilt-angle of the Y-axis. Since the Y-axis
does not change dramatically, we select a threshold for� ��� that is at least 0.7. Similarly, successive images
are likely to be from close-by viewpoints, so the � 7"7
and � �"� are restricted to have positive values.With
these restrictions, the candidates for rotation becomes

fewer than 5, and in some cases, 2 or 3. Then with the
assumption that successive images are close to each
other, we order these candidate rotation matrices by the
sum of the diagonal elements, � 7"7KJ � �"� J � ��� , and
choose the one with the largest sum as the rotation ma-
trix. The other possible rotations are kept as candidates.
Note that these assumptions can be relaxed without
affecting the actual outcome, since we can choose from
the candidate rotations the correct one. The described
heuristic is used in order to speed up our algorithm.

Figure 3: Range scanner’s local coordinate systems at
two different viewpoints.

2.2 Translation Estimation
Once the rotation has been automatically computed (see
Sec. 2.1), or manually selected (see Sec. 3), the axes of
the two local coordinate systems of the two scans can be
aligned. The next step is the estimation of the transla-
tional vector between the two range images. We search
for matching pairs of 3D linear segments between the
two scans, since two correctly matched pairs provide a
unique solution for the translation. At a preprocessing
stage, the distance between each pair of parallel linear
segments is computed. This distance is the vector that
connects the midpoints of the two segments (Fig. 4).
From every two lines in the left image ��LE?@��L�MD� and two
lines in the right image �,NO?D�9NPM@� , a candidate translation
is computed if and only if:

1. All four lines are parallel to each other, and the
distance between l1 and r1 equals (within a length
and angle threshold) the distance between l2 and
r2 (Fig. 4(a)). In this case, the average of the two
distances is recorded as a candidate translation.

2. Lines l1, r1 are parallel to each other, and lines l2,
r2 are parallel to each other, but lines l1, l2 are not
parallel. In addition the distance between l1 and
r1 is equals (within a length and angle threshold)
the distance between l2 and r2 (Fig. 4(b)). In this
case, an exact translation can be computed by the
solution of an over-constraint linear system as ex-
plained in [12].



(a)

(b)

Figure 4: Two pairs of matched lines. The vectors
connecting the midpoints of the matched segments pro-
vide approximations to the translation between the two
scans. (a) All four lines parallel to a same axis. (b) Two
line pairs parallel to different axes.

The computed candidate translations are then clus-
tered into groups of translations that are close to each
other within certain thresholds of length and direction.
Intuitively, the correct translation is the one that occurs
most frequently. This is the one that defines the largest
cluster of candidate translation. However in order to
take into account measurement noise and scene symme-
try, we consider the N (N=10) largest clusters of can-
didate translations. The centroids of these N clusters
are considered as our final candidate translations. Fi-
nally, out of these N centroids the one that maximizes
the number of line matches between the two scans is
returned as the final translation vector1.

The above automated procedure computes a trans-
formation between any pair of images that overlap. The
registered image pair is then displayed in the user inter-
face (Sec. 3). The registration obtained after this stage
is very accurate, but still not quite satisfying for pho-
torealistic 3D modeling. The inaccuracy comes from

1The number of lines that match assuming a rotational matrix and
translational vector can be computed after both scans are placed on
the same coordinate system. See [14].

several factors: a) The segmentation phase introduces
some errors in extracted line directions and lengths, and
b) The clustering methods for rotation estimation and
translation estimation introduce errors as well. In the
clustering of 3D lines the centroid of each cluster is se-
lected as the representative major direction. Also in the
clustering of candidate translations, the centroid of each
cluster is selected as the representative translation. That
is why, in order to minimize the registration error an
ICP algorithm needs to be applied as a post-processing
step. Given that the registration from the automated
routine and user interaction is very close to the exact
registration, the ICP algorithm is then able to optimize
the overlapping points of two image scans. In Sec. 4
experimental results show that the registration error is
greatly decreased after ICP optimization and it reaches
the level of a few mm.

3 Context-Sensitive User Interface
In order to visualize the procedure of registration, as
well as to allow users to correct wrong registrations due
to 3D scene symmetry, a context-sensitive user inter-
face has been developed. For each pair of overlapping
scans the system reads the segmented planar areas and
linear segments. The efficient range-range registration
algorithm described in the previous sections is being ex-
ecuted first. After a few seconds the result is displayed
(Fig. 5). If the user is satisfied with the result s/he can
proceed with the next pair of scans. If on the other hand
there is a mistake the system displays the following op-
tions:

Figure 5: Overview of the user interface. Two automat-
ically aligned range scans are shown. Left window: raw
range scans. Right window: the same scans abstracted
as linear segments (different colors are used for differ-
ent scans).
(1) If the initial rotational calculation was wrong due to



an erroneous match of axes the user is presented with a
set of possible orientations (Fig. 6). The user can select
the correct orientation. The system then recalculates the
translation (see Sec. 2.2), and s/he is asked to verify the
result. (2) If the rotational calculation was correct but
the result is still wrong, then the user may choose to
invoke the more expensive and complementary range-
range registration algorithm described in [14]. (3) If
no automated algorithm provides a correct result then
the user needs to manually fix the resulted transforma-
tion. Note that this case can appear due to symmetry
of the acquired 3D scene. Fig. 7 shows the screen that
the user sees. (4) After the user manually corrects the
transformation the refinement procedure that searches
for matching features between all lines can be invoked.

We call this user-interface context-sensitive because
the user can translate or rotate the 3D scans only among
the major axes that form the object’s local coordinate
system as shown in Fig. 7. The three axes of the right
image are displayed as red lines, along each of them
there is a translation dragger, and a rotation ball. By
dragging each dragger, the translation on one direction
is adjusted independently, and thus overlapping lines
and points can be easily adjusted to the best accuracy;
the rotation ball is used to adjust rotation around each
axis: by dragging the ball along that axis, its transla-
tion is transformed into a rotation around that axis by
the corresponding angle, which is applied to the left im-
age. By alternatively adjusting the rotation and trans-
lation, the manual registration becomes a lot easier and
more accurate than other methods of alignment such as
picking three corresponding points from both images,
or translating the two scans along axes that are not re-
lated to the geometry of the scene.

4 Experiments and Conclusions
We tested the semi-automatic registration system on
two urban structures of different styles. The Thomas
Hunter building (Hunter College of CUNY) is a rect-
angular building with flat side walls. The Shepard Hall
building (City College of CUNY) has a more compli-
cated architecture that resembles a Gothic cathedral.
We also tested our algorithm using scans gathered from
the interior of the Shepard Hall building. Laser range
scans were acquired by a Cyrax 2500 laser range scan-
ner. Each scan consists of a million points with an ac-
curacy of 6mm per point. As a criterion of registration
performance, we record the number of matching line
pairs as computed in Sec. 2.2 (Fig. 8), and we calculate
the average distance between matching planes.

Considering the Thomas Hunter building data, we
registered 14 range images by applying 15 pair-wise

Figure 6: A set of possible orientations between the two
coordinate systems is presented to the user to choose
from. In this example the rotation in the upper left cor-
ner corresponds to the correct result.

Figure 7: The user can manually translate or rotate one
scan with respect to the other. This task is made much
simpler due to the fact that the user can translate along
or rotate about the major orientations of the 3D scene.



Figure 8: Matching lines between two scans. White/red
lines are border lines, and yellow/blue lines are the
matching lines from two images respectively.

registrations. Among these pairs, 13 pairs were cor-
rectly registered with the automated routine and refined
by the ICP optimization. Two pairs require the user to
adjust the translation and rotation before a correct reg-
istration was obtained. The time for each automated
registration is displayed in Table 1 (top) (on average 20
seconds per pair - 2GHz Xeon Processor - 2Gbit RAM).
Table 1 (top) also shows the average distance between
matched planes2 of registered pairs of scans , as well
as how much the ICP optimization further improved the
accuracy of registration. The average error over all pairs
of scans decreases from 21.17 mm (before ICP) to 1.77
mm (after ICP). The final registered line and point im-
ages are shown in Figs. 10(a), and 10(b).

Table 1 (middle) shows the pair-wise registration
time and error measurements for Shepard Hall (15 pairs
shown). Since this building has more delicate geomet-
ric features, the segmentation produces a large amount
of short line segments in various directions. Neverthe-
less the experimental results show that the algorithm is
quite robust: among the 24 pairs of scans, 9 pairs were
automatically registered, 8 pairs needed manual trans-
lational adjustment due to scene symmetry, and 7 pairs
required a careful user adjustment on rotation. Because
of this, the total time of the registration is about an hour
(this includes user interaction), although the automated
registration on each pair takes less than one minute.

2Each extracted 3D line lies on the border of a segmented planar
region. Therefore matched lines between scans dictate matched pla-
nar regions.

When the rotation needs to be manually adjusted, the re-
sulted registration usually has quite visible registration
errors, as shown in Fig. 9(a). In this case, ICP optimiza-
tion greatly improves registration accuracy (Fig. 9(b)).
The final registered line and point images of Shepard
Hall are shown in Figs. 10(c) and 10(d). The average
error over all pairs of scans decreases from 51.72 mm
(before ICP) to 3.23 mm (after ICP).

We also performed experiments in the interior of
the Shepard Hall and registered 21 scans (Figs. 10(e)
and 10(f)). Out of 44 pairs the automated procedure
produced 12 correct results, whereas 18 results needed
translational adjustment due to scene symmetry and 13
need manual adjustment of translation and rotation. The
average error over all pairs of scans improves from
17.59 mm (before ICP) to 7.26 mm (after ICP) (Table 1
(bottom)). Note that in most cases the number of match-
ing line pairs increase after the ICP optimization (this is
what is expected when the scans are brought closer to
each other). In some cases though the number of match-
ing lines decreases, without the registration quality to be
sacrificed. On the contrary we can see from the average
plane error that ICP further improved the registration
accuracy.

We have presented a semi-automatic registration sys-
tem that incorporates an automated range-range regis-
tration algorithm with a context-sensitive user interface.
The user interface is being utilized in all cases of regis-
tration errors produced by scene symmetry. This sys-
tem complements our original work of [14] and pro-
duces efficiently high-quality registration results. We
believe that we have built an arsenal of methods that
can be utilized for the automatic registration of large-
scale urban scenes. Our future work includes the de-
velopment of a method for global optimization after all
pairwise registrations have been achieved. This will sig-
nificantly improve the final result. We are also working
on automated registration in scenes that do not contain
a plethora of linear features. Finally, we have utilized
matching algorithms between lines for the solutions of
3D range to 2D image registration in urban scenes [7].
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Figure 10: Registration results. (a) & (b) Thomas Hunter building (14 scans). (c) & (d) Shepard Hall building (24
scans). (e) & (f) Interior of Shepard Hall (21 scans). Registered line and range images shown. The lines are extracted
from the range segmentation module. The range images correspond to the source scans. The gray values correspond
to the returned laser intensity.



Figure 9: Shepard Hall. Close up view of pairwise reg-
istration. (Top) With automated registration before ICP
optimization. Range scans do not align perfectly. (Bot-
tom) After ICP optimization. Result has been signifi-
cantly improved.

Before ICP After ICP
Pair Line Pairs Q � P err � P err

1 322x229 19 10 33.95 26 1.80
2 322x275 19 19 5.87 17 1.68
3 243x205 2 7 54.70 11 1.72
4 205x292 6 6 5.15 7 0.97
5 292x279 38 12 15.12 36 1.87
6 279x275 20 21 7.72 20 0.91
7 275x304 31 50 14.09 32 1.03
8 304x180 23 22 22.51 22 2.98
9 195x180 32 19 3.85 33 1.02

10 195x249 28 12 15.74 27 2.04
11 180x249 4 6 50.74 18 1.60
12 129x249 31 13 5.66 31 2.50
13 249x137 19 6 24.79 26 3.16
14 129x137 29 7 19.32 37 2.11
15 137x332 9 7 38.36 9 1.23

Before ICP After ICP
Pair Line Pairs Q � P err � P err

1 625x211 21 3 52.64 8 11.94
2 546x539 43 34 78.05 88 1.80
3 546x638 56 8 42.60 9 3.20
4 546x211 31 3 97.26 42 2.64
5 539x638 45 27 85.71 31 3.51
6 638x642 62 113 4.78 112 1.95
7 638x360 17 30 57.39 28 2.42
8 642x360 28 17 9.49 16 2.81
9 708x237 8 8 16.93 8 3.79

10 734x334 14 12 83.59 8 0.52
11 334x149 6 4 47.02 18 1.71
12 149x176 3 7 51.48 37 1.18
13 649x501 33 23 21.33 21 3.28
14 501x203 10 24 9.59 24 5.05
15 203x281 4 8 117.90 11 2.63

Before ICP After ICP
Pair Line Pairs Q � P err � P err

1 787x645 36 147 9.71 138 1.61
2 654x787 21 41 16.34 25 2.63
3 654x638 24 252 13.31 124 3.28
4 356x351 13 84 8.12 68 1.74
5 174x283 2 42 13.90 36 5.62
6 585x557 28 56 26.33 137 14.73
7 656x606 45 249 10.24 138 11.65
8 656x654 41 257 11.03 160 19.62
9 656x481 4 13 31.14 19 3.72

10 654x585 16 7 40.12 11 1.19
11 654x910 33 121 6.11 118 0.99
12 910x864 44 268 14.53 128 2.00
13 647x787 43 84 6.34 89 1.86
14 647x356 13 5 49.04 17 37.61
15 647x619 8 51 7.61 36 0.63

Table 1: Experimental results on Thomas-hunter build-
ing (top), Shepard Hall exterior (middle) and interior
(bottom). R : time of automated registration (before ICP
optimization) in secs ;

�
: number of matching lines be-

tween the two scans; S T�N�N : average distance between
matching segmented planar regions (in mm).
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