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Abstract

Range sensing technol ogy all ows the photo-realistic model -
ing of large-scale scenes, such asurban structures. A major
bottleneckin the process of 3D scene acquisitionisthe auto-
mated registration of a large number of geometrically com-
plex 3D range scans in a common frame of reference. The
generated 3D representations, after automated registration,
are useful for urban planning, historical preservation, or
virtual reality applications. Man-made urban scenes pro-
vide an abundance of linear features that can be used for
the solution of the problem. Many scenes though require
the utilization of non-linear primitives. This paper provides
a solution of the registration problem based on the robust
detection and matching of circular features from the range
data sets. We present results from experiments with complex
range scans fromthe interior of a large-scale landmark ur-
ban structure (Grand Central Terminal, NYC), where tra-
ditional methods would fail. This work is part of a larger
range registration systemthat is based on extracted features
of multiple geometric types.

1. Introduction

The photorealistic modeling of large-scale scenes, such as
urban structures, requires a combination of range sensing
technology with traditional digital photography. The range
sensing part is critical for the accurate geometric description
of the scene. A systematic and automatic way for register-
ing 3D range scans is thus essential. This paper presents
a novel method that utilizes non-linear features of circular
nature extracted from range images to facilitate automated
registration.

Features of this type are very common in many archi-
tectural environments (consider the range scans shown in
Fig. 1 for an example). Our approach brings pairs of range
scans into very accurate initial alignment making no as-
sumptions about the relative position of the range scans.
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The presented method thus complements work based on lin-
ear features alone [9][10], or point signatures [8]. We en-
vision a larger system that detects and matches features of
various geometric shapes (lines, circular or elliptical arcs,
spheres, cylinders, etc.).
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Figure 1: Two range images of the interior of a Grand Central
Terminal, NYC.

A robust method that extracts distinguishable features
from range images is very important for our method. Previ-
ous range image segmentation techniques include edge de-
tection [1][2], region growing [3][4], and polynomial sur-
face fitting [3][5]. Most of these methods provide edge
maps and/or regions expressed as polynomial functions.
This is useful for object modeling and reconstruction, but
may not be suitable for feature matching. Our method
detects precise edges and extracts geometric features with
concise descriptors that make them appropriate for feature
matching.

Iterative Closest Point (ICP) is one of the most popular
range registration algorithms [6][7]. ICP provides very ac-
curate results but requires a good initial guess of the reg-
istration transformation. We, on the other hand, utilize
ICP as a post-processing step after our automated method
brings scans into alignment. A method that does not re-
quire knowledge of an initial registration transformation is
presented in [8][11] (spin images). The spin images ap-
proach does not rely on features of specific geometric type,



but is sensitive to varying scan resolutions. Furthermore, the
extracted point signatures have local support, the extent of
which is specified by the user. Our approach detects circular
features of any size as long as they exist in the range image.
Thus, it does not suffer from limitations on feature support.
Approaches that rely on linear features alone [9][10] pro-
vide accurate results in scenes of urban nature, but will fail
in scenes that do not contain a sufficient amount of lines.
Our method thus complements line-based approaches.

We are introducing a new range registration algorithm
that extracts non-linear features (circles in this article) as
well as lines. The proposed algorithm expands the capabil-
ity of line-based algorithms to recognize more complicated
geometric shapes in 3D scenes. The major steps include
3D edge detection, 3D line/3D circle extraction, and circle-
based feature matching. Based on our current research, we
propose a framework of registering range images based on
a variety of geometric shapes and other feature descriptors.

2. 3D Edge Detection

Eachrange scan R; is represented as a 2D array of 3D points
{P(k,l),k = 1...N,l = 1...M}'. Within each range
image we consider 3D edges of the following two types:
(a) edges caused by surface normal discontinuities (roof
edges), and (b) edges caused by depth discontinuities (step
edges). Step edges are further divided into edges caused by
one surface occluding another (occlusion edges), and edges
caused by 3D surface boundaries (boundary edges).

We briefly summarize the algorithm for detecting edges
of various types. First the surface orientation change at
each point is decomposed into variations along four grid
directions. This grid is the 2D structured grid on which
each range image is organized (as mentioned in the pre-
vious paragraph). We thus obtain four values at every 3D
point, that we call directional variation values. In the struc-
tured 2D grid we form four 2D images. The intensity value
at each pixel is the surface variation (we define it properly
in the next paragraphs) of the corresponding 3D point. We
call the four 2D images directional variation images. 2D
Canny-based edge detection is performed on each image.
Finally the 2D edges are combined and projected? back to
the 3D range image space, providing the final 3D edges due
to surface normal discontinuities or depth discontinuities.

Before providing more details, let us first define the nota-
tion in this paper. During the edge detection process on 2D
directional variation images, 3D information such as range
depth and 3D distance between range points is often needed.
To minimize ambiguity, we use capital letters to denote fea-
tures in 3D space, and lower case letters for 2D space. The

IThe indices k, ! define the position and orientation of the laser-beam
which produces the 3D point P (&, [).

2Each pixel p(k, 1) in the grid-point image corresponds to a 3D point
P(k,1).

features include points, circles, etc. For example, point P
refers to a point in 3D space, and p refers to the correspond-
ing pixel in the 2D grid image.

The directional variation images are obtained as fol-
lows: At each point P, let By and By be its two neigh-
bors along one of the four grid directions (see Fig. 2(a)).
The vector from P to B is V1, and from P to By is V.
The variation at each direction for point P is defined as
Angle(V1, Va)/m. This provides a value in (0, 1] as the
intensity value for this 2D directional variation image. Note
that if the pixel p (corresponding to P) has at least one
empty neighbor point on the grid, the value is set to 0, and
if p is itself an empty point, the value is set to —0.1 (to de-
tect boundary edges). Each 2D directional variation image
thus emphasizes surface normal change along one direction
(Fig. 2). The combination of the edges detected from them
provides us with a complete set of edge points. Representa-
tive previous methods involve the estimation of surface nor-
mals first, followed by decomposition of x/y directions [4]
or analysis of the angle between surface normals of neigh-
boring points [2]. We implemented these methods as well
but they are not as robust for curved surfaces for the fol-
lowing reasons: (1) Surface normal computation smooths
out the orientation change; (2) Decomposing to x/y direc-
tion causes poor results at diagonal edges; and (3) The an-
gle between neighboring surface normals only provides one
degree of information, but the direction of change is dis-
carded.

2D edge detection is performed on each of the four direc-
tional variation images in Fig. 2. First, Gaussian smoothing
is applied to suppress noise. Then, gradients along = and
y direction, g, and g,, are computed at each pixel using
Sobel operators. With g, and g, we compute the gradi-
ent magnitude g. Edge direction dir at each pixel is deter-
mined by slope angle angle = arctan(g,/g,): if angle €
[0, Z]U[ZE, 7], dir is horizontal; if angle € (Z, 3T), dir is
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positive diagonal; if angle € [3F, 5X], dir is vertical; and
if angle € (3%, 1), dir is negative diagonal.

The traditional Canny edge detection then carries out
non-maximum suppression to obtain a thin edge, followed
by hysteresis thresholding to output a specified amount of
edge points. In our algorithm, we reverse the order of these
two procedures, due to the following considerations: 1) In-
stead of deciding the number of edge points by ratio, we
aim at finding all the points whose neighborhoods contain
more significant change than expected in the high resolution
range scans of large-scale urban scenes. 2) Applying thresh-
olding in the last step causes discontinuous edges, but we
prefer to keep edges as continuous as possible, for the pur-
pose of accurate edge linking and circle fitting in the later
phases. So, our algorithm uses a generous threshold 0.35
(allowing the angle change of 5 degrees?® in any direction)

3We know that at each non-boundary point, the directional variation
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Figure 2: Directional variation images. (a) Four grid directions:
1-Horizontal, 2-Vertical, 3-Positive Diagonal, 4-Negative Diago-
nal. B and B are P’s neighbors along direction 1. (b)—(e) Direc-
tional variation images of Fig. 1(a) in the above four directions re-
spectively. Brighter points have larger variation values, and darker
points have smaller variation values (see text). The intensities are
slightly scaled for best display. Note that each type of directional
variation image responds strongest to edges perpendicular to the
direction of computing variation.

for edge magnitude, followed by non-maximum suppres-
sion.

To this point, we have detected all roof and step edges.
However, occlusion edges need to be identified and only the
foreground edges should be kept in order to reflect the true
geometry of the scene (similar to the shadows in 2D im-
ages). In our algorithm, non-maximum suppression votes
off edge points based on magnitude, regardless of whether it
is on a foreground surface or a background surface (Fig. 3).
We therefore find and remove all background edge points,
while add back those foreground edge points voted off by

value v € (0, 1]. The absolute difference between any two points is thus
dy € (0,1]. Let us set the threshold to be 5° ~ 0.0873. Sobel operator
enlarges the difference by a factor of at most 4, which gives 0.35 for g, and
gy. Since only one of them could reach that maximum value, the threshold
of magnitude is decided to be the same for both.

a background neighbor. To find these points, we map the
2D edge points back to 3D range scan and label a 3D point
P if its corresponding pixel p is an edge point. For an edge
point P, let By and Bs be its two neighbors perpendicular to
its edge direction.* If Distance( P, B; )>>Distance(P, Bs)
and Depth(B;)<<Depth(P), then By is a foreground
point, and P is a background edge point. In that case P
is labeled as non-edge, and B; is labeled as an edge point
(Fig. 3(a)). Notice that in the case of Fig. 3(b), when P
already has two other neighbors on both sides of B; being
edge points, it is unnecessary to add B; to form a thick edge
and consequently be fitted to two lines. By symmetry, edges
of other directions can be analyzed and processed similarly.
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Figure 3: Occlusion edge and its correction. Dash line: real oc-
clusion edge. Black points: foreground edge points. Gray points
below the edge: background edge points to be removed from edge
map. Gray points above the edge: foreground points to be added
as edge points. In (a), they are added into edge; in (b), they stay as
non-edge since the edge is already connected and traceable.

Another type of edge points to be eliminated from ev-
ery directional variation image are the corner points. These
points appear as high curvature points in 3D space. There
are two reasons for removing these points: 1) By remov-
ing corner points we break the connections between edges
of different directions, thereby simplifying edge linking and
fitting (e.g. the corner points connecting edges in Fig. 5(a)).
2) Many delicate structures are detected as edge points, but
they do not provide information on major geometric shapes.
These clusters of high curvature points sometimes show in-
teresting patterns. Although discarded in our current algo-
rithm, they could be utilized for region matching in the fu-
ture (e.g. the rosette in Fig. 5(a)). We detect corner points
by applying Harris corner detector to every edge point, and
testing whether there are more than one principle directions
formed by all edge points in its local neighborhood.

The next step is the combination of four edge maps by
taking the union of all edge points. From the combined
edge map, isolated edge points are deleted, and short gaps
(1 or 2 pixels) are filled along the local edge direction. Then
continuous edge points are linked by tracing along edge di-

“4In here as well as later in this paper, “edge direction at a point” means
the 2D edge direction of its corresponding pixel.



rections. The edge linking utilizes the structured grid on
which the range image is represented for resolving neigh-
bors. Only long edges (30 points or more) are being kept
for later processing. The final combined edge map is shown
in Fig. 4(e). Fig. 5 shows the details in areas of a corner and
a circular window.

Figure 4: Edge points of range images of Fig. 1(a). Note that the
color at each point (red/green/yellow/magenta) indicates its edge
direction (see text), hence the same point usually has the same
color in the four edge images. (a)-(d) Edge points detected from
Fig. 1(b)-(e) respectively. () Combined edge image from (a)-(d).

3. 3D Circle Extraction

Each linked edge describes a curve in 3D space. For the
purposes of this work we are interested in circular features,
which are non-linear planar curves. Therefore we first re-
move linear ones, and then keep only planar ones for circle
fitting. For each linked edge from Fig. 4(e), its best-fit line

(a) (b)

Figure 5: Zoom-in on edge points. (a) Black points are cor-
ner points (to be removed from consideration). (b) circular edges
along the window frame.

direction Vmax and best-fit plane normal V i, are com-
puted. A curve is considered linear if the line fitting er-
ror (average distance of all points to the fitted line) is less
than a threshold 0.03m (approximate distance between two
neighboring 3D range points). For nonlinear curves, the av-
erage perpendicular distance of all points to the fitted plane
is used to discard 3D curves that are non planar (a generous
threshold of 0.5m is used). For each of the remaining planar
curves, all points are projected onto their fitted plane. After
this process, the 3D curve becomes a set of 2D points in the
2D space II of the fitted plane. Circle fitting is done in this
space.

Taking the common approach of least square fitting>,
we compute the center (a,b) and radius r of the circle by
finding an approximate null-vector of a n x 4 design ma-
trix, where n is the number of points on the curve. Con-
sider the circle function (z — a)? + (y — b)? — 72 = 0.
It can be written as z2 + y? — 2ax — 2by + a® + b* —
r? = 0. Let (z;,y;) be the 2D coordinates of all points
pi(i = 1,...,n) on the curve. Then the circle equation
for all points can be expressed as as a multiplication of
the n x 4 matrix M = [M; M, M,])T where
M; = 22 +y? —2x; -2y 1] (fori = 1,..,n),
with unknown vector [I a b a? + b2 — r?]T. The null-
vector of the design matrix, computed by SVD, provides
the solution. Finally, the circle fitting error is computed as

X7 (distance(p; —center)—r)?2

Coryr = - . The ratio (=== ) must
fall below a threshold (0.02) to verify that the planar 3D
curve is a circular arc. Finally, the center of the fitted circle
is converted back from II to the 3D space. We now have
three parameters to represent each oriented 3D circle: 3D
center point, radius, and plane normal. Fig. 6 shows all the
circles with radii between 3.0m and 5.0m. These are the
ones most useful for matching in the next step. In the ex-
ecution, we detect all circles with radii between 2.0m and

SA 3D hough transform method will be inefficient, since the radii of
circles are unknown and may vary wildly.
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Figure 6: Circles extracted from the range images of Figs. 1(a)
and 1(b), respectively. All edge points are in black, and all fitted
circular arcs are represented with colored full circles, with green
lines indicating their normals. Note that three circular windows are
detected in both images. The images are rotated to the best angle
to observe all circles. Therefore some of them appear as ellipses
due to the viewing direction.

4. Feature Matching

After the oriented 3D circles are extracted from range im-
ages, possible matchings between them are hypothesized.
The computed transformations are graded using surface
consistency[11] and average point distance in the overlap-
ping area between the scans.

Similarity of radii, orientation and relative position be-
tween pairs of circles is utilized in the matching phase. In
particular, consider a pair of circles (C1, Cs) from scan R,
and another pair of circles (C], C4) from scan Ry. The pairs
would be considered as matching iff

1. Circles C4,C} have equal radii within a threshold
(maximum difference of 0.1m);

2. Circles Cy,CY% have equal radii within a threshold
(maximum difference of 0.1m);

3. The distance between the centers of C1, C] equals the
distance between the centers of Cy, C, within a thresh-
old (maximum difference of 0.2m);

4. The angle between the normals of Cy,C} equals the
angle between the normals of C, C% within a thresh-
old (maximum difference of 10°).

Furthermore, consider a pair of circles (C7,C2) from
scan Ry and another pair of circles (C1, C%) from scan Ry
that could be considered a valid match according to the pre-
vious definitions. A transformation (rotation R followed by
a translation 7") can be computed by converting the corre-
spondence of a pair of oriented circles to a pair of 3D ori-
ented lines. This approach leads to a robust transformation

computation, since it is based on relative position and orien-
tation of the features rather than exact position and orienta-
tion of each feature. In particular, two cases are considered:

Case1: Circles (Cy, Cy) have parallel normals V1 and Vg
(the same is true for the normals V| and V5 of circles
(C1, C%)) (Fig. 7(a)). Let us consider the oriented line
D that connects the centers of (C7,C53) and the ori-
ented line D’ that connects the centers of (C}, C3). If
D is not parallel to V7 (that means that D’ is not par-
allel to V), the match of the oriented line D with D’
and V1 with V| can provide a reliable transformation
(closed form formula [9]). Otherwise (D is parallel to
V1) a reliable transformation can not be computed.

Case 2: Circles (C1, C3) do not have parallel normals V4
and V3 (the same is true for the normals V} and V§,
of circles (C7, C%)) (Fig. 7(b)). Then, the two pairs of
oriented lines (V1, V) and (V, V5) are used for the
computation of a reliable transformation (closed form
formula [9]).

Vi
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Figure 7: Two cases of matching circle pairs. The dash line sep-
arates scan R, from R>. The radii and relative position of the two
circles from R; must be similar to those from Rs. (a) Case 1:
two circles have parallel normals. Vi, D and V/, D’are used to
compute transformation. (b) Case 2: two circle normals are not
parallel. V4, V2 and V7, Vi are used to compute transformation.

From each valid matching circle pairs, a candidate trans-
formation is computed as described above. Each transfor-
mation is verified for correctness as follows. Based on the
fact that overlapping images are captured from nearby po-
sitions, we discard all rotation matrices with diagonal el-
ements smaller than 0.7 (allowing 45° tilting of the range
scanner about each of its x/y/z axes). Note that this step
reduces the number of possible transformations and thus
speeds up the algorithm, but is not otherwise necessary.
Then we test whether the transformation causes surface in-
consistency (see next paragraph). Finally, from all verified
transformations, the one achieving the smallest average dis-
tance between overlapping range points is chosen as the
best.

SNote that an approach similar to association graphs [12] would gener-
ate a very large search space.



Surface inconsistency between two range images 2 and
Ry is decided in summary as follows (method described in
[11]). After image R; is transformed to the coordinate sys-
tem of the image Ro, consider a ray cast from Ry’s center
of projection toward the overlapping area of the two images.
The following two situations should not happen: (1) along
the ray there is a point from R; but no point from Ry (Free
Space Violation); (2) along the ray there is a point from R,
significantly in front of a point from Ra (Occupied Space
Violation). We follow the suggestion in [11] and implement
surface inconsistency detection with two z-buffers, one for
each scan. The coordinates on both z-buffers are based on
the 2D grid of scan R5 (999 x 999 points), but sampled into
250 x 250 bins. One point falls into one bin if the ray from
Ry’s center of projection toward the point passes through
that bin. For each bin in R2’s z-buffer, among all points
that fall into it, the smallest distance from the center of pro-
jection is recorded. R;’s z-buffer is filled in the same man-
ner, but with points from transformed 1?;. Now comparing
these two z-buffers we are able to detect cases of FSV and
OSV. Only at those bins where distance values from two
images differ no more than a certain threshold (2.0m), i.e.
overlapping regions, we record the difference, and take the
average of all such differences to evaluate the goodness of
the transformation. We choose the threshold 2.0m, because
this value is a loose upper bound for point distance. Setting
the threshold too low would limit the comparability of two
transformations, since only those few points already very
close are used for distance computation. Therefore the dif-
ference between good transformations and bad ones is not
obvious. In our experiment, we also set a loose threshold
(10%) on overlapping area to filter out invalid transforma-
tions.

5 Experimental Results

Our automated method is used for registration of the inte-
rior scans of Grand Central Terminal in NYC (a large-scale
landmark urban structure). The best transformation of the
two corner scans of Fig. 1 provides a registration error
(average point distance in the 55.7% overlapping area) of
0.95cm. Within a few iterations of ICP an optimal trans-
formation with a registration error of 0.90cm is obtained
(Fig. 8).

Also, we registered other scans of this hall with the same
technique. The entire hall is roughly in rectangular shape
with an arched ceiling. Fig. 9 shows a few typical scans
on the front wall ((a)(c)) and the side wall ((e)(g)), together
with circles extracted from them. Note that the lower parts
of the walls (e.g.(c)(g)) contain lines and planes, and are
therefore registered with the linear-feature based technique
of [10]. The upper regions with very few linear features,
e.g.(a)(e), are registered with their lower neighboring scans

Figure 8: Registered images of Figs. 1(a) and 1(b). They are
colored to highlight overlapping area. (a) All image points. (b)
Edge points at overlapping area.

(c)(g) respectively, by matching overlapping circular win-
dows.

In Fig. 10, registered edge points from 23 scans are vi-
sualized. There are another 14 scans not shown for clarity
of presentation. Among all 37 scans, 20 of them are lower
parts registered with lines, 13 of them are the upper parts
registered with their lower neighbor scans based on over-
lapping circular windows. Three scans are manually regis-
tered, because they are cylindrical ceiling patches without
any distinguishing geometric shape information. In Table 1
we report the performance of 13 registrations based on cir-
cles. When registering the last two pairs, a long execution
time is experienced due to a large number of valid trans-
forms from the precisely extracted circles around the win-
dow frame (as in Fig. 9(b)(d)). To avoid unnecessary com-
putations, we set the program to terminate when the average
distance falls below 0.03cm (approximate distance between
two neighboring points). The values in columns RT, D_mat,



Time are therefore recorded up to the point when an accurate
enough result is reached. In Fig. 11, more screen shots are
shown, including registered scenes, edge points, and part of
a 3D model constructed using the registered range points.

Figure 9: Four side wall scans, extracted edges and fitted circles.

6. Conclusions and Future Work

We have introduced novel algorithms and results on regis-
tering range images based on circular feature extraction and
matching. This work complements range scan registration
system based on linear features or point signatures. The
edge detection provides precise 3D edges, and the circle fit-
ting extracts circular edges feasible for feature matching.
Finally, the correct transformation is selected from many

Circles RT | D.mat | D_opt | Overlap | Time
26x24 | 544 | 0.95cm | 0.90cm 55.7% 6min
24x39 980 | 1.11cm | 1.00cm 29.1% 9min
21x39 15 | 3.42cm | 1.28cm 16.1% 1min
24x20 | 748 | 2.13cm | 0.77cm 38.4% 7min
13x30 126 | 2.0lcm | 0.84cm 28.9% 2min
21x26 | 534 | 1.68cm | 0.90cm 35.5% 6min
23x11 29 | 4.26cm | 0.87cm 28.7% 1min
14x31 18 | 2.65cm | 0.93cm 27.8% 2min
31x13 58 | 2.34cm | 0.98cm 23.0% 2min
37x26 67 | 3.83cm | 0.87cm 37.2% 2min
23x35 310 | 1.20cm | 0.84cm 26.7% 7min
49x41 | 3054 | 2.81cm | 1.02cm 38.7% | 58min
50x38 | 931 | 1.83cm | 0.92cm 44.6% | 10min

Table 1: Experimental results. Meanings of columns: Number
of circles from two images to register; Number of candidate trans-
formations; Average point distance from best transformation; Av-
erage point distance after ICP optimization; Overlapping area of
two scans; Execution time, including circle extraction and match-
ing (on a Linux-based 2GHz Xeon-Processor with 2GB of RAM).

Figure 10: Registered edges of 23 scans, with color indicating
scans from upper parts (blue) and lower parts (red). The other
14 scans are not displayed for clarity of presentation; these scans
compose a side wall closer to our point of view and symmetric to
the wall being displayed.

candidates by point-based verification and distance mini-
mization. The registration achieves cm-level accuracy. The
computation time is in the order of minutes.

In the future, we would like to improve the estimation
of thresholds in our algorithm. Although they are reason-
ably estimated based on our range scan data, it would be
a great advancement if they could be decided from any
provided range data automatically. Thresholds determining
corner points, straight lines, and circles are rather important.
They affect how many edge points and features are used for
matching: too few may cause inability to register, while too
many may dramatically slow down the registration process.
This is a common problem in feature detection.



All of our current achievements are part of a larger
project of range image registration based on multiple geo-
metric features. Since there are certainly scenes without ro-
bust circular features, our next step would involve including
more geometric shapes into our segmentation analysis, such
as elliptical curves or spherical and cylindrical surfaces. If
none of the preliminary geometric shapes can be detected,
we would consider generating statistical descriptors for ar-
bitrary feature areas selected either automatically or manu-
ally.
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Figure 11: Registration results. (a) Four out of the 37 automat-
ically registered scans shown for clarity. (b) Edge points of (a).
Four colors represent edge points from four scans. (c) Eight out
of the 37 automatically registered scans shown for clarity. (d) 3D
model generated with Ball Pivoting Algorithm. The smooth ceil-
ing implies the registration is tight and seamless.



