Classification of Vehicle Parts in Unstructured 3D Point Clouds
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Abstract—Unprecedented amounts of 3D data can be ac-
quired in urban environments, but their use for scene un-
derstanding is challenging due to varying data resolution and
variability of objects in the same class. An additional challenge
is due to the nature of the point clouds themselves, since
they lack detailed geometric or semantic information that
would aid scene understanding. In this paper we present a
general algorithm for segmenting and jointly classifying object
parts and the object itself. Our pipeline consists of local
feature extraction, robust RANSAC part segmentation, part-
level feature extraction, a structured model for parts in objects,
and classification using state-of-the-art classifiers. We have
tested this pipeline in a very challenging dataset that consists
of real world scans of vehicles. Our contributions include the
development of a segmentation and classification pipeline for
objects and their parts; and a method for segmentation that is
robust to the complexity of unstructured 3D points clouds, as
well as a part ordering strategy for the sequential structured
model and a joint feature representation between object parts.

Keywords-Parts-based classification; Structured prediction;
3D point clouds; Urban range scans;

I. INTRODUCTION

The photorealistic modeling of large-scale scenes, such as
urban structures, has received significant attention in recent
years (see for example [1]). State-of-the-art range sensors
can produce millions of 3D points of large-scale urban areas.
The complexity of urban envirornments is due to the vari-
ability of objects (such as buildings, people, vehicles, street

Figure 1. A scene tile from the Wright State Ottawa dataset.

level structures, roadways, curbs, etc.), partial visibility and
occlusions, and varying object resolution. In addition, new
low-cost range sensors provide us the ability to acquire
voluminous amounts of 3D range data indoors. Applications
can be seen in 3D map generation, urban planning, asset
generation for game & film industries, robotic navigation,
etc.

Unfortunately, 3D point clouds are a very basic data
structure and lack the semantic and more complete geometric
knowledge about the underlying surfaces and volumes of the
scene. A number of research groups address the problem
of classification of various types of objects in point clouds
[2], [3], [4], [5]. Classification into distinct classes (such as
cars, vegetation, facades, wires, etc.) can be achieved with
a high level of success. A harder problem, though, is the
classification of similar class categories. For example, one
would like to distinguish between sedans vs. SUVs within
the vehicle class. This problem is significantly harder due to
the similarity of the distributions of local features between
these two classes. Our experiments show that traditional bag-
of-word approaches over the entire object are not effective in
that setting. However we observed, as shown in Figure 3, that
the variability between different areas of the scanned object
was significant. This motivated us to develop a method for
the segmentation and classification of object parts that can
be used to accomplish higher level tasks such as vehicle
classification and semantic understanding of vehicles. We
loosely define object parts in 3D point clouds as mostly
planar man-made surfaces that form approximately right
angles with each other. Although in this work we present
vehicle parts, our approach can be generalized to many man-
made objects with surfaces that are well approximated by
planar segments.

In this paper we present a general algorithm for segment-
ing objects into semantic parts for jointly classifying an
object and its parts. Our pipeline consists of local feature ex-
traction (spin images), part segmentation (RANSAC), part-
level feature extraction (bag-of-words), structured modeling
of part classes and object class, and finally classification
using various classifiers.

We have tested this pipeline in a very challenging dataset
that consists of vehicles. The data has been acquired via



multiple sensors and includes only partial object views from
varying viewpoints and at varying resolutions. The sensors
were rigidly mounted on moving trucks and planes and these
scans were registered together as seen in Figure 1. As such,
our point clouds are unstructured, meaning we have no raster
ordering and no sensor viewpoint information. Moreover, the
cars in our dataset are complex and noisy because of the
existence of large regions of missing surface data caused by
transparent windows and reflective metallic surfaces. Our
experiments in this dataset of 222 objects demonstrate high
accuracy for part classification and an improvement in object
classification over standard methods.

II. RELATED WORK

In this section, we briefly review research related to ours,
focusing on part-based approaches for the analysis of 3D
data. Covering the 2D literature is a daunting task, and is
beyond the scope of this paper. Since we work with partial
and noisy scans, we pay more attention to methods that
are applicable to such data. Thus, we exclude research that
requires watertight, manifold meshes as input.

Several approaches for object recognition in noisy 3D
point clouds utilize local descriptors, such as spin images
[6], [7], [3], shape contexts [8], salient points [9], fast point
feature histograms [10], unique shape contexts (USC) [11],
3D SUREF [12], Signatures of Histograms of Orientations
[13], visibility contexts [14] or compact covariance descrip-
tors [15]. Many of them have borrowed the bag of words
concept from the natural language analysis literature via
the object recognition in images literature. We, however,
are interested in recognizing specific surfaces encountered
in vehicles. These would appear indistinguishable from the
perspective of these algorithms, considering their invari-
ances. The parts we are interested in are approximately
flat or slightly curved, man-made surfaces forming right
angles with other similar surfaces. The majority of the local
descriptors would be uninformative in such a scenario.

Semi-local descriptors, or collections of local descriptors,
have been effective for this type of classification due to their
robustness to missing data. By slight abuse of the term, these
semi-local, not necessarily semantic, features have been
called “parts”. We adopt the same term in this section. Huber
et al. [16] addressed a problem similar to ours relying on
a parts-based approach, in which parts were represented by
collections of local descriptors. Part classes were discovered
via agglomerative clustering and once the prototype parts
have been identified, the probability of a specific vehicle
class conditioned on the presence of particular parts can be
learned and used for classification. Shan et al. [17] proposed
the shapeme histogram projection algorithm in which objects
are represented as collections of shapeme histograms. A
shapeme is a cluster of shape descriptors that correspond to
an object segment. To enable partial matches, the shapeme
histogram of the query is projected onto the subspace of

the model database and matching is performed on segments
shared by the model and query.

A domain in which relationships between approximately
planar surfaces are explicitly taken into account is that of
building analysis. As laser scanners become more prevalent
and mobile, approaches for detecting buildings and recog-
nizing their constituent parts are also on the rise. In most
cases [18], [19], [20], [21], [22], [23], [24], [25], [26],
the steps are similar to the first parts of our algorithm:
segmentation of the unorganized point cloud and reasoning
on the detected surfaces to infer the types of these surfaces
as well as their role in potential building configurations.
Building analysis typically ends at this point and does not
proceed to classification.

Our contributions with respect to current work include the
development of a pipeline for segmentation and classification
of object parts and a method for segmentation of surface
parts that is robust to variations in scan density, occlusions,
and interior points. Scanned interior points due to trans-
parent surface elements have particularly been neglected in
works using synthetic models. Whereas Huber et al. [16]
segment vehicles into three parts: front, middle, and back,
using prior orientation information for vehicle models, our
approach utilizes only the gravity direction for orientation of
automatically segmented parts. We also present a sequential
model for structured prediction over the segmented parts.
This includes a method for ordering the parts to reduce
the effects of density variations due to sensor orientation
with respect to visible surfaces and increase the density of
specific joint part occurrences for learning binary potentials
in the sequential model. For this model we have generated
a representation for joint features computed between parts
that is used for discriminatively training binary potentials.

III. PART SEGMENTATION & CLASSIFICATION PIPELINE

Given a set of objects extracted from range scans, we pro-
pose a pipeline for the segmentation and joint classification
of the object and its parts. The pipeline components include
local feature extraction, segmentation of an object’s surface
into planar segments, and construction of part-level features
for each segment as well as joint features between parts for
the structured classification model.

In Section III-A, we describe preprocessing and local
feature extraction across the given object point clouds.
This includes the selection and parametrization of local 3D
feature descriptors and the sampling strategy for where local
features will be computed.

Section III-B discusses the segmentation of object point
clouds into planar segments using a RANSAC approach.
We present a model hypothesis selection strategy using
the object’s convex hull that favors planar segments on
the exterior surface of each object. This produces a more
consistent segmentation across all objects and avoids planes
fit through the object’s interior.



We combine the local features and the object segments
in Section III-C in order to build part-level features for
part classification using a bag-of-words model over our
chosen 3D feature descriptor. In Section III-D, we describe
a structured model and features over neighboring parts for
structured classification. We compare classification results
between structured and unstructured models in Section IV.

A. Local Feature Extraction

We define local features as statistics computed with re-
spect to a reference point and neighboring points within
a fixed radius of support. For 3D feature descriptors these
statistics typically include quantizations of point positions or
normal orientations parameterized within the support space.
In preliminary tests using the spin image [6], FPFH [10],
and USC [11] feature representations we found that the spin
image was marginally superior in our pipeline and we used
it for our final experiments.

In order to ensure that we only consider points with well-
populated supports, we first pass each object through a sta-
tistical outlier filter [27]. Assuming a Gaussian distribution
over the means of the distances between points and their
k-nearest neighbors, here we take k = 8, the filter removes
points whose average distance to their neighbors is more
than a standard deviation away from the mean of average
distances for all points in the given object.

Surface normals are estimated locally at each point using
PCA with a 0.3m radius of support. Because objects in our
dataset come from registered range scans of heterogeneous
sensors we assume that only the geo-registered up-direction
can be relied upon. To give a consistent orientation to all
the normals we find the centroid of the object’s footprint on
the ground and orient the normals away from this reference
point.

Each object is subsampled using a 0.2m? voxel grid,
taking the object point within each voxel that is closest
to the voxel centroid. We compute spin images that are
densely sampled on the point cloud instead of using keypoint
detection because we are interested in the distribution of
local features in an object part rather than simply matching
distinct features between point clouds. Spin image features
of size 9 by 17 are computed at each sampled point using
a 1.8m cylindrical radius and 3.6m height. Bilinear inter-
polation is used to smooth the spin image quantization. In
order to account for variable density scans, the contribution
of each point to a spin image is weighted by its inverse
density defined as the inverse of the number of neighbors in
a 0.3m radius. Finally the spin image is normalized using
the L, norm.

By using a large support radius with a small grid quantiza-
tion we can capture localized features that broadly indicate
feature position with respect to the global object shape. This
parameterization of the features makes them amenable to

quantization for a visual bag-of-words model and well-suited
to the part classification task.

B. Part Segmentation

Our segmentation technique assumes that the objects have
roughly piecewise planar exterior surfaces which is a rea-
sonable assumption for man-made objects such as vehicles
at the level of detail of these range scans. This unsupervised
segmentation into planar segments will be the basis for
our part-level feature representation and we expect the
distribution of local features will vary significantly between
planar segments as can be seen in Figure 3.

Planar segments are iteratively extracted by fitting planar
models using an adaptive RANSAC approach as described
by Hartley and Zisserman [28]. Candidate planar model
parameters are randomly generated and evaluated by count-
ing the number of points within a point-to-plane projection
distance threshold. After a sufficient number of random
trials, depending on the fraction of model inliers, the model
with the most inliers is selected as the most likely planar
segment. We set an upper limit of 500 on the number of
trials in case no good model can be fit.

Typically a planar model hypothesis can be generated
from a random sampling of three points that are not colinear.
However because vehicles are often occluded in urban
settings and contain transparent windows, it is possible to fit
poor parts that intersect through the interior due to a relative
oversampling of interior points. We avoid such undesirable
segmentation by only admitting the facets of an object’s
convex hull, generated using the QHull [29] algorithm, as
possible model hypothesis. So for each RANSAC trial we
randomly select a convex hull facet and fit inliers to the
facet’s planar parameters. There are typically several hun-
dered initial facets and these are pruned from the available
pool of candidate models when there are no remaining inliers
for the facet’s planar model.

To determine a distance threshold for planar model inliers
we specify several assumptions about the distribution of
inliers. We conservatively set the probability of any given
point being an inlier for a given plane to v = 0.01. We also
assume that the position of each point is associated with
a Gaussian noise with variance 02 = 0.002. Therefore the
squared distance error for a point from a planar model takes
a x2-distribution and we can use a t-test to determine the
distance threshold d; as

o2

di = | —5—=
X%df(av 1)
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where x2;;(c, 1) is the cumulative distribution function of
the y2-distribution at o with 1 degree of freedom.

Once a sufficent number of RANSAC trials have de-
termined the most likely planar model, it is robustly re-
estimated several times through expectation-maximization



Figure 2. Planar segmentation of a sedan. Dark blue points correspond
to unsegmented and unlabled points, typically interior points. Here the
manual ground truth labels for each segment in the order the segments
were automatically extracted are light blue roof, cyan lateral-side, lime
green front-bumper, yellow trunk, and red hood. Our method is robust to
some interior points being included in these segments.

Figure 3.  Each vehicle point corresponds to a sampled feature with
the color corresponding to the closest codebook word in the codebook of
size k = 50. Note that the distribution of corresponding codebook words
changes significantly along different parts of the vehicle, this motivates our
part-based classification.

using PCA on all of the inliers. This step is particularly
helpful since using only the convex hull facets as the initial
models biases the estimated planes towards noisy exterior
points. The final part inliers are then removed from the
object and the procedure is repeated on the remaining
points until 5 planes have been extracted or less than 10%
of the original points remain. Examples of the resulting
segmentation can be seen in Figures 2 and 6.

C. Part-Level Feature Extraction

Using the densely sampled local descriptors, we construct
feature vectors for each extracted planar segment using a
bag-of-words model to generate a part-level representation.
We create a codebook of spin image features shown in
Figure 4 by using the k-means algorithm over all of
the local features in those objects in the training set for
classification. Here the size of our codebook is & = 50. In
early experiments codebook size did not significantly impact
classification results.

Figure 4. Spin image codebook. The bottom center of each spin image
corresponds to the origin from which the spin image is computed. The
y-axis corresponds to the radial direction and the x-axis to the cylinder
height.

For unseen spin images the corresponding codebook word
is found using a kd-tree. The feature vector for each part
is then computed as the counts of each codebook word
correspondence for the spin images within that part.

Additional part-level features that give a more global
description of the parts are also computed. We include the
average height of the points in each part as a feature because
we assume the up direction is reliable in the registered scene
coordinate frames. We also include a horizontal/vertical
indicator that is determined by the part normal n as

)
)

where z is the up-direction vector. The indicator is 0 for
a horizontal part and 1 for a vertical part. In the vehicle
part domain most of the parts are either clearly vertical
or horizontal. Finally we include the mean, median, and
max of the plane fit errors of the points in each part, the
three eigenvalues from the plane estimation (A1, A2, A3 in
descending order), and the differences between adjacent
eigenvalues that have been referred to as linearity (A; — A2)
and planarity (A2 — A3) in previous work [30], [31].

0 if n”2z > cos(

I =
() 1 if nTz < cos(

)

e

D. Structured Part Modeling

Although our objects come from unstructured point clouds
with variable density, making structured prediction models
difficult to apply, it is possible to consider the structure
over our limited number of high level parts. We consider
the sequential Hidden Markov Model which can be trained
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Figure 5. Generalized HMM for jointly classifying a sequence of object
parts and object class. Part labels depend only upon part features and joint
features with the previously predicted part. Class labels depend on the
classification of all parts and their features.

online and discriminatively by averaged structured percep-
tron [32]. The observed variables in the HMM are the part-
level features x; and the hidden variables are the part clas-
sification labels p;; unary and binary potentials are learned
as linear combinations of observed features. Additionally
we generalize the HMM to include a final hidden variable
¢ corresponding to the object class that depends on all
previously observed variables, a graph depicting this model
can be found in Figure 5.

This approach requires a sequential ordering of the parts
and while the initial sequential ordering from the RANSAC
part extraction is superior to arbitrary permutations, it is too
heavily influenced by variations in scanning directions and
occlusions. Again we utilize the known up-direction to find
a more reliable ordering. Parts for each object are sorted
lexicographically using the tuple (I(n), k) where I(n) is as
defined in Eq (2) and h is the average height of the points.
This leads to a more consistent ordering across all objects,
where horizontal parts precede vertical parts and they are
ordered from top to bottom by the height of their centroids.

We also exploit structure by computing additional joint
features, x;_1 4, between adjacent parts in the sequential
ordering which will be used to discriminatively learn the
HMM binary potentials. The features we use here include
the cosine of the angle between part normals (n] m,), the
absolute difference in average heights (|h; —h2|) the distance
between part centroids (||c; — cz[|), the closest distance
between points from each part, and the coplanarity [33] as
the mean, median, and max plane fit errors from the points
of one part to the estimated plane of the other and vice versa.

Part labels are determined by finding the part label that
maximizes the scoring function

s(pi) = g}g\fS(pi-l) + p(@i|pi) + p(@iz14|pi-1,p:). (3)

Where p(z|Y) = 27wy, the dot product of the observed

features x and the learned weight vector wy for labels Y.
Here = may either be the unary part features or the joint
features between parts, and Y may either be a single part
label or a pair of part labels respectively. This recursive
function is evaluated by the Viterbi algorithm over the
HMM.

The overall class label c is determined by

max » p(xilpi,c) + ) p(xi-1,ilpi-1,pisc). (4

Note that here Y is either a pair of part and class labels
or a triple containing two part labels and a class label.
This means for example that w,, is distinct from wy, ..
During training, the weight vectors for determining class
are updated only if the classification for the corresponding
part was correct, otherwise we may be penalizing the wrong
weight vector. The convergence of perceptron training relies
on updates only on incorrect examples.

IV. EXPERIMENTAL RESULTS

We tested our proposed pipeline using vehicles from the
Wright State Ottawa! data set. Our annotations of vehicle
parts and classes for this data set will be made available.
Each vehicle was manually segmented from registered scene
tiles. A total of 331 vehicle point clouds were collected,
however we restricted our experiments to the most common
vehicle categories of sedan and SUV. We partitioned the 222
sedan and SUV models into training and test sets as well
as a development set for tuning an online classifier. The
training set for classification consists of parts extracted from
81 sedans and 35 SUVs. The development set and test set
each contain 37 sedans and 16 SUVs. The vehicle models in
this data vary greatly in occlusions, observed surfaces, and
density. On average each vehicle consists of several thousand
points however there are some sparse vehicles with only a
hundred. The densest model in our data set contains 16k
points.

After the planar segments were extracted from each
vehicle, as described in Section III-B, they were manually
labeled into one of the following positional categories:
roof, roof-hood, roof-trunk, hood, trunk, hood-trunk-merged,
lateral-side, front-bumper, rear-side, interior, and misc. Ex-
amples of these labels can be found in Figures 2 and 6.
The roof-hood and roof-trunk labels correspond to under-
segmentation generally caused by inclines in the hoods or
trunks of vehicles or occlusions of these parts which limit
the number of points that can be fit. The hood-trunk-merged
label also corresponds to the more rare undersegmentation
of a vehicle’s hood and trunk. Although generally not
planar, interior segments are often extracted for particularly
occluded models. The rear-side label is used for both rear

Uhttp://wsti.wright.edu/applied-research-corporation/ottawa-data-files.
html



Table I
COUNT OF EACH PART LABEL IN EACH DATASET.

Label l Train l Development l Test l Total ‘
front-bumper 40 23 23 86
hood 26 7 9 42
interior 62 25 28 115
lateral-side 117 52 53 222
rear-side 39 16 18 73
roof 40 19 18 77
trunk 33 20 14 67
roof-hood 63 33 37 133
roof-trunk 12 5 5 22
hood-trunk-merged 1 3 0 4
misc 7 2 2 11

bumpers and vertical trunk doors. In rare cases noisy points
and remaining ground plane elements may also be extracted
and are given the misc label. The number of each extracted
part label for the data set can be found in Table I.

We tested a variety of classifiers in the scikit-learn [34]
package and found that we achieved the best performance
with the SVM and random forest classifiers. For the SVM
and random forest we used the codeword count feature vec-
tor augmented with /(n) and / described in Section III. Ideal
settings for classifiers were found using a grid search with
3-fold cross validation on the training set. For the SVM the
best results were using the LIBLINEAR [35] implementation
with an L1 norm in the penalization and penalty parameter
C = 1.0 and using the one-vs-rest multiclass approach. The
random forest classifier was trained with 1000 trees each
of which drawing up to the square root of the number of
features from the feature vectors.

The structured model that we presented in Section III-D
was trained discriminatively by an averaged structured per-
ceptron [32]. The bag-of-word features from Section III-C
are normalized by the Lo norm and features between parts
are generated as described in Section III-D. We trained the
model with 30 passes over the training set and validated
model weights against the development set after approx-
imately every 10% of each training pass. The structured
perceptron quickly achieved best performance on the de-
velopment set within 5 epochs.

Overall part classification results are presented in Table II.
Using simple joint features, the large-margin structured
perceptron is able to outperform both the max-margin SVM
and the random forest. This shows the advantage of using
additional structural information even when compared to
more powerful classification algorithms.

To evaluate the automatic segmentation a subset of the
data containing 90 sedans and all 67 SUVs was manually
segmented. We see in table II that while the SVM and
random forest perform similarly with both segmentations,
the structured perceptron is better able to utilize the manual

Table II
OVERALL PART CLASSIFICATION RESULTS. PART ACC CORRESPONDS
TO THE PERCENTAGE OF CORRECTLY CLASSIFIED PARTS. ALL ACC IS
THE PERCENTAGE OF VEHICLES FOR WHICH ALL PARTS ARE
CORRECTLY CLASSIFIED. MANUAL REFERS TO THE MANUALLY
SEGMENTED DATA SET.

Classifier Part Acc | All Acc
SVM 76.10 41.50
RF 82.44 54.72
SP 88.29 56.60
Manual SVM 82.18 40.00
Manual RF 86.14 50.00
Manual SP 93.56 65.00
Table IIT

CLASSIFICATION ACCURACY FOR SEDAN VS SUV. WITHOUT PARTS
THE SVM ACHIEVES GOOD ACCURACY AND THE UNSTRUCTURED
PERCEPTRON IS SIGNIFICANTLY LESS POWERFUL. USING PART
STRUCTURE THE PERCEPTRON CAN COMPETE WITH AND EXCEED THE
UNSTRUCTURED CLASSIFIERS

Classifier H Unstructured H Automatic H Manual
SVM 83.02 - -
RF 79.25 - -
Perceptron 62.26 77.36 87.5

segmentation to classify parts. Table III shows the results for
the sedan vs SUV object classification, using only the unary
features for SVM and random forest. While the automatic
labeling does not achieve the same performance as the
SVM we see that with perfect segmentation the structured
perceptron would be superior.

Results for each part class can be found in Table IV.
The averaged structured perceptron obtains the best results
across most part classes. We note that the uncommon hood
and roof-trunk classes are handled better by the structured
perceptron, using context queues to better disambiguate
those classes from the more common roof-hood class which
has similar position and overlapping undersegmented com-
ponents. There is an additional benefit here due to our
sequential part ordering which places horizontal surfaces
next to each other, allowing the perceptron to determine
whether a roof and hood co-occur or whether there is a
roof-hood undersegmentation.

V. CONCLUSION

In this paper we present a general algorithm for segment-
ing objects in unstructured 3D point clouds into semantic
parts and a model for structured prediction over those
parts. In particular our segmentation algorithm is robust
to the complexities of point clouds and avoids non-surface
segments as compared to naive RANSAC segmentation.

We evaluated our classification pipeline on a challenging
dataset consisting of similar vehicle objects. We achieved



Table IV
RESULTS PER PART LABEL. THE AVERAGE F-MEASURE IS WEIGHTED BY THE COUNT OF EACH PART LABEL IN THE TEST SET. MISC AND
HOOD-TRUNK-MERGED LABELS WHICH APPEAR INFREQUENTLY IN THE DATA SET ARE NEVER PREDICTED AND ARE NOT SHOWN.

Precision Recall F-Measure
Part Label SVM [ RF [ SP || SVWM [ RF | SP [[SVM | RF [ SP | Count
front-bumper || 0.87 [ 0.80 | 1.00 || 057 | 052 [ 0.87 || 0.68 | 063 [ 0.93 || 23
hood 0.00 | 1.00 | 0.86 || 0.00 | 0.33 | 0.67 || 0.00 | 0.50 | 0.75 9
interior 0.66 | 0.65 | 0.77 || 0.68 | 0.86 | 0.86 || 0.67 | 0.74 | 0.81 || 28
lateral-side 0.83 | 0.89 | 0.93 || 091 | 0.96 | 094 | 086 | 093 | 093 | 53
rear-side 0.94 | 084 | 0.94 || 0.89 | 0.89 | 0.89 || 0.91 | 0.86 | 0.91 18
roof 064 | 093 | 085 || 078 | 0.78 | 0.94 || 0.70 | 0.85 | 0.89 || 18
roof-hood 0.78 | 0.88 | 0.95 || 095 | 0.97 | 0.97 || 0.85 | 0.92 | 0.96 || 37
roof-trunk 0.00 | 0.00 | 0.40 || 0.00 | 0.00 | 0.40 || 0.00 | 0.00 | 0.40 5
trunk 058 | 072 | 077 || 079 | 0.93 | 0.71 || 0.67 | 0.81 | 0.74 || 14
Avg 072 | 082 [ 089 || 076 | 0.82 | 0.88 || 0.73 | 0.81 | 0.88 [[ 205

Figure 6. Automatic segmentation results with ground truth labels. Dark
blue points are unlabeled. Top: yellow roof-trunk, cyan side, red rear-side.
Bottom: light blue roof-hood, cyan side, red front-bumper, lime green trunk,
yellow interior.

high accuracy on most of the well represented parts in our
dataset. Our structured model exhibited an ability to pre-
dict under-represented classes and the structured perceptron
achieved competitive performance with classifiers that have
stronger theoretical properties. Future work in this direction
would further refine the quality of automatic segmentation
and the power of the structured prediction model. The
method can also be adapted to generate semantic object
models for understanding and planning interactions with
man-made objects, for example localizing and manipulating

the door on the side of a vehicle.

We believe that our proposed pipeline could be used as a
framework for joint part and object classification in point
clouds, particularly for discriminating structurally similar
classes of man-made objects.
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