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Abstract

We present an online method for filling holes in point
clouds by exploiting the regularity of urban areas. Sweep-
ing a plane across the scene we compute periodicity, ma-
jor planes, and occlusions. Extending rays from the laser
that have been occluded gives a planar approximation for
holes in facades. The periodicity of the architecture is used
to vastly improve this approximation yielding facades that
seem complete and natural. Both abstract and high res-
olution mesh data is constructed from the improved point
clouds. All this processing is performed online allowing for
seamless integration with scanner hardware.

1. Introduction
The urban landscape is replete with repetition. Windows,

balconies, bricks, and streets all repeat with remarkably reg-
ular periods in cities around the globe. Discovering this
regularity in 3D urban images enables an expanse of appli-
cations for scene understanding. Discovering it in real-time
offers even more possibilities. With precise knowledge of
scene regularity we may compress data or conversely gen-
erate synthetic data to fill holes. Overlapping regularities in
different views can be used for registration. Meshes can be
created from point clouds on-the-fly. Scans can be classified
into a number of helpful categories, distinguishing ground,
facade, moving, vegetation, and architectural feature points.

Occlusions are a major problem in processing Lidar data.
Even small objects located near the scanner can cast tremen-
dous shadows on the scene. These shadows interfere with
many algorithms by leaving large discontinuities in the in-
put data. A prototypical example is illustrated in Figure 1.

Occlusions are not the only cause of holes in laser scans.
Highly specular surfaces like car exteriors, and glass can
deflect the laser preventing the scanner from measuring the
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Figure 1. Objects near the scanner can cast tremendous shadows.
If some of the occluded facade is periodic it is possible to infer the
missing data using methods described in this paper.

time of flight. Additionally if the laser is pointed at the sky
or objects beyond its range no data can be gathered. Our al-
gorithm recognizes all of these types of holes and fills them
by leveraging the planarity and periodicity of the facades
in the scene. The synthetic data generated for the recon-
struction conforms to architectural patterns of windows and
balconies and the 2D structure of the point cloud acquired
by the scanner.

Point clouds of urban scenes can be dense, containing
millions of points. Processing these large data sets is com-
putationally expensive and generally beyond the capacities
of embedded processors included in laser scanning hard-
ware. For this reason data acquisition and processing are
commonly performed separately in sequence. We present a
novel algorithm that allows nearly simultaneous acquisition
and processing.

Our approach uncovers regularity in real-time by per-
forming Fourier analysis on each scanline. This informa-
tion is combined with the planarity in the scene allowing us
to fill holes, generate meshes, plan views and classify points
all in lock step with scene acquisition.

The laser scanner performs a plane sweep across the
scene recording data points along all the nearest intersec-
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tions of the plane with scene elements. Similarly our algo-
rithm sweeps a plane across the scene processing each set of
returned points for planarity and periodicity. By designing
an algorithm that follows the same paradigm as our sensor
we enable seamless integration with scanner hardware.

2. Related Work
In recent years, reconstructing images with missing data

has received much attention. For the input of a 2D image [1]
presents a method which treats the input image as a train-
ing set from which the missing data is inferred. Leverag-
ing databases of millions of images [4] completes scenes by
finding semantically similar pictures. Fusing both 2D and
3D images [6] computes a layer decomposition from a reg-
istration between the 2D and 3D data sets which allows for
outlier removal and geometry propagation. [14] introduces
a context sensitive surface completion. Their algorithm iter-
atively aligns surface patches along the edge of holes until
the surface is complete. A comprehensive survey of urban
reconstruction techniques is presented in [11].

Regularity detection in 3D data is a field of active re-
search. By learning global properties of orthogonality, ori-
entation, and shape [5] reconstructs engineered shapes from
noisy point clouds. In [8], the authors present a method for
extracting approximate symmetries by voting in transfor-
mation space. [9] presents a technique for symmetrization
based on a similar method as [8]. By detecting lattices in the
transformation space [13] extends the transformation voting
method to find smaller repeating symmetries akin to the ar-
chitectural features detected in this paper. [15] presents a
method that similarly exploits the regularity of urban envi-
ronments to reconstruct facades by using non-local filter-
ing. Another approach which uses urban regularity for re-
construction is found in [12]. The authors of that work use
user interaction to highlight repeating sections and automat-
ically reconstruct high floors where the laser data is sparse.
In contrast our approach requires no user interaction and
operates online. Shape grammars are another approach to
model facade regularity exploited in [10]. The use of har-
monics for symmetry detection can be traced to [7]. Using
spherical harmonic decompositions they develop a method
that recognizes precise symmetries in 3D mesh data.

Online algorithms for processing Lidar data are gaining
attention as 3D cameras increase in popularity. In [3] the
authors present an online method that uses Markov chains
and detection of abrupt changes to classify vegetation, hor-
izontal and vertical points. The authors of [2] introduce the
method of online detection of repeated features by using
Fourier analysis of column functions. We build upon those
results and extend the applications to hole-filling and mesh
creation.

Our contributions with respect to earlier work can be
summarized as follows:

(a) Exploiting the periodicity of urban architecture we fill
large holes in facades caused by occlusions, missing
data, and noise from building interiors.

(b) Holes are filled in a manner that maintains the 2D
structure of the point cloud facilitating downstream
processing.

(c) We generate high-resolution triangular meshes as well
as more abstract polygonal meshes of the scene.

(d) Processing occurs online, in a plane sweep, allowing
for seamless integration with scanner hardware.

3. Regularity Detection
Data retrieved from the laser scanner is organized into a

2D grid of 3D points. Each column is a vertical sampling of
the scene. Our algorithm performs a plane sweep across the
3D scene processing each column for its regularity while
aggregating and updating global features at each step. The
major planes in each scanline are identified thus separating
the ground points from the facade. We search for periodic-
ity in the facade to identify architectural features like win-
dows and balconies. Points that cast shadows such as signs,
cars and vegetation are classified and the obscured data is
synthesized using the regularity of the architecture.

3.1. Major Planes

Scanlines in an urban area typically pass over two pla-
nar surfaces: a ground plane and a facade plane. We detect
these macro features online by fitting small planes to the
neighborhood around each point as the scene is recorded.
The local plane is determined by using standard Principal
Components Analysis (PCA). Each of these local planes
will be a candidate major plane. We distinguish candidate
ground planes from candidate facade planes by taking the
dot product with the vertical axis. We store the eigenvalues
from the eigen decomposition of the covariance matrix, be-
cause their magnitude measures the goodness of fit of the lo-
cal plane to the local data (in the least squares sense). How-
ever, the local plane with the smallest eigenvalue may not
correspond to the major plane. Frequently, scans contain
planar areas like ceilings from interiors or box trucks which
are extremely planar but are neither ground nor facade. To
protect against these mis-detections we find the largest clus-
ter of agreement in the local planes and then select the plane
with the smallest eigenvalue within that cluster. The major
plane estimates are greedily updated as the scan proceeds
unless a shift or a corner is detected. Facade corners can be
detected by measuring an orthogonal relationship between
the current scanline and the major plane’s normal. Shifts
are detected when the vector between the current scanline
and a point on the major plane is not perpendicular to the
major plane’s normal.



Figure 2. An overview of our method. From left to right is the input data with a large occlusion caused by a street sign and vegetation, then
planar hole-filling is shown in green, periodicity segmentation by architectural features yields the colored grid, and per facade periodicity
gives the gray stripes. Finally in blue is a synthetic hole-filling which conforms to the regularity of the facade and the 2.5D structure of the
point cloud.

3.2. Periodicity Detection

We narrow our focus to the facade points to search for
repeated architectural features such as windows and bal-
conies. Operating online we construct a column function
for each scanline as it is retrieved, following the approach
described in [2]. The column function is derived by taking
a local measure at each point. Many measures will suffice
to expose the regularity in the scanline. Angles between the
vectors connecting consecutive data points is a quick but
noisy metric. We primarily use the eigenvalues from the lo-
cal PCA, which were computed in 3.1. The component in
the direction of the facade plane’s normal also reveals the
regularity in the column. Figure 3 displays three distinct
column functions taken over the same periodic column.

To find the period in the column we take the Discrete
Fourier Transform (DFT) of the column function. The
frequency domain of a periodic column will register two
secondary peaks corresponding to the prevalent frequency
in the column. Plotting this frequency in the spatial do-
main shows the repetition of the regular features. Our Fast
Fourier Transform implementation requires the size of the
input function to be a power of 2. To accommodate this, for
a column function with s values we zero pad by finding the
k such that 2k−1 < s < 2k. If the index difference between
the zeroth frequency and the dominant frequency is di, and
the vertical height of the entire column is h, then the period
is given by:

period =

(
h

di

(
s
2k

)) =
(

2kh

dis

)
(1)

Typically the dominant period of a facade corresponds
to the height of each floor. While the DFT gives us the

frequency of the period we still must compute the phase.
We fit square waves to the column function. The phase is
shifted to align with middle of the high values of the square
wave. This corresponds with the center of the architectural
features.

Processing the scan column by column is a natural and
efficient way to look at laser scans but at the end of the day
we are interested in the image itself not just its constituent
columns. To give a higher level interpretation of the scene
we aggregate adjacent columns with similar frequencies to-
gether. We can sum their frequency spaces by centering
about the zeroth frequency. This gives a more robust mea-
sure of the period of the feature. We may also use this ag-
gregate to find a more robust choice of feature middle by
selecting the median middle from all the grouped columns.

4. Applications

In this section, we present several applications of on-
line periodicity detection and plane estimation. Each ap-
proach adheres to the online nature of the regularity detec-
tion. Holes caused by occlusions, interiors and missing data
are filled. Both triangular and abstract polygonal meshes
are constructed from the point clouds. Lastly we introduce
methods for sensor planning and point classification.

4.1. Hole Filling

Armed with the current estimates of the major planes we
are ready to approximate the missing and occluded data. If
the distance between a point and the scanner is less than
the distance between the scanner and the plane we label the
point as casting a shadow. To approximate the data inside
the hole we extend the ray from the scanner until it inter-



Figure 3. (a) column function derived from orthogonal projection
to the major plane, (b) column function of eigenvalues from lo-
cal PCA, (c) column function from consecutive angle, (d) Discrete
Fourier Transform (DFT) of a periodic column function, (e) the
eigenvalue column corresponding to the column with red dots in
the scan at right, (f) square wave fit to the column to detect the
phase of the dominant frequency so that we can center the seg-
mentation around the windows.

sects with one of the major planes. This is a reasonable
approximation because the laser travels in a straight line.
The point pi of intersection is given by scaling the ray to
the obstructing object pocclusion by d:

d =
(p0 − l0) · n
pocclusion · n

(2)

where p0 is a point on the plane, n is the normal to
the plane, and l0 is a point on the ray from the laser to
pocclusion. The origin of the coordinate system is the lo-
cation of the scanner. Therefore all rays from the scanner
pass through the origin, and l0 can be set to the zero vector.
The planar approximation is:

pi = (d)(pocclusion) (3)

This planar approximation of the missing data may be
satisfactory for some applications. It maintains the 2.5D
structure of the scan since each shadow point can be re-
placed with its ray’s intersection with the major plane. This
structure simplifies many algorithms so maintaining it is

beneficial for downstream processing. However we are re-
placing what may be an ornate piece of architecture with a
blank flat wall.

To do better justice to the occluded data we may consider
the periodicity of the column in question. Using the period
extracted in Equation 1 we may fill this hole by extending
a periodic feature into the shadow. To find the appropriate
filling, the facade is segmented by its period. This sepa-
rates the different floors in the building, as can be seen in
the alternating colors in Figure 4. Of the segments with-
out any occlusions we select the highest density floor as
the representative. For each point in the planar filling of
the facade we associate the closest point of the representa-
tive floor translated vertically to align with the floor of the
planar point. This method ensures that this periodic filling
maintains the 2.5D structure of the scan. Facades filled in
this manner can be seen in Figures 4, 5, 6 and 7. The floor
on which a point pi lives is given by:

floor =
(pi · v

v · v

)
mod period (4)

where v is the vertical vector. For each planar point pi

we must associate a periodic point pperiodic extracted from
the representative region, R. If fr is the floor of the repre-
sentative region and fi is the floor of the planar point the
associated periodic point is given by:

pperiodic = min
pk∈R

||pi− (pk− (fr− fi)(period)v)|| (5)

This definition suggests an exhaustive search of the en-
tire representative region. However since the column of pi

is known we can safely limit our search to this column and
a few of the neighboring columns for efficient computation.

Once the holes caused by occlusions have been filled we
turn our attention to facade holes caused by missing data.
This missing data is likely the result of specular or translu-
cent surfaces like windows. On those surfaces we may be
unable to obtain a measurement or we may record a point
from the interior. Either way these points are inconsistent
and disrupt the continuity of the facade. We reconstruct the
continuous facade so that the synthesized data conforms to
the periodicity of the building and the structured 2D array
of the point cloud. Specifically, for each scanline the in-
crement angle θ between readings and the axis of rotation
a are determined. θ is found by taking a sample of points
in the scanline computing the angle between them and di-
viding this angle by the absolute value of index difference
between the points. For example if we have points pi and
pj at indices i and j respectively then:

θ =
cos−1

(
pi·pj

||pi||||pj||

)
|i− j|

(6)



Figure 4. A scan with almost the entire bottom occluded can still
be reconstructed. Left to right is the input, the planar filling, seg-
mentation by the dominant period, and finally the periodic filling
is shown in blue and the points in orange fill discontinuities that
were not caused by occlusion, such as missing data and interior
points.

Figure 5. A corner with street lamp and vegetation. At left is the
planar filling and at right in blue is the period aware synthesis of
the occlusions.

Averaging over a small sample of point pairs from the
scanline is sufficient to get a robust estimation of the verti-
cal angle the scanner rotates between subsequent readings.
Similarly the normalized axis of rotation for a scanline is
given by:

a =
pi × pj

||pi × pj||
(7)

For numerical stability it is wise to choose i and j that are
not close neighbors in the scanline. Now if an interior point
or missing data is detected in a scanline we may construct
an appropriate replacement that will maintain the continuity
of the facade. If our last reliable reading was at point pk and
point pl is determined to be a discontinuity we can replace
pl by rotating pk by (k− l)θ about the axis a to obtain pc.

pc = Ra((k − l)θ)pk (8)

Finally this vector is intersected with the facade plane us-
ing Equations 2 and 3 with pc replacing pocclusion. Points
obtained this way are colored orange in Figures 4 and 6.

4.2. Online Mesh Creation

Some algorithms require a mesh as input, and cannot di-
rectly process point clouds. Using the regularity extracted

Figure 6. A facade with an occlusion that cuts across its the entire
width reconstructed using our algorithm. The green points are the
planar intersections of the laser rays with the facade plane, and
the blue points are synthesized from the representative floor. The
orange points fill holes that were not caused by cast shadows, as
described in 4.1.

in Section 3 we can create a hole-free polygonal mesh in
realtime with minimal processing requirements. Two such
meshes are displayed in Figure 9. The major planes are
perforated with intrusions or extrusions occurring at the
frequency detected by the Fourier analysis. Each feature
is classified as an intrusion or an extrusion depending on
where the majority of its points lie in relation to the facade
plane. The amount of extrusion or intrusion is determined
as the mean perpendicular projection to the facade plane of
the intruding or extruding points. We may enforce global
properties of orthogonality, adjacency and parallelism be-
tween facades in the scene when appropriate as described
in [5].

A triangular mesh can be generated online from a struc-
tured point cloud, see Figure 10. Since the data is orga-



Figure 7. At left is a facade reconstruction with the synthesized
points colored blue. At right the same points are colored as the
rest of the facade according to the dominant period. Notice how
it is not easy to distinguish between the points that were inferred
and the starting data.

Figure 8. Two views of the same building before and after our hole
filling is applied. Notice the seamless integration of the synthetic
points and the input data.

nized into a 2D array we can construct triangles by connect-
ing each 3D point to their nearest neighbors in the 2D ar-
ray. Normally this naı̈ve approach will generate deplorable
meshes because the connectivity in the array only roughly
corresponds to proximity in 3D space. However since we
have removed all occlusions and discontinuities in 4.1 this
simple algorithm can be employed to generate acceptable
triangular meshes in a single pass over the data, as shown in
Figure 10.

4.3. Sensor Planning

The 3D data retrieved by laser scanners is far more infor-
mative than conventional 2D images. However, like 2D im-
ages a single range scan provides only one viewpoint onto
the scene and important information may be missing. For
this reason many scans are often taken of the same scene
and registered together. We define a “mystery plane” as the
planar polygon connecting two detected facades. We com-
pute the normals and area of all the “mystery planes” in the
scene. The normal is calculated by taking the cross product

Figure 9. Two point clouds and the polygonal meshes extracted
using our algorithm.

Figure 10. After filling holes from occlusions and from interiors
and missing data we can generate a triangular mesh online. Blue
triangles contain points that were synthesized from the periodicity
of the building. Orange triangles contain points that were miss-
ing or from an interior that were intersected with the facade, as
described in 4.1.

of two spanning vectors. The spanning vectors are the vec-
tors between the two known planes between which we have
detected a jump. Now we extend this normal by the average
length of all the vectors in current scene minus their projec-
tions in the vertical direction. This extension of the normal
indicates a sensible place for locating the scanner as it will
have an excellent view of the missing data (see Figure 11).
If we have many “mystery” planes we may sort by their area
and return an ordered list of subsequent scanner locations.

4.4. Evaluation

Evaluating a reconstruction of the type presented here
is not straightforward. The algorithm synthesizes data we
were unable to acquire. We must therefore evaluate our ac-
curacy in hitting an unknown target. To begin we visually
evaluate our periodicity and phase detection by overlaying



Figure 11. Here the “mystery planes” are colored in gray. The
red vectors protruding orthogonally indicate wise placements for
subsequent scans.

the polygonal windows on input data. Figure 12 shows the
windows in green superimposed upon the scan.

To further illustrate the accuracy of our method we cre-
ate artificial occlusions, fill them, and then compare our re-
constructions with the real data. Several of those results are
displayed in Figure 13. To ensure the boundaries of the syn-
thetic holes do not effect the results we create holes using
Euclidean, Manhattan, and Chebyshev distance metrics. We
then measure the Hausdorff distance from the hole-filling to
the real data. The distance averaged about a quarter of a me-
ter and was never greater than a half of a meter.

For a structured point cloud of n rows and m columns
our algorithm runs in O(mn log2 n) time. For each column
we sort and perform the fast Fourier transform both with
run time O(n log2 n). The computational cost of running
our algorithm on several large-scale scans is presented in
Table 4.4. The per point processing time varies from 3 to
16 microseconds. This is several orders of magnitude faster
than the rate at which the scanner acquires a single point.
Additionally, our code is implemented in Java and not fully
optimized.

5. Conclusion

We have presented an online algorithm which exploits
the regularity of the urban scene to fill holes in point clouds
and generate abstract meshes. Our algorithm works online
allowing for near simultaneous processing and acquisition
of 3D scenes. We foresee a slew of algorithms of this ilk,
creating intelligent 3D cameras which generate excellent
data out of the box.

5.1. Limitations

Our algorithm requires at the very least planarity of the
obstructed data and hopefully periodicity as well. While

Scan Points Run Time Time Per
(in milliseconds) Point

Scan 8 764154 4859 .0064
Scan 2 546964 6929 .0127
Scan 11 773376 8390 .0012
Scan 14 1256904 9415 .0075
Scan 9 1006740 11419 .0113
Scan 6 1219106 12705 .0104
Scan 3 1303359 13951 .0030
Scan 1 805176 13316 .0165
Scan 4 1326117 14943 .0112

Table 1. This table shows the algorithm’s running time on range
scans of various sizes. Run time is not completely proportional to
scan size. This is because the individual column size and the ratio
of periodic columns also factor into the algorithm’s performance.

Figure 13. We generate synthetic shadows and fill them. We mea-
sure the Hausdorff distance from the filling to the real data to es-
timate the accuracy of our approach. In the top image the error
distance was 0.28 meters. From left to right on the second row the
error distances were: 0.32, 0.47, 0.07, and 0.44 meters.

most urban facades fit this description many do not. Our
method does not require globally rectilinear facades that



Figure 12. Superimposing the extracted mesh on the point cloud we can verify the accuracy of our results.

Figure 14. Here the first two floors of the building have a different
dominant frequency from the rest of the facade. Our algorithm
incorrectly propagates the features from the upper floors into the
occlusion caused by the tree.

conform to a regular lattice, because we can update our pe-
riod estimates on-the-fly when new dominant frequencies
are detected. However if the period changes in the middle of
the scanline, as in Figure 14, our algorithm may propagate
one period into an area with a different dominant frequency.

In scans of low resolution the periodicity of the signal
is often obscured by noise and we must settle for planar
approximations. If resolution is extremely low the local
planes become unreliable and even a planar approximation
becomes error-prone.

5.2. Future Work

Our early forays into classifying the shadow points merit
further research. Other semantic groupings of these points
are reasonable such as vehicles, signs, vegetation, and hu-
mans, to name a few. Classifying the points online would be
highly advantageous for autonomous scanners to navigate
safely. Many of these subsets exhibit their own regularity
such as the branching of trees or the Bezier curves of cars.
We leave the detection and classification of such structures
to future work.
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