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Abstract
In this paper we present a prototype system for image based
localization in urban environments. Given a database of
views of city street scenes tagged by GPS locations, the sys-
tem computes the GPS location of a novel query view. We
first use a wide-baseline matching technique based on SIFT
features to select the closest views in the database. Often
due to a large change of viewpoint and presence of repetitive
structures, a large percentage of matches (> 50%) are not
correct correspondences. The subsequent motion estima-
tion between the query view and the reference view, is then
handled by a novel and efficient robust estimation technique
capable of dealing with large percentage of outliers. This
stage is also accompanied by a model selection step among
the fundamental matrix and the homography. Once the mo-
tion between the closest reference views is estimated, the
location of the query view is then obtained by triangulation
of translation directions. Approximate solutions for cases
when triangulation cannot be obtained reliably are also de-
scribed. The presented system is tested on the dataset used
in ICCV 2005 Computer Vision Contest and is shown to
have higher accuracy than previous reported results.

1 Introduction
The image based localization problem as considered in this
application is comprised of three phases: location recogni-
tion, camera motion estimation between the query view and
the closest reference views and final position triangulation.
Thanks to recent advances in the areas of object recogni-
tion, wide baseline matching and structure and motion re-
covery, a variety of the techniques are currently available to
tackle the individual subproblems. In order to integrate the
individual components to the system and make it work in
realistic setting, several challenges needs to addressed. One
most notable challenge is related to the issue of obtaining
reliable matches and subsequent correspondences between
the query view and the reference views. Although in object
recognition the true correspondences are often not essential

they have been shown to improve recognition [1]. For local-
ization the accurate correspondences are necessary for com-
putation of the camera pose. In order to obtain reliable cor-
respondences, we describe a modified wide-baseline match-
ing scheme, which yields larger number of matches. The
initial matching is then followed by a novel and efficient ro-
bust motion estimation technique capable with dealing with
large number of outliers [2]. Integration of these two stages
is crucial for obtaining accurate and repeatable results in
difficult urban environments.

Overview The database of location views tagged with
GPS data is initially acquired during the exploration of the
environment. For the purpose of location recognition and
wide-baseline matching we choose to represent each view
by a set of SIFT keypoints. Given a new query view, the
location recognition phase, described in Section 3, is ac-
complished by a voting scheme. Section 4 describes briefly
a novel robust estimation technique used to identify correct
matches and estimate motions between the query view and
reference views. Two reference views are then selected for
final GPS location triangulation. Depending on the quality
of the matches, pose estimates and the amount of overlap
between the reference views, the final GPS location of the
query view is computed alternatively by interpolation be-
tween the two reference views. Individual steps of the ap-
proach are described in the following sections.

2 Related work

In the context of similar applications, the problem of lo-
cation and building recognition has been addressed by sev-
eral authors in the past, mostly considering outdoors scenes.
In [3] authors used vertical vanishing direction for align-
ment of a building view in the query image to the canoni-
cal view in the database and proposed matching using point
features followed by the relative pose recovery between the
views. The alinement step relied on the presence of domi-
nant plane and hence was applicable to scenarios with domi-
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nant building facades. The actual triangulation using known
GPS locations was not carried out. Authors in [4] focused
mostly on the recognition aspects using local affine invari-
ant regions and a set of color moment invariants to represent
them. Recognition was based on the number of matched re-
gions. In [5] the recognition was achieved by matching line
segments and their associated descriptors. False matches
were rejected by imposing epipolar geometry constraint.
The relative pose was recovered using planar motion as-
sumption between the views. Wide-baseline matching tech-
niques were used for ordering of a set of widely separated
views in [6]. The focus of this approach was on deciding
how to ’stich’ the unordered set of views assuming that they
came from approximately same location. The approach was
demonstrated on two different data with substantial overlap
between the views. The GPS coordinates were not avail-
able, hence the location triangulation stage was not consid-
ered. In [7] the authors proposed to detect buildings us-
ing SIFT descriptors combined with the discriminative fea-
ture selection mechanism which reduced the overall com-
plexity of the representation. Alternatively when dealing
with large databases, it is desirable to use a global descrip-
tor, to preselect small a number of candidates before carry-
ing out recognition based on local features. For this stage
color histograms were used, because of their simplicity and
robustness to changes in object’s scale, orientation and to
some extent viewpoint. In [8] the authors described an ap-
proach to recognizing location from mobile devices using
image-based Web search utilizing a hybrid color histogram
and keyword search technique. However global color his-
tograms are not very discriminative since images with simi-
lar color distributions but different content are often present.

3 Location recognition
The goal of the location recognition stage is to find the clos-
est views from the model database to the given query view.
We address this stage by means of wide-baseline match-
ing techniques using local scale invariant features and their
associated descriptors, followed by a voting stage. There
are several representatives of local image features [9, 10,
11, 12] which have been shown to be robust with respect to
changes in scale and/or affine transformations. In our work
we use the SIFT features proposed by D. Lowe [9], which
achieved best performance in the matching context based
on comparison tests reported by Mikolajczyk and Schmid
[13].

3.1 Matching SIFT keypoints
The SIFT keypoints correspond to highly distinguishable
image locations which can be detected efficiently and have
been shown to be stable across wide variations of viewpoint
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Figure 1: Examples of SIFT features. The size of the circle
is proportional to scale of the feature.

and scale. Keypoints are detected by searching for peaks in
the image D(x, y, σ) which is obtained by taking a differ-
ence of two neighboring images in the scale space. Each
detected keypoint has an associated descriptor, which char-
acterizes the gradient distribution of the local image area
around it. Candidate locations are obtained by searching
for local extrema in pyramid D(x, y, σ) obtained by taking
a difference of two neighboring images in the scale space.
Each region is endowed with a 128 dimensional descrip-
tor f , which captures the gradient orientation information
of the region, is rotationally invariant and has been shown
to be robust with respect to large variations in viewpoint
and scale. Figure 1 shows examples of detected SIFT key-
points. For each model image, the keypoints are extracted
off line and saved in the database. After extracting key-
points from a query image, its descriptors are matched to
those of the database views.

In the original matching scheme described in [9] a pair
of keypoints is considered a match if the distance ratio be-
tween the closest match and second closest one is below
some threshold τr:

d2(f, f1st)
d2(f, f2nd)

< τ2
r , (1)

where f ∈ <n is the descriptor to be matched and f1st and
f2nd are the nearest and the second nearest descriptors from
the model database, with d(., .) denoting the Euclidean dis-
tance between two descriptors. The threshold τr = 0.8 sug-
gested in [9] was found effective for general object recog-
nition. This ratio threshold is effective because correct dis-
criminative keypoints often have the closest neighbor sig-
nificantly closer than the closest incorrect match. In the
context of buildings and street scenes, which contain many
repetitive structures (e.g. windows), the above criterion will
reject many possible matches, since often multiple nearest
neighbors may have very close distances in the space of de-
scriptors. Hence we chose to add another criterion, which
considers two keypoints as matched, when the cosine of
the angle between their descriptors f and g is above some
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threshold τc:

cos(f, g) =
fT g

‖f‖2‖g‖2 > τc. (2)

τc is set to be 0.97 in our experiments. The threshold is
rather high to assure the outlier ratio would not increase,
while more inliers are found. The fact that more correspon-
dences are available makes the recognition more stable and
motion estimation more accurate. This empirical value was
based on the study of ROC curve associated with the thresh-
old. The ROC curve was obtained using another database,
but the threshold is general enough to ensure good perfor-
mance on the ICCV database. In case multiple features pass
τc (this happens because of repetitive structures), only the
one with the highest cosine value is kept.

3.2 Coarse location recognition by voting
The closest reference views in the database are chosen by a
simple voting scheme. The reference views with the largest
number of matches with the query view will be selected.
The locations of those reference views are likely to be close
to the locations of the query view. In our experiments, top
5 views are retained. The best candidates among them will
be further refined in the robust estimation stage.

4 Motion Estimation
Given the top 5 closest views the goal of this stage is to
compute camera motion between the query view and the
reference views, assuming that there is sufficient amount of
overlap between the views. The camera motion between
the query view and the matched reference view is repre-
sented as g = (R, T ), where R ∈ SO(3) is the rotation and
T = [tx, ty, tz]T ∈ <3 is the translation. The correspond-
ing points obey the epipolar constraint and are related by so
called essential matrix;

xT
2 Ex1 = 0, (3)

where x2 and x1 are image coordinates of correspondences
and E = T̂R. Given the correspondences obtained in the
feature matching stage, the essential matrix can be esti-
mated using a standard eight point algorithm. Once E is
estimated, it can be decomposed to 4 motions. One unique
solution up to a scale can be obtained using positive depth
constraint. The essential matrix model is suitable, when
corresponding points are in general position. In case the
correspondences come from a plane, the 8-point algorithm
becomes degenerate and planar model needs to be used. In
planar case the corresponding points are related by a ho-
mography model:

xT
2 ∝ (R +

1
d
TNT )x1 ∝ Hx1 (4)

where N is the plane normal and d is the distance of the
plane from the origin. Given at least 4 correspondences,
H can be estimated using 4-point linear algorithm. Given
H there are two physically possible solutions for decom-
position into R, T and N, d. The correct solution can be
identified by either having some prior knowledge about the
scene’s plane normal or by using additional view (and its
associated homography) and choosing the solutions where
the two plane normals are consistent. The decomposition
of the essential matrix and planar homography is a standard
textbook material. We will refer the reader to Chapter 5 of
[14] for the decomposition formulas.

Camera Calibration The above models assume that the
intrinsic camera parameters are known. In the context of
our application the camera is calibrated from a single view,
using vanishing points information. Vanishing points can
often be found reliably in man-made environments. In case
three vanishing directions can be recovered, assuming zero
skew and aspect ratio is 1, both the focal length and center
of projection can be recovered [15] . In case one of the van-
ishing points lies at infinity, we assume that the center of
the projection is known (and is in the center of the image)
and estimate the focal length only. Alternatively, camera
intrinsic parameters can be obtained from inter-image ho-
mographies relating different views of spherical panorama.
In case camera is not calibrated the corresponding points
are related to each other by so-called fundamental matrix
F , with F = K−T EK−1, where K is the matrix of cam-
era intrinsic parameters.

4.1 Robust Estimation
The matches used in the location recognition stage typi-
cally contain many mismatches. Although they are suffi-
cient for selecting the likely reference views, the ranking of
the views and the search for the true correspondences must
be refined by imposing global geometric constraints. The
RANSAC [16] algorithm is commonly used technique for
robust estimation of the model parameters. The standard
RANSAC algorithm first randomly selects M samples, for
each sample estimates parameters of the model hypothesis
and finds the support (typically, the number of inliers) for
this hypothesis. In the second stage the hypothesis with the
largest support is chosen as model and all its inliers are used
to refine the model parameters. The number of samples M
required to obtain a confidence ρ that at least one sample is
outlier free can be computed as:

M =
⌈

ln(1− ρ)
ln(1− (1− ε)p)

⌉
(5)

where p is the number of points per sample and ε is the
fraction of outliers. Table 1 shows, that when the inlier ra-
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Inlier ratio 60% 50% 40% 30% 20%
F 106 382 1827 13696 234041
H 22 47 116 369 1871

Table 1: The theoretical number of samples M required for
RANSAC to ensure 95% confidence that one outlier free
sample is obtained for estimation of F (seven-point sam-
ple) and H (four-point sample). The actual required number
might be magnitude more.

tio is low a large number of samples is needed for estima-
tion of fundamental (essential) matrix. In addition to the
large number of samples, the standard RANSAC requires
knowledge of the residual threshold for inliers and the ratio
of inliers. Due to the viewpoint change and a large amount
of repetitive structures, usually a large percentage (> 50%)
of matches is not correct. Here we describe a novel algo-
rithm to deal with this problem. Similarly as in the standard
RANSAC scheme we first use sampling to generate a set
of hypotheses (i.e. fundamental matrices). This is achieved
by sampling the set of correspondences by selecting 8-point
samples and estimating F using the standard 8-point algo-
rithm with normalization. At this stage our method dramat-
ically departs from the previously proposed approaches. In-
stead of evaluating each hypothesis, we propose to evaluate
residuals of each correspondence and classify the points as
inliers/outliers directly.

For each data point (e.g. correspondence) we study the
distribution of the errors with respect to all hypotheses.
For each hypothesis Fj instead of considering residual er-
ror r2 = (xiT

2 Fjxi
1)

2 we use the so called Sampson error.
Sampson distance is a first order approximation of the re-
projection error. Given a fundamental matrix F , the Samp-
son error for ith correspondence is defined as:

Es =
(xiT

2 Fxi
1)

2

(Fxi
1)

2
1 + (Fxi

1)
2
2 + (FT xi

2)
2
1 + (FT xi

2)
2
2

(6)

where xi
1 and xi

2 are the image coordinates of correspond-
ing points and (Fx)2k represents the square of the k-th entry
of the vector Fx.

As Figure 2 illustrates, residual distributions of the in-
liers typically have strong peaks close to 0, while residu-
als of the outliers are more spread out. Although the out-
liers also have a high value for the first bin, because some
hypotheses are generated using samples which contain the
outliers, it is considerably lower than the inlier case. These
qualitatively different properties of residual distributions for
inliers and outliers can be captured by lower order statistics
computed from the distributions. We used skewness and
kurtosis, which yield qualitatively different values for in-
liers and outliers. Skewness γ measures the asymmetry of
the data around the sample mean µ and kurtosis β is the
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Figure 2: Error distribution for a true inlier (left) and a true
outlier (right), when data contains 50% outliers.

degree of peakedness of a distribution. They are defined as:

γ =
E(x− µ)3

σ3
and β =

E(x− µ)4

σ4
(7)

Skewness of the normal distribution (or any perfectly sym-
metric distribution) is zero. If the value of skewness is pos-
itive, the data are spread out more to the right of the mean
than to the left. Given these features the problem of inlier
identification is then formulated as a classification prob-
lem. Note that the computation of histogram analysis is
trivial in comparison with the computations in the sampling
stage. The approach outlined above can successfully clas-
sify outliers and inliers with only a fraction of the computa-
tional cost of the standard RANSAC. This is due to the fact
that our approach does rely on the existence of an outlier
free sample, since it does not use the hypothesis evaluation
stage. It is the entire ensemble of hypotheses which deter-
mines, whether the point is an inlier or an outlier. More
details about the approach can be found in [2]. The com-
putational requirement of the standard RANSAC algorithm
to estimate H is relatively low (see Table 1), thus we used
it for homography estimation while retaining the efficiency
of the entire system.

4.2 Motion model selection
In the context of this application, the general motion model
captured by fundamental matrix F is often not appropriate
and the homography model is favored for the following rea-
sons:

1. Buildings are dominant in city scenes. It is likely that
corresponding points are located in planar building fa-
cades. Even the case when correspondences are in gen-
eral position, usually a large number of points come
from the same plane.

2. Inliers decision of the fundamental matrix is based on
residuals measured by the Sampson distance. Thus
the error along the epipolar line is not accounted for.
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Figure 3: The matching points connected by dashed red line
are not correct correspondences, yet they are chosen as in-
liers because their errors are along the epipolar lines.

This makes the process of inlier identification for fun-
damental matrix more difficult. It is often the case
that features are matched to wrong locations, but their
Sampson errors are small and hence they are consid-
ered as inliers, as shown in Figure 3. This is more
likely to happen when there are many repetitive struc-
tures in the scene.

In the presented system we always attempt to fit the
homography to the correspondences set first. In case ho-
mography model is selected, in addition to the gross out-
liers (the incorrect correspondences), those correct corre-
spondences which does not comply with the homography
constitute the pseudo outliers. Even though the inlier ra-
tio would be less than the actual percentage of correct cor-
respondences, a correct homography can still be obtained
as long as enough points come from one plane. As shown
in Table 1, even with only 20% inliers, theoretically 1871
samples are enough obtain the correct estimate. Of course,
more samples are needed in practice. We use 5000 samples
to ensure that correct homography can be obtained. As Fig-
ure 4 demonstrates, even though building facade only takes
a small portion of the image, correct correspondences can
still be obtained based on the homography model.

For the scenes where there are no major planes as shown
in Figure 5, a homography model does not have sufficient
support. In those cases, a fundamental matrix model is cho-
sen. The system determines whether the fundamental ma-
trix is needed by checking the homography fitting result. If
the number of inliers of the estimated homography is lower
than some threshold τN , a fundamental matrix will be fitted
instead; τN is set to be 0.2N , where N is the number of
putative matches.

(a) (b) (c)

Figure 4: (a) original image pair. (b) correspondences found
by matching of SIFT features. (c) correct correspondences,
which lie in one plane, are identified using homography
model.

(a)

PIC
7
729small

(b)

Figure 5: Fundamental matrix based inlier identification.

5 Final localization
Based on the motion estimation results, we re-rank the top
5 reference views based on the number of correctly identi-
fied matches. Top 3 views are selected, then two best ref-
erence views are chosen for the final localization. Notice
they are not simply the top 2 views. In this case, not only
the two reference views need to be close neighbors of the
query view (so that motion between query view and them
can be reliably estimated), but also the motion between the
two reference views needs to be reliably estimated. It may
happen that viewpoint change between the top 2 views is
quite large and correspondences can not be set up reliably.
To address the problem, we select from 2nd and 3rd views
the closest view to the 1st nearest neighbor. This selected
view, together with the 1st nearest neighbor, constitute the
two reference views.

If all three camera motions can be recovered, the loca-
tion of the query view can be obtained by triangulation. Let
(R1q, T1q) be the motion between the first reference view
and the query view, (R2q, T2q) be the motion between the
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second reference view and the query view and (R12, T12)
be the motion between the first and the second reference
view. Note T12 and T1q are with respect to the coordinate
system of the first view, while T2q is not. For the triangu-
lation to proceed, they need to be represented in same co-
ordinate system as the other two translations. Hence we set
T ′2q = R−1

12 T2q . The translation vectors are then projected
to the plane, disregarding their vertical component, since we
only need plane coordinates. Now the three translation vec-
tors, all in the coordinate system of the first reference view,
determine the shape of a triangle with three vertexes being
the three positions (query, first and second reference). Since
the positions of the first and second reference are known,
the size of the triangle is also fixed. Thus the location of the
query view can be determined.

In some cases, even though two reference views can be
found, the motion between them can’t be reliably estimated
because they are widely separated and have a small over-
lap. Our solution to this situation is to interpolate the posi-
tions of the two reference views. Assuming that closer view
would have more correspondences with the query view, the
query position is computed as:

Nref1Pref1 + Nref2Pref2

Nref1 + Nref2
,

where Nref represents the number of correspondences and
Pref represents the location of reference view. The sys-
tem would choose this solution when the number of iden-
tified inliers is less than some threshold (16 in our experi-
ments). Note that there are cases when only one reference
view can be found. The reason is that some reference views
are widely separated (having little overlap) and the query
view happened to be close to one of them, or the query
view is ”extrapolated” (outside the location range of ref-
erence views). In the system, if the number of identified
inliers for the second reference view is too limited (8 in our
experiments), only one reference view will be used and its
position is assigned to the query view.

6 Experiment
Our experiments were based on the dataset provided by
2005 ICCV Vision Contest, taken by Richard Szeliski
(http://research.microsoft.com/iccv2005/Contest/). The im-
ages in the datasets are not ordered, making the multi-view
relationships difficult to obtain. The GPS position of a sub-
set of images are provided and the locations of the unla-
beled images need to be estimated. The ground truth po-
sition of those unlabeled images are also provided. Prior
to feature extraction, we sub-sampled the images and alle-
viated the radial distortion using a fixed coefficient for all
images. The GPS positions are in the spherical coordinates

(latitude/longitde) of the Earth, not the Euclidean coordi-
nates (meter) which is needed here. The conversion to me-
ters is given by:

dlong = R cos((Lat0 + Lat1)/2) sin(Long1 − Long0)
dlat = R sin(Lat1 − Lat0)

d =
√

(dlong)2 + (dlat)2 (8)

where R = 6.3713× 106. When the Euclidean coordinates
are obtained, they can be converted into spherical coordi-
nate by inverting Equation 8.

Figure 6 and Figure 7 demonstrate two examples where
the triangulation of motion vectors is used to calculate po-
sition. In comparison with ground truth, the localization
error is within 4 meters for Figure 6 and within 2 meters
for Figure 7. Figure 8 shows an example when interpola-
tion was used for localization. The localization error is 8
meters. Figure 9 shows an example where only one ref-
erence view can be identified. In this case, the location
of the reference view is assigned to the query view. Ta-
ble 2 summarizes the experimental results for the dataset
which was used to evaluate contest results. Based on the
scoring criteria of the contest, the average score of the re-
sults is 3.68. This result is better than our submission for
the contest and other reported results, which can be found
in (http://research.microsoft.com/iccv2005/Contest/Results
/Results5Final.htm). The total execution time of computing
locations of all the test views is 24 minutes, which is shorter
than most reported execution times. This is mostly due to
the efficiency of the robust motion estimation stage.

Figure 6: An example where localization is based on the
triangulation and all three motions can be estimated using
the homography model. Left: Identified correspondences
between the query view (top) and the first reference view
(bottom). Center: Identified correspondences between the
query view (top) and the second reference view (bottom).
Right: Identified correspondences between the second view
(top) and the first reference view (bottom).

7 Conclusions
In this paper we present a prototype system for image based
localization in urban environments. The system is com-
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Figure 7: Another example where localization is based on
the triangulation and all three motions can be estimated
based on fundamental matrix. Left: Identified correspon-
dences between the query view (top) and the first reference
view (bottom). Center: Identified correspondences between
the query view (top) and the second reference view (bot-
tom). Right: Identified correspondences between the sec-
ond view (top) and the first reference view (bottom).

Figure 8: Two reference views can be found, yet they have
no overlap. Therefore the motion estimation between ref-
erence views is not possible and the interpolation of these
positions is used instead. Left: Identified correspondences
between the query view (top) and the first reference view
(bottom). Right: Identified correspondences between the
query view (top) and the second reference view (bottom).

prised of three phases: coarse location recognition, camera
motion estimation between query and reference views and
final position triangulation. The coarse location recognition
is base on the matches of SIFT keypoints. A novel robust
estimation technique is used for motion estimation based on
the putative matches which usually contains large portion
of outliers. Thus the efficiency of the system is ensured in
addition to the accuracy. Appropriate motion model is auto-
matically selected for different scenes. The system is shown
to be both accurate and efficient based on the dataset pro-
vided by ICCV Computer Vision Contest. Further improve-
ments can be obtained by carrying out additional search for
matches, in case there is little overlap between the reference
views. The accuracy could be further improved by non-
linear refinement of the motion estimates and more accurate
off-line calibration stage. The accuracy of system depends

Figure 9: Only one reference view (bottom) can be found
for the query image (top), because the query view is ”ex-
trapolated”.

Error range < 2m < 4m < 8m < 16m > 16m
Distribution 7 3 6 6 0

Table 2: Distribution of the localization errors.

on the density of the model views available in the database.
Therefore, selection of optimal set of model views requires
further investigation.
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