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Abstract 
We study the problem of creating a complete model of a 
physical object. Although this may be possible using in- 
tensity images, we use here range images which directly 
provide access to  three dimensional information. T h e  first 
problem that  we need t o  solve is t o  find the transformation 
between the different views. Previous approaches have ei- 
ther  assumed this transformation t o  be known (which is 
extremely difficult for a c o m p l e t e  model), or  computed it 
with feature matching (which is not accurate enough for 
integration). In this paper, we propose a new approach 
which works on range d a t a  directly, and registers succes- 
sive views with enough overlapping area t o  get an accurate 
transformation between views. This is performed by min- 
imizing afunctional which does not require point t o  point 
matches. We give the details of the registration method 
and modeling procedure, and illustrate them on real range 
images of complex objects. 

1 Introduction 
Creating models of physical objects is a necessary compo- 
nent machine of biological vision modules. Such models can 
then be used in object recognition, pose estimation or in- 
spection tasks. If the object of interest has been precisely 
designed, then such a model exists in the form of a CAD 
model. In many applications, however, i t  is either not pos- 
sible or not practical to have access to  such CAD models, 
and we need to  build models from the physical object. Some 
researchers bypass the problem by using a model which 
consist,s of multiple views ([4], [a]), but t,liis is not, always 
enough. 

If one needs a complete model of an object, the following 
steps are necessary: 

1. da ta  acquisition, 
2. registration between views, 
3. integration of views. 
By view we mean the 3D surface information of the object 

from specific point of view. While the integration process is 
very dependent on the representation scheme used, the pre- 
condition for performing integration consists of knowing the 
transformation between the data  from different views. The  
goal of registrat,ion is to  find such a transformat.ion, which 
is also known as t,he covrespon,den,ce problem. This prob- 
lem has been a t  the core of many previous research efforts: 
Bhanu [a] developed an object modeling system for object 
recognition by rotating object through known angles to  ac- 
quire multiple views. Chien e t  al. [3] and Ahuja and Veen- 
s t ra  [l] used orthogonal views to construct octree object 
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models. With these methods, the correspondence problem 
is solved once the da ta  acquisition facilities are calibrated. 
A similar method was also used by Wang and Aggarwal [13]. 
Vemuri and Aggarwal [12] have used a base-plane pattern 
to determine the interframe rotation of object by locating 
the pattern in the intensity images taken at  the same time 
as the range images. These techniques all have difficulty 
in constructing a complete object surface description, since 
either the methods limit the movement of the objects rel- 
ative to  the sensors, or the sensors can only be at  certain 
locations and we can not take advantage of the object sur- 
face structure in choosing vantage views. Ferrie and Levine 
[5] obtained interframe correspondence by matching surface 
features. The  accuracy of this method depends on the ac- 
curacy of the feature detection technique used. Potmesil [9] 
developed a system for modeling complete surface of an ob- 
ject by taking multiple range da ta  and then matching (i.e., 
registering) them through heuristic search in the transfor- 
mation parameter space. Although his matching technique 
is quite general, we feel that  searching through the huge 
parameter space, even with some heuristics, is neither com- 
putationally tractable nor necessary. 

Our object modeling system at tempts  to  build a complete 
model for an object through the integration of multiple- 
view range images. We use the information about the range 
finder setup and find the inter-frame transformation of the 
range images through range image registration. We avoid 
the search through the transformation parameter space by 
assuming an initial approximate transformation for the reg- 
istration algorithm, since we believe that  this information is 
available from the range finder setup (e.g. rotation on a ro- 
tary table) or through high level feature matching, e.g., [ll], 
[8] and [4]. The registration algorithm is an iterative process 
minimizing a least square error measure. Unlike most other 
registration techniques, ours does not require point-to-point 
correspondence, since we minimize the distance from points 
to planes. Our integration procedure is currently performed 
by converting each view into either a spherical or a cylin- 
drical coordinate. 

In our experiments, we acquire the range images with a 
range finder described in [ lo] ,  which consists of a projec- 
tor with a programmable liquid crystal mask and a CCD 
camera. The  range finder works on the principle of space 
coding with projected pattern and triangulation. Figure 1 
shows two ran e images taken of a Mozart bust in Cartesian 
image format ?also called depth map or graph surface). For 
display purposes, they are shown in shaded intensity image 
form 

In the following sections, we discuss the issues involved 
computed from floating point values. 

'The pixel values of the shown images are proportional t o  the 
product of the normal vector of the underlying surface a t  the point 
and the directional vector of a predefined light source 
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In homogeneous coordinate, T can be expressed as 

T = T(Q, P,  Y, t z ,  t y ,  L )  = 

sffcp sffspsy + cffcy sffspcy - cffsy t ,  
cffcp cffspsy - sffcy cffspcy+ sffsy t ,  

C P C Y  tz 
0 0 0 1 

where sz and cx stand for sin x and cos x respectively. So, in 
general, the transformation T needed to  bring the two views 
into registration has 6 degrees of freedom. Thus, the task of 
registration is actually t o  search for such a transformation 
in the transformation parameter space so that  D(P,Q in 
equation 2 reaches i ts  minimum, which can be achieved by 
solving the following set of equations: 

a D  aD d D  aD aD aD _ -  - 0 , - = o , - = o , - = o , - = o  - = o  (4) 
ap ay  at, at ,  ’ a t ,  

The difficulty is that  the process is non-linear, and some 
iterative method must be used. Furthermore, D(P,  Q )  may 
not be convex in general and there is no guarantee that  a 
global minimum can be reached by an iterative procedure. 
Finally, we generally do not know the functions f and g. 

Potmesil [9] used a heuristic search in the transformation 
parameter space to match surfaces, but the second problem 
mentioned above still exists. Our approach is based on the 
assumption that  an approximate transformation between 
two views is known before hand, i.e., they are approximately 
registered. The purpose of doing this is twofold. First, we 
argue that  the goal of the surface registration algorithm is to 
find a finer, more accurate transformation between different 
descriptions/views of an object surface and that  the initial 
approximate transformation can be obtained through high 
level matching or through the knowledge of the geometry of 
the data  acquisition setup. Second, since we are not sure 
that a global minimum for D(P,  Q) can be found in general, 
a good starting point is very important. 

In the following sections we will discuss how the ideas 
in this section are implemented and how we can achieve 
registration without knowing the functions f and g. 

2.1 Choosing the Evaluation Function For Surface 
Registration 

According to our definition of surface registration, if we 
know a set of N pairs of corresponding points, called control 
points, in two views, pi E P and q; E Q, i = l . . .N,  we can 
easily find the transformation by minimizing 

N 

(a)  First view of 
the Mozart bust 

(b) Second view of 
the Mozart bust 

Figure 1: The range images of a Mozart bust 

in rmge image registration, including the definition of regis- 
tration and the methods to achieve registration (section 2.1 
and 2 . 2 ) ,  the selection of control points (section 2.3), the 
registration algorithm (section 2.4), and the data  integra- 
tion strategy (section 3). Results for the registration and 
object modeling stages are presented in section 2.5 and 3.3 
respectively. 

2 Range Image Registration 
The need for surface (3D range image) registration arises 
when an accurate transformation is desired between two 
overlapping views of an object. This could be the case 
in 3D object recognition/localization, or in merging data  
from multiple views. Kamgar-Parsi e t  al. [6] have used 
a range image registration technique in mapping the ocean 
floor based on matching elevation contours of the ocean floor 
range images. Their method can only handle 2D t,ransfor- 
mations between range images to be registered, since i t  is 
based on 2D contour matching. 

Here we present a new method for range image registra- 
tion which works on the range images directly. From now on, 
we use the term range image registration and surface regis- 
tration interchangeably, since in our domain of application, 
the surfaces are represented by range images. Intuit,ively, 
two views of a surface are said to be registered if they “CO- 
incide” when one view is placed at a proper position and 
orientation relative to  the other. More rigorously, two views 
of a surface are said to  be in registration when any pair 
of points (pi, q3) from the two views representing the same 
surface point can be brought into coincidence by one rigid 
transformation. Tha t  is, there exists a rigid transformation 
T, such that 

VP, E P, 3qj E Q I llTPi - qj I1 = 0 (1)  

D ( P ,  Q )  = // IIB(u, U )  - q(f(u, U ) ,  g(u ,  v))l12dudv = 0 

( 2 )  

or 

where p ( u ,  U) E P ,  q(u, U )  E Q,  P and Q are two views of 
the same surface, ( u , ~ )  E !R x !R is the parameter space for 
P and Q, f and g are correspondence mapping functions 
(which means p ( u ,  U )  and, q ( f (u ,  U), g(u,  U ) )  represent the 
same surface point), T p i  is the result of applying T to pi 
and L’ is the overlap region of P and Q. 

( 5 )  

when the set size is larger than 3. Unfortunately, this cor- 
respondence information is difficult to obtain especially for 
non-structured surfaces. 

Another way to  this problem is to  minimize the distances 
from points on one surface to  the other. Tha t  is, we mini- 
mize 

N 

This follows directly from equation 1, since if minqEg IlTp, 
qll = 0 for all i = l . . .N, equation 6 will be zero. But this is 
very difficult to implement, since finding qi is an optimiza- 
tion problem itself. Approximation of the algorithm by an 
iterative method can be used if we know an initial transfor- 
mation To that  brings P in near registration with Q. In this 
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with 

process as an approximation. In this case we can use the q': 
defined in equation 8 as an approximation to  the q, at  each 
iteration. Since the distance from a point to a plane can 
be expressed as a linear function of the coordinates of the 
point, the  iterative procedure can be formulated as follows 
(see Figure 2(b)): 

N 

Q 

e k  = C~~(T~P,,S:) 
1=1 

(a) Q and P before TL-' is applied 

s; = . (qf: - s) = o), q': = ( P - l e , )  n Q 

where d,  is the signed distance from a point to a plane and 
ntj is the surface normal vector of Q a t  q':. NOW we do not 
work with specific correspondence points, so we get rid of 
the problem of slower convergence. In fact, by minimizing 
the distance from a point to a plane, we only constrain the 
direction in which this distance can be reduced. The  point 
has two other degrees of freedom, in which i t  can move in 
accordance with the constraints imposed by other points and 
planes. Thus, global optimization (in our case, minimization 
of the sum of distances) can be achieved more quickly, which 
has been verified in our experiments. This is an extension 
of the idea used by Lowe [7] ,  who minimized point-to-line 
distance in object recognition. 

Next, we introduce the line-surface intersection algo- 
rithm, control point selection strategy, and then the iter- 

(b)  T h e  distance from P t o  the tangent planes 
of Q 

Figure 2: Distance measures between P and Q illustrated 
in the 2D case 

case, a t  each iteration k, we use the previous value T"' to 
find q: : 

N ative registration algorithm. 
ek = I I T ~ P ~ - c ~ ~ ~ I I ~ ,  wit11 ~13k = qImin IITk-lpi-qII ( 7 )  2.2 Line-Surface Intersection 

q € Q  
;=I 

In this section, we present the algorithm for finding the 
intersection of a line with a digital surface. Let P and 
Q be the two views of tlie surface in consideration, and 

last section, we need to find the intersection of the line 
e = (p - a) = 0) ( wllicll passes tllrougll alld 
in the direction of surface normal vector np of p at p) 

surface Q ,  L~~ intersection be E Q, our 
approach is to find the intersection of the line e with the 
tangent plane to  Q in the neighborhood of prospective in- 
tersection points on Q. This is an iterative process and we 
need to  have a prospective intersection to start with. 

E = l  As an examnle. let us consider the case where P and 

With this approach, however, we need to  perform the min- 
imization on a digital surface to  find as is usually the 

fined in equation 7, the problem becomes easier. Potmesil 
[9] has used the distance between the surfaces in the direc- 
tion normal to the first surface as a registration evaluation 
function. Following this idea, we have 

case, If we use an approximatioll point illstead of the cl: de- P E P.  In implementing the idea Of registration from the 

N 
e k  = IITkPt - q'tI12> with q'3k (Tk-lEt) " Q (8) 

where e; = {al(pt -a) x npi = 0)  is the line normal to P at  
pt, npa is the surface normal of P a t  p, and (TE,)nQ stands 
for the intersection point of line e, (after transformed by T )  
with surface Q. 

The  common problem with the above two itera.tive metli- 
ods is that ,  a t  each iteration, they work with some "control 
points" that  are not necessarily true correspondence points. 
The consequence is a slower convergence, since the con- 
straints imposed by different pairs of control points can be 
mutually incompatible before the registration is obtained. 

Our approach is to approximate Q using its tangent plane 
S, at  q, of equation G .  Equation G can then be written as: 

N 

where S, is the tangent plane of Q at  qj. As mentioned 
earlier, we do not know where qJ is. But if we have an 
initial To as mentioned above, then we can s tar t  an iterative 

2Here we always use the intersection point closest t o  P 

Q are represeiAed in a Cartesian coordinate system, i.e., 
we have P = P(z ,y )  and Q = Q(z,y) ,  and the value of 
P or Q represents the distance from some reference plane. 
Under the assumption of approximate initial registration, q 
is expected to be in the neighborhood of p. In the following 
algorithm tlie initial prospective intersections are chosen by 
projecting p orthographically along the z axis onto Q. Our 
intersection algorithm works as follows (see Figure 3 for an 
illustration of the process for a typical 2D case). 

Let p = (z, y, P ( z ,  y))' be a point on P, and E a line nor- 
mal to P at  p. Let zo = 2, yo = y; At each iteration I ; ,  for 
I ;  = 1 , 2 ,  ..., compute qk = (zk, y k ,  z ~ ) ~ ,  the  intersection of e 
with the tangent plane to  Q at (zk-', y k - l ,  Q(z"-', Y ~ - ' ) ) ~ ,  
and we stop when llqk - qk-'II > Ed ( E d  > 0). 

This algorithm works well as long as the neighborhood in 
consideration is relatively smooth and converges in a matter 
of several (usually less than 5 )  iterations. 

As for the selection of E d ,  we have set i t  to  the space 
sampling unit of the range image, since our final goal to  
compute the intersection point cl is to  find the tangent plane 
at  q according to the last section, we do not really need to 
get the exact location of q. 
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i Y  Approximate lnrersectwn (b) Find the transformation T that  minimizes e k  in 
equation 11 with a least squares method, let Tk = 
T ~ T ~ - ~ ;  

The convergence of the procedure is tested by checking 

Yconrrol point (start point) 

0 X 

Figure 3: Intersecting a line with digital a curve 

2.3 C o n t r o l  Point Se lec t ion  
Next, we discuss the selection of control points on P. Since 
our control points do not need to represent meaningful sur- 
face features, we can simply pick points on P on a regular 
grid, instead of every known point on P to save computa- 
tion time. On the other hand, we do want the control points 
to be in a smooth area so that  the corresponding neighbor- 
hoods on surface Q will likely be smooth, and, consequently, 
the intersections will be found if they exist. To check the 
smoothness of a surface in some neighborhood, we can fit 
a smooth surface function to the neighborhood using least 
squares and check the residual standard deviation. For sim- 
plicity, we fit a plane. 

where ce is a threshold set via experiment, N' (N' < N )  is 
the actual number of pi's used, since some of them may not 
have counter part in Q. Although we could have checked ek  
directly, since 6 is much less sensitive to  noise while e k  is a 
direct reflection of the noise level, a reasonable serves for 
variety of range images. 

Finally, the least squares algorithm for minimizing e' in 
equation 11 is generally non-linear, but i t  can be converted 
to linear least squares problem if we know that  the final Tk 
differs from TO by a small amount of rotation. Since the 
elements in T of equation 11, as defined by equation 3,  can 
be approximated by linear terms because of the small a ,  /3 
and y. 

2.5 
We present some examples of the range image registration 
algorithm. The  range images used in the examples are 
Cartesian images with the background area already iden- 
tified. As before, all range images are shown as shaded in- 
tensity images for display purposes. The  actual images are 
32-bit floating point number images. The  two range images 
used in each example are taken under the same conditions. 

Test Cases W i t h  Range Image Reg i s t r a t ion  

2.4 The Reg i s t r a t ion  A l g o r i t h m  
h s u m e  that we have two surfaces p and Q, and that we 
have already comput,ed an initial transformation TO. We 
rewrite equation 10  in section 2.1 as follows: 

but the objects in the images were rotated 15 to  20 degrees 
about the y axis. In these tests, we simply use the iden- 
t i ty matrix as the initial transformation, The error images 
are comput,ed as the distances from the surface of the first 
image to the second in the surface normal direction of the 

U 

N first surface, after the found registration transformation has 
been applied to  the first image. The spatial resolutions of 
the range images and the error images are all 0.5 mm, while 
the accuracy of the range-finder is in the neighborhood of 

(I1) e k  = C&T 0 ~ ~ - l p ; ,  sl;) 
t=l 

where 
T o T"-' = T" 
S: = {sIiitJ . (qt - s) = 0) is the tangent plane 
to Q at  q;, 
ii& is the normd to surface Q at  q t ,  
q: = (T"-'C;) n Q is the intersection point of Q 
with line Tk-'e,, 
C, = {al(pt - a) x npt = O }  is t,lie line normal t,o 
P at P,, 
p, 5 P is a point on P ,  
(1, is the signed distance from a point. to  a plane. 

Our registration algorithm is to  find the update transfor- 
mation T which minimizes e k  in the above equation with 
a least squares method iteratively. The algorithm goes as 
follows: 

1. Select a set of control points p; E P (z  = 1 . . N )  and 
compute the surface normals np, at those points. Let 

2 .  At each iteration k ,  repeat the following until the pro- 
To = To; 

cess converges (see below for explanation): 
(a) For each control point p,, 

Apply Tk-l to both the control point pi and 

Find the intersection qr of surface Q with the 

Compute the tangent plane Sf of Q at  q: 

the normal lip, to  get p'; and 11'~;; 

normal line defined by p', and 11 '~~;  

1 mm . 
In the first example, we register the two range images in  

Figure 1. Figure 4(a) shows the first view of the Mozart 
bust after the registration is performed, Figure 4(b) and 
c) show the registration error image and error histogram. 
!r he second test is shown in Figure 5 .  The range images in 
the first example contain many detailed patterns and com- 
plex surfa.ce structures. But, due to digitizing noise, surfa.ce 
features can not be detected reliably, thus matching sur- 
face features for registration may not produce satisfactory 
results. On the contrary, the range images in  the second 
example contain few interesting features. Besides, the sur- 
face type is very special in that  i t  is very difficult to  define a 
good surface segmentation, and therefore difficult to  match 
high level surface descriptions. 

Our registration algorithm works very well on these ex- 
amples, as can be seen from the error images and error his- 
tograms in Figure 4 and 5 .  They are very comparable to 
the resolution of the original data.  In fact, if the  images 
were smoothed with a small Gaussian filter, an even better 
registration accuracy could have been achieved. From the 
computed registration transformation, we found the rota- 
tion between the two Mozart images to  be -15.06' while 
the actual rotation was -15'. For the second test shown 
in Figure 5 ,  the computed rotation of the two images is 
-19.75' whereas the actual rotation was -20'. 

3 
In this section, we present one application of this range im- 
age registration algorithm to the modeling of cornpact ob- 
jects. There is no attempt to obtain a high level description 

Integration of Multiple Range Images 
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(a )  First view of (b) Registration er- 
Mozart after regis- ror image 
tration 

7BBBB 

68868 

50088 

*me88 

30080 

2BBBB 

l 0 B B . a  
. . -  % -2 2 

n o r a r t  Bee Error n l s t  (un<c=nn) U=- 8.16,s' 6923,nio=-39 3,nax.;20 2 

( c )  Histogram of the error image 

Figure 4: Registration results for the Mozart bust 

of the object in this study, although i t  should be possible, 
based on our results. 

In order to  get a description of the whole object surface, 
multiple range images of the object from different vantage 
points are needed. While putting an object on a turn table 
is enough for obtaining a wrap-around representation of the 
object without use of registration, as was done in [ la] ,  it 
is seldom the case that  all surface areas can be covered in 
this manner. But  when taking range images from different 
object poses, the exact spatial relationship between them is 
lost. This is where our registration algorithm can be used. 

Our modeling process goes as follows. We first put the 
object on a turn table t 3  t,ake a set, of 4 t,o 8 side view 
range images of the object, and then the object is laid down 
and the range images of the top and bottom areas of the 
object are taken. The  number of side views depends on the 
complexity of the object surface structure. For the range 
images taken from the top and bottom views, we need the 
approximate relationship between them and those of the side 
views in order to  use our registration algorithm, as assumed 
in the first part of this paper. This is currently done by 
asking the user to estimate the 3 rotation angles, and they 
do not have to  be accurate. Then the registration algorithm 
is applied to bring the range image of the top and bottom 
views in registration with those of the side views. 

3.1 Object-Centered R e p r e s e n t a t i o n  
The original range images come as three separate dense im- 
ages z ( u , u ) ,  y ( u , u )  and z ( u , u )  in the parametric space of 
the sensor. Our goal is to  build an object-centered model 
for a class of compact objects. The object is described in 
a cylindrical or spherical coordinate system, centered in the 
object. This kind of representation provides us with an in- 
termediate representation towards a higher level description 
of the object. 

(a) First view of a model 
toor11 

( c )  First view after reri- 

(b) Second view of the 
tooth 

(d) Registration error 
image 

(e) Histogram of error image 

Figure 5: Registration results for the tooth 

Once the object coordinate frame has been selected, the 
range image from each view of the object is transformed 
to this coordinate frame with transformations derived from 
the registration process. They are then further reparam- 
eterized through interpolation into cylindrical or spherical 
coordinates Since all da ta  are now in the same parameter 
space, additional da ta  from different views can be merged 
into one by simple average in the overlapping areas. The  ac- 
tual implementation also includes decisions about avoiding 
outliers. 

3.2 Global R e g i s t r a t i o n  
For this specific modeling procedure, we can work globally 
for better overall results. That  is, when we merge a current 
view range image, instead of registering i t  with only a neigh- 
boring view(s), we register i t  with the merged da ta  from all 
previously processed views to  find out the needed transfor- 
mation. In this way, the information from all the previously 
merged views is used, and the possible error accumulation 
due to successive registrations with range images of neigh- 
boring views can be avoided. 

3.3 Results and Discuss ion  
We present modeling results for two objects. Each object 
measures about 1Ocm on their longest sides. One is a free- 
form shaped wood blob, and the other is a plaster model 
of a tooth. Both objects are free-form objects with few 
distinct surface features. Thus, matching detected surface 
features for registration would prove very difficult. The  sur- 
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... . 

Figure 6: The wood blob, the plaster tooth and the derived 
modcls for them 

lace structures of these objects (especially the model tooth) 
are very special in that  i t  is very difficult to  define a reliable 
segmentation to achieve high level description. 

Two examples are shown in figure 6. The first row shows 
the intensity images of the orignal objects. The second row 
shows the wireframe plot of the acquired models. The third 
and fouth rows show the rendered images from the acquired 
models. In these examples, we have used 8 side views and 
6 to 8 top and bottom views for each object with 45’ of 
rotation angle between successive side views for simplicity. 

As can be seen, the final integrated models are generally 
smooth partly due to  the averaging effect in the integration 
of multiple range images. The smoothness is also due to 
the good performance of the registration algorithm, since, 
otherwise, the data  from different views would not “fit” to- 
gether and ridges and valleys on the object surface would 

have been blurred. 

3.4 Conclusion and Future Research 
We have presented a new method for constructing a com- 
plete surface model for compact objects. This new method 
is based on registering range images from multiple views of 
the object before view integration, using a registration algo- 
ri thm developed in  this research. The  range image registra- 
tion algorithm is based on minimizing a distance measure 
function derived from the definition of 3D surface registra- 
tion. 

The drawback of this modeling process is that  the rep- 
resentation scheme may not be powerful enough to directly 
accommodate more complex objects. 

Future research will address the development of more 
powerful schemes for intermediate representation, to  handle 
complex objects not representable by cylindrical/spherical 
coordinate system. Incorporation of some surface matching 
system such as [ll] to provide the registration algorithm 
with needed initial transformation, will enable us to build a 
fully automatic modeling system. 
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