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Abstract

This paper presents a system that is suitable for
reconstructing large and complexr urban environments.
This becomes possible by the development of movel al-
gorithms for 3—D model acquisition from the combina-
tion of range and image sensing. The input is a se-
quence of unregistered range scans of the scene and a
sequence of unregistered 2-D photographs of the same
scene. The output is a true texture-mapped geometric
model of the scene. The vital parts of the system (seg-
mentation, range registration,solid modeling, and tex-
ture mapping) are presented. Segmentation algorithms
simplify the dense data-sets and provide stable features
of interest that can be used for registration purposes.
Range registration and solid modeling provides geomet-
rically correct 3-D models. Finally, automated range to
image registration algorithms can increase the flexibility
of the system by decoupling the slow geometry recovery
process from the image acquisition process.

1 Introduction

The recovery and representation of 3-D geometric
and photometric information of the real world is one
of the most challenging and well studied problems in
Computer Vision and Robotics research. There is a
clear need for highly realistic geometric models of the
world for applications related to Virtual Reality, Tele-
presence, Digital Cinematography, Digital Archeology,
Journalism, and Urban Planning. Recently, there has
been a large interest in reconstructing models of out-
door urban environments [13]. The areas of interest
include geometric and photorealistic reconstruction of
individual buildings or large urban areas using a variety
of acquisition methods and interpretation techniques,
such as ground-base laser sensing, air-borne laser sens-
ing, ground and air-borne image sensing. The ultimate
goal is the reconstruction of detailed models of urban
sites (digital cities). The creation of digital cities drives
other areas of research as well: visualization of very
large data sets, creation of model data-bases for GIS
(Geographical Information Systems) and combination
of reconstructed areas with existing digital maps.

The problem we attack can be described as follows:
Given a set of dense 3-D range scans of a complex real
scene from different viewpoints and a set of 2-D pho-
tographs of the scene, a) create the 3-D solid model

that describes the geometry of the scene, b) recover the
positions of the 2-D cameras with respect to the ex-
tracted geometric model and c) photorealistically ren-
der it by texture-mapping the associated photographs
on the model. The integrated system we developed for
the production of photo-realistic geometric models of
large and complex scenes is described in figure 1.
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Figure 1: System for building geometric and photomet-
ric correct solid models.

This paper provides an overview of our photoreal-
istic 3D modeling approach [18, 20, 19, 1] and intro-
duces new results from the 3D reconstruction of St.
Piérre Cathedral in Beauvais, France (section 6). Re-
lated work is presented in section 2 . Section 3 provides
and overview of our segmentation and solid modeling
approaches, section 4 describes the range registration
algorithm, whereas section 5 presents the range-image
registration method.

2 Related Work

There are two major approaches in the photorealis-
tic reconstruction of urban 3-D scenes: purely geomet-
ric (extraction of dense geometry via range sensing or
sparse and irregular geometry via stereo techniques) and
image-based rendering methods (extrapolating geome-
try in the rendering phase via resampling the captured
light field of the scene). Representative systems whose
goal is the photorealistic reconstruction of real scenes



by the utilization of 2-D imagery only are [7, 17, 2]. In
those cases the necessary human interaction and the a-
priori geometric constraints imposed by the human op-
erator lead to lack of scalability with respect to the num-
ber of processed images of the scene and to the compu-
tation of simplified geometric descriptions of the scene.
Teller’s approach [21] addresses the limitations of the
previously described methods by acquiring and process-
ing a large amount of pose-annotated high-resolution
spherical imagery of the scene.

Systems that extract dense and regular geometry
must rely on accurate range measurements. Represen-
tative approaches include the VIT group [22, 3], the
Digital Michelangelo project [14], the Pietd Project [4],
Fitzgibbon et. al. [11], Zhao [23] and Sequiera [16]. Fi-
nally Zisserman’s group in Oxford [12] works towards
the fully automatic construction of Graphical Models of
scenes when the input is a sequence of closely spaced
2-D images (video sequence). This work shows how far
purely image—-based methods have gone but also points
out the following inherent limitations: sparse depth esti-
mates which depend on the texture and geometric struc-
ture of the scene, and crude surface approximations in
areas that do not support 3—D measurements.

3 Segmentation & Modeling

The individual range-images which the range-sensor
provides are the result of dense sampling of visible sur-
faces in large urban scenes. Using a Cyrax laser scan-
ner [6], we get 1K by 1K range samples (~ 1 million
range samples) with a spatial resolution of a few cen-
timeters. Our first task is to segment the dense range
scans and extract major surface patches. The segmen-
tation is sequential-labeling type algorithm of the 3-D
points into 8-connected regions, with a metric of similar-
ity (co-planarity and co-normality) between neighboring
points. This algorithm has complexity O(N) where N
is the total number of range points (in our experiments
N ~ 10%). At a second level of abstraction the 3-D
range data-set is represented as a set of 3-D curves.
Those curves are the result of intersection of neighbor-
ing bounded 3-D surfaces which have been extracted by
the range segmentation module. We implemented the
extraction of 3-D lines as a result of planar surface inter-
sections. Those 3-D features are used for the registra-
tion between 3-D data-sets and between 3-D data-sets
and 2-D images [19]. Finally, volumetric solid models
are constructed from registered segmented scans. The
registration between individual scans is based on man-
ual match between extracted linear featured between
the scans. Our modeler is based upon earlier work by
Reed and Allen [15]. The innovative principle of this
approach is the representation of each individual range
image with a solid volume. Figure 2 presents results
from segmentation and modeling of real buildings.

4 Range-Range Registration

To create a complete description of a scene we need
to acquire and register multiple range images. The reg-
istration (computation of the rotation matrix R and
translation vector T) between the coordinate systems
of the ng, (Cp,) and first (C) range image is possible
via a matched set of 3-D features between the images.
We have decided to use the infinite 3-D lines which are
extracted using our segmentation algorithms (section 3)
as our features of interest. A manual match between
a small number of those features provides enough con-
straints that can lead in the computation of the rotation
R and translation T.

In detail the algorithm works as follows. The infi-
nite 3-D lines that are automatically extracted from the
dataset! can be represented by the pairs of the form
(n,p), where n is the unit vector which corresponds to
the direction of the line and p is a 3-D position which
represents a point on the line. Note that this represen-
tation is not unique. There are two valid line directions
n and —n and an infinite number of points p that lie
on the line. We choose p to be one of the extracted
endpoints of the line.

A solution for the rotation and translation is possible
when at least two line matches are given. The rotation
matrix R can be computed according to the closed form
solution described in [9], page 523.

Lets assume that the lines

(ni,pi),izl...N

extracted automatically from one view do match up
with the automatically extracted lines

(nil,pil),i =1...N

of the second view.

The rotation component of the transformation be-
tween the two view can be computed using the orienta-
tions n; and n;’ of the matched 3-D lines. This is done
via the minimization of the error function

N
Err(N) = |In;' — Rny||?
i=1

where R is the unknown rotational matrix. The min-
imization of the above function has a closed-form so-
lution when the rotation is expressed as a quaternion.
The minimum number of correspondences for the com-
putation of the rotation is two (N = 2). More lines
can though be used in order to increase the robustness
of the method. Note that in the above formulation we

1Our modules extract 3-D lines of finite extent. However, the
extracted positions of the endpoints are not used for registration
purposes because of the uncertainty in their determination.



assume that we have a correspondence between the di-
rected vectors n; and n;'. Otherwise the minimization
would be formulated as

N
Err(N) = Z l|eini’ —
=1

where €;,¢; = 1. The latter formulation results in
4 possible solutions for the rotation matrix. However,
knowledge of the matching directions reduces the num-
ber of solutions to one.

Solving for the translation vector T between the two
views is an easy task as long the rotational matrix has
been computed. Let us select two arbitrary points on
the i;h line < nj, p; > of the first view. Those points can
be expressed as a} = p;+t; n; and al, = p;+t, n; where
t;,j = 1,2 are two arbitrary real constants. Those two
points have corresponding points which lie on the i:h
line < nl ,pi’ > of the second view. If we call those
points a1 and a i we can s1m1larly express them as a1 =
p, +1t) n} and a, = p} + ¢} n}, where t:,J = 1,2 are two
real constants which depend on the arbitrary selection
of t;,7 = 1,2. That means that the correspondence
between the iz lines of the first and second view provide
us the following constraints:

eiRni||2

ai = Ra +T (1)
ay = Ra,+T (2)
or
p;+tin, = R(pi+tin;)+T 3)
pi+thn = R(pi+tin;)+T (4)

When the rotation matrix R is known the above sys-
tem of 6 equations is linear in the 7 unknowns (3 for
the translation vector T and 4 for the real constants t;
and t},j = 1,2). With two line matches the number of
equations becomes 12 (= 2 x 6) and the number of un-
knowns 11 (= 2 x 4 + 3). That means that a minimum
of two matched infinite 3-D lines provide enough con-
straints for the computation of the translation (when
the rotation is known) through the solution of an over-
constrained system of linear equations.

Results of the registration algorithm on three data
sets are presented in figure 3.

5 Range-Image Registration

We provide a solution to the automated pose deter-
mination of a camera with respect to a range sensor
without placing artificial objects in the scene and with-
out a static arrangement of the range-camera system
[20]. This is done by solving the problem of automati-
cally matching 3-D & 2-D features from the range and
image data sets. Our approach involves the utilization
of parallelism and orthogonality constraints that nat-
urally exist in urban environments in order to extract

3-D rectangular structures from the range data and 2-
D rectangular structures from the 2-D images. Similar
features are extracted from the 3-D range scans. By
utilizing the RANSAC [10] framework a match between
the 3-D and 2-D feature space is found. This match
is used in order to solve for the position of the camera
with respect to the 3-D model. The resulted texture-
map is shown in figure 2f. We are moving in the di-
rection of extending those methods in less constrained
environments.

6 The Beauvais Project

We have started testing our algorithms on range data
gathered from the St. Piérre Cathedral in Beauvais
France (the Cathedral is in the UNESCO list of en-
dangered world monuments). This project is sponsored
by the Media Center of Art History and Archeology
of Columbia University [8]. The author collaborates
with the Robotics Laboratory of Columbia University
that is responsible for the reconstruction of the final 3-
D model. The recovery of the 3-D model of the building
will greatly help in its structural analysis. A photore-
alistic model is also very useful for teaching the archi-
tecture of the Cathedral. A data-set of more than one
hundred interior and exterior range scans and hundreds
of photographs of the building was gathered in the sum-
mer of 2001.

Figure 5 shows some of our current results. The top
rows contains two photographs of the exterior of the
building. The second row presents four registered range
scans of the same portion of the building (distinct range
scans are represented with different colors), and a detail
of that registration. The registration is done by man-
ually matching automatically extracted linear features
between the range scans. The linear features are the
output of the range segmentation routines (section 3).
the third row. Finally, in the last image of the figure,
a texture-map using two photographs is shown. Each
pixel in the resulting image gets color from one of the
two images. Note, that as shown in figure 4 an intelli-
gent decision must be made regarding the surface color
at e. In the result shown at figure 5b, we are using the
color of one of the two cameras without performing any
color blending.

7 Conclusions

This paper presents a systematic approach to the
problem of photo-realistic 3-D model acquisition from
the combination of range and image sensing. A review
of our segmentation, modeling, and registration algo-
rithms is presented. We provide results utilizing data
gathered from complex urban structures. A very impor-
tant range-to-image fusion problem that still needs to be
addressed is the blending of color images captured from
overlapping viewpoints on the 3D model. The texture-
map shown in figure 5b is binary; each texture-mapped
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Figure 4: Texture mapping using more than one image.
More than one camera views the same surface element
e. The texture-mapping algorithm should decide which
camera to use for texture-mapping e.

pixel gets its color from one of the two images. The next
step is to intelligently blend the sequence of images that
cover the whole scene. The main question here is which
sets of images to use when a viewer looks at the scene
from a particular viewpoint. In the recent work of [5], a
unified framework in rendering a 3D scene using a large
number of 2D images is presented. This framework is
a generalization of view-dependent texture mapping [7]
and light-field /lumigraph rendering approaches. A sec-
ond issue that we still need to address is the complete
automation of the range to range registration process.
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Figure 2: Top Row: Casa Italiana. a) Range-scan of first view of the building (1 million points). b,c) Segmented
scans of first view and second view (each segmented surface is displayed with different color). Middle Row: Casa
Italiana. d) Segmented scan of third view. e) Volumetric solid model of the building. f) Photograph of building
texture-mapped on the solid model. The registration between the photograph and the model is automatic. Bottom
Row: Guggenheim Museum, New York City. g) Photograph of the building. e,f) Two segmented scans of the

building.



Figure 3: Registration of a) 3 range scans of the Casa Italiana, b) 2 range scans of the Guggenheim Museum and c)
2 range scans of the Flat Iron Building. d) Close view of registration of Flat Iron Building.



Figure 5: First Row: ab) Two images of the exterior of the St. Pierre Cathedral. Second Row: c¢) Four
registered range scans (each different scan is represented with a different color). The registration is the result of
matching automatically extracted features between views. d) Registration detail. Third Row: e) Segmentation of
one range scan (different surfaces are displayed with different color). f) Texture-map of the two photographs a) and
b) on the 3-D model of the four range scans.



