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Abstract

Repeated patterns (such as windows, tiles, balconies
and doors) are prominent and significant features in urban
scenes. Therefore, detection of these repeated patterns be-
comes very important for city scene analysis. This paper
attacks the problem of repeated patterns detection in a pre-
cise, efficient and automatic way, by combining traditional
feature extraction followed by a Kronecker product low-
rank modeling approach. Our method is tailored for 2D im-
ages of building façades. We have developed algorithms for
automatic selection of a representative texture within façade
images using vanishing points and Harris corners. After
rectifying the input images, we describe novel algorithms
that extract repeated patterns by using Kronecker product
based modeling that is based on a solid theoretical founda-
tion. Our approach is unique and has not ever been used for
façade analysis. We have tested our algorithms in a large
set of images.

1. Introduction
Urban scenes contain rich periodic or near-periodic

structures, such as windows, doors, and other architectural
features. Detection of the periodic structures is useful in
many applications such as photorealistic 3D reconstruction,
2D-to-3D alignment, façade parsing, city modeling, classi-
fication, navigation, visualization in 3D map environments,
shape completion, cinematography and 3D games, just to
name a few. However it is a challenging task due to scene
occlusion, varying illumination, pose variation and sensor
noise.

The first step of all façade parsing algorithms (see [15]
for an example) is the detection and rectification of individ-
ual façade structures. The first part of our pipeline (Sec.
3) adopts vanishing points detection to compute an initial
transform matrix for rectification and for the automatic se-
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lection of a representative texture. The second part of our
pipeline (Secs. 4,5), after rectification, is the detection of re-
peated patterns. Current state-of-the-art methods use classi-
fication [15] or statistical approaches [13]. We, on the other
hand, provide a novel detection method that models repeti-
tion as a Kronecker product.

2. Related Work
In recent years, repeated patterns or periodic structures

detection has received significant attention in both 2D im-
ages [17, 13] and 3D point clouds [3, 12]. Repeated patterns
are usually hypothesized from the matching of local image
features. They can be modeled as a set of sparse repeated
features [11] in which the crystallographic group theory [8]
was employed. The work of [14] maximizes local symme-
tries and separates different repetition groups via evaluation
of the local repetition quality conditionally for different rep-
etition intervals.

The work of [10] proposes an approach to detect sym-
metric structures in a rectified fronto-façade and to recon-
struct a 3D geometric model. The work of [15] describes
a method for periodic structure detection upon the pixel-
classification results of a rectified façade. Shape grammars
have also been used for 2D façade parsing [13]. Other sim-
ilar grammar-based approaches include [1].

All the above-mentioned methods require as pre-
processing image rectification. To solve this problem, low-
rank methods were used and attracted a lot of attention in
recent years [16]. A similar work was proposed by [4] in
which the rank value N is assumed known. Another method
for the recovery of both low-rank and the sparse compo-
nents is presented in [2]. Finally, [7] describes a low-rank
based method that detects the repeated patterns in 2D im-
ages for the application of shape completion.

The contributions of this paper with respect to ear-
lier work are: (a) an automated method based on vanish-
ing points for detection of representative texture within a
façade, and (b) a novel algorithm based on Kronecker prod-
uct for detection of repeated patterns within that texture of
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the façade image.

3. Texture Selection and Rectification
The input of this step is a 2D image of a building façade.

The output is a representative texture on the façade as well
as a transform matrix that is used to initialize the facade
rectification. This representative texture is essential for an
automated system, since it is used as input by the low-rank
algorithm (named TILT) in [16] (this automation provides
a performance improvement of 19.6% over manual selec-
tion; see the comparison in Table 1). This algorithm is im-
plemented in three steps: (1) feature extraction, (2) block
division, and (3) transform initialization and representative
texture selection.

First of all, we extract Harris corners [5]. We also de-
tect the two major vanishing points by using the method of
[6]. We then divide the façade into blocks (quadrilateral)
along vanishing points directions. Finally, we compute the
homography matrix that rectifies the image and select the
representative texture by combining Harris corners distri-
bution information within the detected blocks. We observed
that Harris corners are distributed almost uniformly in un-
occluded façade areas that contain repeated patterns. Oth-
erwise occlusions may produce a non-uniform distribution
of the Harris corners. For example, the Harris corners in a
tree area will be very dense and non-uniformly spaced.

In particular, starting from each detected vanishing point
we draw hypothetical lines at angular intervals towards the
image assuring that all Harris corners are included in the
generated quadrilaterals (see Fig. 1(a)). This is achieved
by computing the smallest angles θ1 and θ2 (one for each
vanishing point) that ensure inclusion of all Harris corners.
Then, we divide each range θi into m parts. The intersec-
tions of the imaginary lines thus create m×m quadrilater-
als.

We observed that the number of corners in each block
does not change much after perspective distortion of the
façade image, although the distribution of the Harris corners
depends on the location of the vanishing points. Excluding
strong perspective distortions is not so crucial (in such cases
even robust techniques fail to rectify the image). We thus
assume that the ideal texture should consist of neighboring
blocks that have a similar and uniform distribution of Har-
ris corners. We then count the number of Harris corners in
each block, and get an m × m matrix C, where each ele-
ment Ci, j , i, j = 1, · · · ,m is the number of Harris corners
in the corresponding block.

In order to isolate the r × c submatrix of C1 containing
the most representative texture of the given façade, let us
consider that its elements are random samples from a dou-
ble exponential distribution. We then compute the sample

1In all of our experiments, we set m to 10 and fix r and c to a given
percentage of m, that is r = c = 0.4m.

(a) (b) (c) (d)
Figure 1. (a) 10 by 10 blocks divided along detected vanishing
points directions. (b) Yellow quadrilateral shows r× c blocks that
compose the representative texture. (c) Red box, defined by the
largest rectangle within the representative texture, is the input to
the TILT algorithm. In green is the yellow quadrilateral from (c).
(d) Rectified façade by TILT, with automatically selected texture
shown inside the pink box.

median µC of the elements of matrix C. Finally, we slide
a window of size r × c along matrix C, and compute in
each location the sample mean deviation from the sample
median, that is:

Si,j =
1

rc

i+r−1∑
k=i

j+c−1∑
l=j

|Ck, l − µC| (1)

thus forming a score matrix of size (m−r+1)× (m−c+1).
It is well known that the sample median and the sample
mean deviation from the sample median are the maximum
likelihood estimators of the mean and standard deviation of
the distribution. Thus, by choosing the sliding window with
the highest score we actually choose the one with the min-
imum variance among all the best likelihood estimators of
the mean value. This window will be selected and used as
the input of the TILT algorithm in order to get the low-rank
component and rectification of the façade image (see Fig.
1 for an example). Note that this low-rank component is
not used by our algorithms, since we have a novel way of
calculating it (see Sec. 4).
4. Façade Modeling via Kronecker Products

In this section we describe our Kronecker product mod-
eling approach that is applied on a rectified façade image.
It is a novel representation that describes a large subset of
façade examples.

4.1. Ideal Façade Modeling

To this end, let us consider the partition of all ones or-
thogonal array 1lv×lh of size lv× lh by using the following
mutually exclusive, 1−0 2 matrices Mk, k = 1, 2, · · · , K
of size lv × lh each, that is:

< vec{Mk}, vec{Ml} > =

{
||vec{Mk}||0, k = l

0, k 6= l
(2)

K∑
k=1

Mk = 1lv×lh (3)

2Matrices that contain only combinations of 1s and 0s



where vec{X}, < x, y > and ||x||0 denote the column-
wise vectorization of matrix X, the inner product of vectors
x, y and the l0 norm of vector x respectively. As it is clear
from Eqs. (2-3), different choices of matrices Mk result in
different partitions of orthogonal block 1lv×lh .

Let us now associate with each component Mk, k =
1, 2, · · · , K of the partition of array 1lv×lh defined in
Eq. (3), a 2-D pattern Pk of size Nv ×Nh that is going to
be repeated according to Mk. The patterns should have a
piecewise constant surface form. In particular, with the aim
of patterns Pk several windows, doors and/or balconies of
different architectures can be formed.

We can now define a subset of urban building façades
that can be expressed as a sum of Kronecker products:

FN×M =
K∑
k=1

λk(Mk ⊗Pk) (4)

where X ⊗Y is the Kronecker product of matrices X, Y
and λk, k1 = 1, 2, · · · ,K are weights. Finally, N ×M is
the size of the urban building façade image. By the defini-
tion of the Kronecker product it is obvious that N = lvNv

and M = lhNh. Please note that the urban building
façade’s model defined in Eq. (4) can be used even in cases
where there is not any periodic structure in the given input
façade we would like to model.

Generalizing Eq. (4) to permit a “wall” gray level λ0, we
get:

FN×M = λ01N1tM +
K∑
k=1

λk(Mk ⊗Pk). (5)

Using the fact that the components of the partition of or-
thogonal array 1lv×lh of Eq. (3) are mutually exclusive, we
rewrite Eq. (5) as:

FN×M =

K∑
k=1

λk(Mk⊗P̂k), P̂k = Pk+
λ0
λk

1Nv1tNh
(6)

where P̂k are modified patterns as defined above, and
1Nv , 1Nh

are all ones vectors with the subscripts denoting
their lengths.

4.2. Ideal Façade Model Approximation

In this section we would like to compute (or approxi-
mate) the components of the Kronecker product that gener-
ate a given ideal (i.e. noise-free) building façade FN×M ∈
RN×M with N = lvNv and M = lhNh. Using the model
defined in Eq. (6) we can define the following cost function:

CF(Mk , P̂k, λk, k = 1, · · · ,K) = ||FN×M −FN×M ||22

= ||FN×M −
K∑
k=1

λk(Mk ⊗ P̂k)||22, (7)

where Mk, P̂k and λk, k = 1, 2, · · · ,K denote the par-
tition matrices, the patterns and the weighting factors of
façade’s model respectively. As it is clear from its defini-
tion CF(.) is a Frobenious norm based cost function that
quantifies the error between the given matrix FN×M and
the model FN×M .

Therefore, the modeling problem of the given urban
building façade FN×M can be expressed by the following
minimization problem

min
Mk,P̂k,λk, k=1,··· ,K

CF (Mk, P̂k, λk, k = 1, · · · ,K),

(8)
which is known as the Nearest Kronecker Product problem
[9]. The following partition of the given matrix FN×M is
key for the solution of the above problem:

FN×M =


F11 F12 · · · F1lh

F21 F22 · · · F2lh
...

...
. . .

...
Flv1 Flv2 · · · Flvlh

 , (9)

where Fij is a block of size Nv × Nh. We can then form
the matrix

F̃lvlh×NvNh
=
[
vec{F11} vec{F21} . . . vec{Flvlh}

]T
(10)

which constitutes a rearrangement of the given façade ma-
trix FN×M . Using the above defined quantities, the cost
function of Eq. (7) can be equivalently expressed as:

CF(mk, p̂k,λk, k = 1, · · · ,K)

= ||F̃lvlh×NvNh
−

K∑
k=1

λkmkp̂
t
k||22 (11)

where mk, p̂k are the column-wise vectorized forms of ma-
trices Mk, P̂k. By exploiting the above defined equivalent
form of the cost function, the Kronecker Product SV D
[9] can be used to solve the optimization problem of Eq. (8):
Theorem 1: Let F̃lvlh×NvNh

= VΣUT be the Singular
Value Decomposition of the rearranged counterpart of ma-
trix FN×M . Let us also consider the following diagonal
matrix

ΣK = diag {σ1 σ2 · · · σK} (12)

containing the first K singular values of matrix
F̃lvlh×NvNh

, and let

VK = [v1 v2 · · ·vK ], UK = [u1 u2 · · ·uK ] (13)

be the K associated left and right singular vectors respec-
tively. Then, the matrices M?

k, the patterns P̂?
k, and the

weighting factors λ?k that satisfy:

vec{M?
k} = vk, vec{P̂?

k} = uk, λ
?
k = σk, k = 1, 2, · · · ,K

(14)



constitute the optimal solution of the optimization problem
of Eq. (8).

Using Theorem 1, we can find an optimal approxima-
tion that has the desired form, i.e. it is a sum of Kronecker
products, that minimizes the cost function defined in Eq.
(7). Note, however, that some of the characteristics of the
optimal solution, are not consistent with the ingredients of
the façade model defined in (5) thus making the direct use
of Theorem 1 problematic. Specifically, neither the opti-
mal matrices M?

k neither the optimal patterns P̂?
k have, in

the general case, the desired form, that is they are not 1-0
matrices and piecewise constant surfaces, respectively. In
addition, the vectorized form of the optimal patterns are or-
thonormal to each other.

In order to impose one of the requirements of the pro-
posed façade model, in the sequel we consider that matrices
Mk have the desired 1 − 0 form and are known. In such a
case, we form the cost function:

ĈF(P̂k, λk, k = 1, · · · ,K|Mk), (15)

which is the cost function of Eq. (8) but with the partition
matrices known. We would like to minimize it with respect
to the patterns P̂k and the weighting factors λk. The solu-
tion of the new optimization problem is the subject of the
next lemma.
Lemma 1: Assuming that the matrices Mk, k =
1, 2, · · · ,K defined in Eqs. (2-3) are known, then the min-
imization of the cost function defined in Eq. (15) produces
patterns P̂k and weighting factors λk that are related as fol-
lows:

λ?kvec{P̂?
k}=

UΣTVT vec{Mk}
||vec{Mk}||22

, k = 1, 2, · · · ,K(16)

Proof: Using the fact that ||F||22 = trace{FTF}, the
SVD decomposition of the rearranged counterpart of ma-
trix FN×M , the linearity of the trace operator, and after
some simple mathematical manipulations, the cost function
defined in Eq. (11) can be rewritten as follows:

CF( P̂k, λk, k = 1, · · · ,K|Mk) = trace
{
UΣTΣUT

}
−

trace

{
UΣTVT

K∑
k=1

λkmkp̂
t
k+

K∑
k=1

λkp̂km
t
kVΣUT

}
+

trace

{(
K∑
k=1

λkmkp̂
t
k

)(
K∑
k=1

λkp̂km
t
k

)}
.

Moreover, using the orthogonality of vectors mk, k =
1, 2, · · · ,K, the orthonormality of matrix U, the commu-
tative property of trace operator, and by interchanging the
order of summations and trace operator, we obtain:

CF( P̂k, λk, k = 1, · · · ,K |Mk) = trace
{
ΣTΣ

}
−

2
K∑
k=1

λktrace
{
p̂tkUΣTVTmk

}
+

K∑
k=1

λ2k||mk||22||p̂k||22.

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

Figure 2. A real building façade (left), its optimal modeling of
rank 4 (middle), obtained from the solution of the optimization
problem of Eq. (8), and its optimal modeling of rank 4 (right),
obtained from the minimization of the cost function of Eq. (15)
with matrices Mk predefined (please see text).
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Figure 3. Estimation of the spatial periods of façade shown in Fig.
2 (left). Cross-Correlation sequences used for the estimation of
Nv = 90 pixels (a) and estimation of Nh = 56 pixels (b).
Please enlarge the image to see the coordinates. Distance between
the adjacent peaks provides the period information.

By taking the partial derivatives of the above function with
respect to all components of the parameters p̂k, k =
1, 2, · · · ,K, stacking and setting them to zero we obtain
the desired result. �

Note that if we substitute into (16) the optimal solution
of Eq. (14) for Mk, the optimal solution of the patterns as
well as the weighting factors coincide with those in Eq. (14)
as they owed to be. Note also that according to Eq. (16), the
vectorized forms of the optimal patterns are not necessarily
orthonormal to each other, unlike Theorem 1.

We applied both of the above optimal solutions for the
modeling of urban building shown in Fig. 2(left) and the
resulting rank 4 solutions are shown in Figs. 2(middle)
and 2(right). The matrices Mk, k = 1, 2, 3, 4 we used
for the evaluation of the optimal solution of Eq. (16) are:

M1 =

[
12×3 02×7
01×3 01×7

]
M2 =

[
02×3 02×7
11×3 01×7

]
M3 =

[
03×3 13×1 03×6

]
M4 =

[
03×4 13×6

]
.

It is evident from Figs. 2(middle) and 2(right) that the opti-
mal solution resulting from the application of Eq. (16) out-
performs the former one as expected.

Lemma 1 is a powerful tool that can be used for solving
the modeling problem of urban building façades. However,
its use demands knowledge on the partitioning 1 − 0 ma-
trices Mk, k = 1, . . . ,K. In the next section, inspired by
Eq. (16), we present a clustering based technique to esti-
mate them and finally solve the Kronecker approximation
problem.
5. Algorithm

Most of the well known low-rank modeling techniques,
are using the original image and try to minimize its rank.



We, on the other hand, use a Kronecker product based
model FN×M . We are thus able to express the cost func-
tion defined in Eq. (7) in an equivalent form (11). This is
essential, since by transforming the given matrix FN×M
into its rearranged counterpart F̃lvlh×NvNh

, we form a ma-
trix whose rank is drastically reduced (it is upper bounded
by the smallest dimension of the above mentioned matrix,
which usually is equal to lvlh). Our algorithm starts with
the estimation of the sizeNv×Nh of the patterns (Sec. 5.4),
continues with the estimation of K and the actual partition
matrices (Secs. 5.1-5.2) and concludes with the computa-
tion of pattern matrices and weights (Sec. 5.3).

5.1. Estimating K by Clustering

Here we assume that we know the parameters Nv and
Nh (we will show how to compute them in Sec. 5.4). We
will describe an iterative technique which is based on the
idea of clustering the rows of the rearranged counterpart of
the given matrix FN×M . In particular, we use a partitional
(k-means) clustering algorithm in an iterative fashion in or-
der to accurately estimate the rank of that matrix.

To this end, let us consider that matrix F̃lvlh×NvNh
(for

simplicity in the notation from now on we will denote it by
F̃), as well as the desired number of clusters we would like
to group the rows of the matrix (let us denote it by K) be
given, and let us define the following set consisting of K
groups:

Rk = {f tq : ||f tq − r̄tk||22 ≤ ||f tq − r̄tl ||22, ∀ 1 ≤ l ≤ K}
k = 1, 2, · · · ,K (17)

where f tq denotes the q-th row of matrix F̃, and r̄tk the mean
of the k-th group of the rows respectively, as computed by
k-means.

Let us also define the corresponding indicator vectors
of length lvlh each:

1Rk
[q] =

{
1 if f tq ∈ Rk
0 otherwise, q = {1, 2, · · · , lvlh}

(18)

and the element-wise mean vectors of each group:

r̄tk = mean{Rk}, k = 1, 2, · · · , K (19)

We can now define the following matrix:

F̃R =
K∑
k=1

1Rk
r̄tk (20)

which has the same size as F̃. More importantly, if the given
number of clusters K were the correct one, then K should
equal to the rank of F̃. If, on the other hand, the given
number of clustersK is greater than the real rank of F̃, then
the rank of F̃R will be smaller than K. Hence, by defining
the new number of the clusters as:

K = rank(F̃R) (21)

and repeating the above described procedure, we are ex-
pecting that after some iterations, F̃R will be the desired
approximation of F̃. Note that the computation of rank in
Eq. (21) and as part of Algorithm 1, is a generic algorithm
and not one that minimizes the rank of a matrix.

Algorithm 1: Kronecker Façade Modeling, noise-free ideal
case. Input: F̃, K = rank(F̃)

1: repeat
2: Form groupsRk, k = 1, . . . ,K via k-means (17)
3: Form the indicator vectors 1Rk

of (18)
4: Form the mean vectors r̄t

k
of (19)

5: Compute the matrix F̃R defined in (20)
6: Compute its rank K (21)
7: Assign F̃R to F̃
8: until convergence
9: Output: F̃?R, K

?, 1Rk
.

Note that r̄t
k
, k = 1, 2, · · · ,K? are the rows of F̃?R.

Note also that the use of mean in Eq. (19) is in exact ac-
cordance with Lemma 1 (as will be seen in Sec. 5.3). This
will provide the optimal result assuming an ideal noise-free
case.

In practice though, due to variations caused by occlu-
sions (such as trees, traffic lights, etc.), shadows, etc., in-
stead of the mean in Step 4, we use the element-wise
median operator:

r̄tk = median{Rk}. (22)

This is based on the robustness of the median operator (used
for the estimation of the most characteristic values of rows
that belong to the same cluster) and its optimality in the L1

sense.
A second modification is also essential. Unfortunately,

Lemma 1 does not guarantee that the patterns are piece-wise
constant. One way to enforce that constraint is by also forc-
ing clustering in the columns of F̃ as well (note that each
column spans all patterns). We thus consider the matrix:

G̃ =
1

2
(F̃C + F̃R) (23)

and the new number of the clusters:

K = min{rank(F̃R), rank(F̃C)}, (24)

where F̃C is the column-wise clustering result. It is obtained
by following the same k-means clustering, but now in the
columns:

Ck = {fp : ||fp − c̄k||22 ≤ ||fp − c̄l||22, ∀ 1 ≤ l ≤ K}
k = 1, 2, · · · ,K (25)

where fp denotes the p-th column of matrix F̃, and c̄k
denotes the mean of the k-th group of the columns re-
spectively. The corresponding indicator vectors of length



NvNh is defined as:

1Ck [p] =

{
1, if fp ∈ Ck
0 otherwise, p = {1, 2, · · · , NvNh}

(26)

and the element-wise median vectors of each group:

c̄k = median{Ck}, k = 1, 2, · · · , K. (27)

Then,
F̃C =

K∑
k=1

c̄k1
t
Ck . (28)

Therefore, the algorithm we use in practice is shown below.

Algorithm 2: Kronecker Façade Modeling. Input: F̃, K =
rank(F̃)

1: repeat
2: Form groups Rk, Ck k = 1, . . . ,K via k-means

(17),(25)
3: Form the indicator vectors 1Rk

, 1Ck of (18), (26)
4: Form the vectors r̄t

k
, c̄k of (22), (27)

5: Form the matrices F̃R, F̃C and G̃ of (20), (28) and
(23)

6: Set K using (24)
7: Assign G̃ to F̃
8: until convergence
9: Output: F̃?R, K

?, 1Rk
.

Note that r̄t
k
, k = 1, 2, · · · ,K? are the rows of F̃?R.

For the convergence condition in Algorithm 2, we can con-
sider the convergence of the sum of all entries in |G̃i −
G̃i−1|, where G̃i denotes the G̃ obtained in the ith iter-
ation, or set the number of iterations to a maximum pre-
specified number. Finally, the denoising of matrix F̃ after
Step 7 in the algorithm above, can drastically speed up the
convergence.

5.2. Estimating Matrices Mk, k = 1, 2, · · · ,K?

We estimate matrices Mk, k = 1, 2, · · · ,K? by reshap-
ing each one of the K? above mentioned indicator vectors
into their nominal form, that is, in a rectangular array of size
lh × lv each.

Algorithm 3: Estimation of Matrices Mk. Input: 1Rk
,K?

1: for k = 1 to K? do
2: mk = 1Rk

3: Mk = reshape(mk, lh, lv)
4: end for
5: Output: Mk, k = 1, . . . , K?.

We must stress at this point that it is easy to validate
that the vectorized forms of the estimated partition matrices
satisfy the conditions of Eqs. (2) and (3).

5.3. Computing Patterns and Weighting Factors

At this point we have estimated all the quantities needed
to find out the optimal patterns P̂k and weighting factors
λk, k = 1, 2, · · · ,K?, as they are defined in Lemma1.
Note that the estimated partition matrices have the desired
optimal 1 − 0 form. In addition, since each mk coincides
with the corresponding indicator vector, and by the def-
inition of mean vectors r̄?k defined in (19), each term of
the matrix F̃R of (20), has exactly the same form with the
optimal patterns defined in Lemma 1. Indeed, by taking
into account that by definition mk = vec{Mk}, and be-
cause of the special 1 − 0 form of the partition matrices
||mk||22 = ||mk||0, the following is true:

λ?kvec{P̂?
k} =

UΣTVT vec{Mk}
||vec{Mk}||22

= r̄?k, k = 1, ...,K?.

(29)
Therefore, the vectors r̄?k, computed in Algorithm 1, pro-
vide us the weighted optimal patterns. In practice, as dis-
cussed in Sec. 5.1, we are using the results of Algorithm
2.

5.4. Estimating the Spatial Periods of the Patterns

In all the steps of the proposed algorithm we have as-
sumed that the spatial periods of the patterns were known.
However, they are unknown and must be estimated. Al-
though well known methods ([3, 12]) can be used for that
purpose, we propose the use of the algorithm in Sec. 5.1.
The only difference is that the input to the algorithm is the
actual façade matrix F and not its rearranged form F̃. In
particular, let us run Algorithm 2 for a predefined value K0

of the parameter K once with input F, and then with input
Ft. Then, we can compute the following:

||1Rk? ||0 = max
k=1,2,··· ,K0

{||1Rk
||0} (30)

||1Cl? ||0 = max
l=1,2,··· ,K0

{||1Cl ||0} , (31)

and the corresponding auto-correlation sequences:

rRk? = 1R?
k
∗ 1R?

k
(32)

cCk? = 1C?l ∗ 1C?l (33)

where ” ∗ ” denotes the correlation operator. Note that by
taking into account Eqs. (30-31), indicator vectors 1Rk? ,
1Cl? are the vectors that define the dominant row and col-
umn spatial periods respectively and thus the computa-
tion of the corresponding auto correlation sequences makes
sense. Note also that the vectors involved in the computa-
tion of the proposed auto-correlation sequences are based
on indicator vectors, that is 1−0 vectors, and not on gray-
value quantities.



Algorithm 4 : Estimation of Periods Nh, Nv.
Input: FN×M , K0

1: Form the vectors 1Rk
, k = 1, 2, ...,K0 using (18)

2: Form the vectors 1Cl , l = 1, 2, ...,K0

3: Compute the quantities defined in Eqs. (30-31)
4: Compute the sequences defined in Eqs. (32-33)
5: Use them to estimate the desired spatial periods
6: Output: N̂h and N̂v.

The results we obtained with K0 = 5 in the urban build-
ing façade of Fig. 2 (left), are shown in Figs. 3 (a) and 3(b)
respectively.

6. Experiments and Discussion
The experiments are implemented in Matlab, and run

on a computer with an 1.8 GHz Intel Core i7 CPU and a
4GB memory. To evaluate the performance of our VPD
initialization scheme (Sec. 3), we run TILT with its origi-
nal branching initialization scheme and with our vanishing
points initialization. The results are shown in Table 1. The
urban images we use for test include 182 façade images we
collected in New York City as well as 124 sample façades
from TILT’s web resources. The results clearly state that
in urban environments the use of vanishing points signifi-
cantly improve the quality of the results. We thus propose
to use our automated initialization technique in those cases
in order to first rectify and then use TILT (or other similar
methods) for improvement.

In a separate experiment we tested our repeated pattern
detection in 89 images for which we had ground-truth [13,
15]. Out of the 89 images we tested, only 4% resulted to
failure detections (see failure cases in Fig. 6). The results
from the remaining 96% were very similar to the ground-
truth. We overlaid our results with the ground-truth pixel
by pixel and had exact matches for 91% of the pixels.

A more extensive collection of results can be found in
supplemental material. In this paper we present some repre-
sentative images. Our low-rank method (Secs. 5.1, 5.2) en-
ables us to remove occlusions, small illumination variations
and photometric distortions as seen in the fourth column of
Fig. 4, 5, and 6. Because of this we have very accurate de-
tection of repeated patterns. Based on those clean patterns,
we can easily obtain 1-0 patterns (i.e. refining the results)
by applying classification methods, such as the rank-one al-
gorithm [15], within each group. Examples of detected 1-0
patterns are shown in the last column of Fig. 4, 5, and 6. For
example the method of [15] fails in the case of Fig. 5, due
to tree occlusion. Our algorithm, however, can successfully
detect four different clusters and clear pattern structures.

We can conclude that the block partition Sec. 5.4 is not
a bottleneck of our algorithm. The partition lines may pass
across the desired patterns, as shown in the second row of
Fig.6. In such cases some pattern is divided into two ad-

Initialization method Run Time Success Rate
Branch-and-bound 36.63s 65%
VPD 38.6s 84.6%

Table 1. Performance of TILT with branching and VPD transform
initialization (Sec. 3) respectively. The vanishing points initializa-
tion results in significant increase in success rate without a penalty
in speed. The experiments are done on a set of 306 façade images.

(a) (b) (c) (d) (e)
Figure 4. (a) Input image, (b) partition grid showing the periods
estimated by Algorithm 4, with all partition blocks colored ran-
domly, (c) grouped blocks generated by Algorithms 2 and 3, with
each group having the same color, (d) low-rank component gener-
ated by Algorithms 2 - 4 in Sec. 5.1 - 5.4, and (e) estimated 1-0
repeated patterns by refining (d).

jacent partition blocks, such that the partition blocks don’t
contain the desired patterns completely. However our al-
gorithm is robust enough to detected them separately. We
must stress at this point that a better partition can definitely
improve the performance. In order to have partition lines
mostly passing through wall areas as desired, we can adopt
methods proposed in [10, 3].

In the experiments, we found most of the common build-
ing façades to be able to be modeled by our Kronecker prod-
uct structure. One limitation is that our method fails when
a façade contains repeated structures that do not follow the
Kronecker product model, such as in the bottom row of Fig.
6. Another limitation is the inability to handle large pho-
tometric variations, since they are causing ambiguity in the
block partition (second to last row of Fig. 6). Unfortunately,
currently there is no simple way for the system to automat-
ically determine failure cases.

In conclusion, this paper describes a novel method for
detection of repeated patterns following a Kronecker Prod-
uct formulation. Our method is general and can be applied
to a wide variation of façade structures and is being based
on a solid theoretical foundation. The fact that we are uti-
lizing the low-rank part of the rearranged input façade im-
age allows us to handle problems of occlusion, shadows and
illumination variations. Other image processing, low-rank
and SVD-based techniques that can be used for increasing
the robustness and speed of convergence are currently under
investigation.

References
[1] O. Barinova, V. Lempitsky, E. Tretiak, and P. Kohli. Ge-

ometric image parsing in man-made environments. ECCV,
2010.



Figure 5. From left to right: follow the order of Fig. 4. The first
row is a skyscraper example, where there is only one group. The
second row is a failure case of method presented in [18] (large tree
occlusion), but our method can successfully detect the repeated
patterns as shown in the last column. The third row is an example
from the dataset of [1]. The last row shows detected patterns for
the example in Fig. 2.

[2] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal
component analysis? ACM, 2011.

[3] S. Friedman and I. Stamos. Online detection of repeated
structures in point clouds of urban scenes for compression
and registration. IJCV, 2013.

[4] S. Gandy, B. Recht, and I. Yamada. Tensor completion and
low-n-rank tensor recovery via convex optimization. Inverse
Problems, 2011.

[5] C. Harris and M. Stephens. A combined corner and edge
detector. Fourth Alvey Vision Conference.

[6] B. Li, K. Peng, X. Ying, and H. Zha. Simultaneous vanishing
point detection and camera calibration from single images.
ISVC, II:151–160, 2010.

[7] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion
for estimating missing values in visual data. PAMI, 2009.

[8] Y. Liu, R. T. Collins, and Y. Tsin. A computational model
for periodic pattern perception based on frieze and wallpaper
groups. PAMI, 2004.

[9] C. F. V. Loan. The ubiquitous Kronecker product. Journal
of Computational and Applied Mathematics, 123:85–100,
2000.

[10] P. Muller, G. Zeng, P. Wonka, and L. V. Gool. Image-based
procedural modeling of facades. Siggraph, 2007.

Figure 6. From left to right: follow the order of Fig. 4. First five
rows show success cases (robustness to occlusions and different ar-
chitectural styles). Last two rows are failure cases due to the pho-
tometric variation and inability to model via a Kronecker product
model.

[11] G. Schindler, P. Krishnamurthy, R. Lublinerman, Y. Liu, and
F. Dellaert. Detecting and matching repeated patterns for
automatic geo-tagging in urban environments. CVPR, 2008.

[12] C.-H. Shen, S.-S. Huang, H. Fu, and S.-M. Hu. Adaptive
partitioning of urban facades. ACM (TOG).

[13] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and
N. Paragios. Shape grammar parsing via reinforcement
learning. CVPR, 2011.

[14] C. Wu, J.-M. Frahm, and M. Pollefeys. Detecting large repet-
itive structures with salient boundaries. ECCV, 2010.

[15] C. Yang, T. Han, L. Quan, and C.-L. Tai. Parsing façade with
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