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Abstract

The automated extraction of photorealistic 3{D
models of the world that can be used in applica-
tions such as virtual reality, tele-presence, digital cine-
matography and urban planning, is the focus of this pa-
per. The combination of range (dense depth estimates)
and image sensing (color information) provides data{
sets which allow us to create photorealistic models of
high quality. The challenges are the simpli�cation of
the 3{D data set, the extraction of meaningful features
in both the range and 2{D images and the fusion of
those data{sets using the extracted features. We ad-
dress all these challenges and provide results on data
we gathered in outdoor scenes by a range and image
sensor based on a mobile robot. Our ultimate goal is
an autonomous 3{D model creation system which min-
imizes the amount of human interaction.

1 Introduction
The recovery and representation of the 3{D geo-

metric and photometric information of the real world
is one of the most challenging problems in computer
vision research. With this work we would like to ad-
dress the need for highly realistic geometric models
of the world, in particular for models which represent
outdoor urban scenes. Those models may be used in
applications such as virtual reality, tele-presence, dig-
ital cinematography and urban planning.

We focus on the issues of automatic extraction of
meaningful features from range images and the regis-
tration between range and image data acquired from
di�erent viewpoints. Our goal is to create an accu-
rate photometric and geometric representation of the
scene by means of integrating range and image mea-
surements. The 3{D and 2{D data sets which those
sensors provide are qualitatively di�erent and need to
be registered. Figure 1 describes the data 
ow of our
approach.

Range sensors provide a number of 3{D points
which sample the real world surfaces in a regular grid.
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Segmenting this set of points into clusters of points
which reside on the same algebraic surface is bene�-
cial for the following reasons:

1. Removal of redundant information greatly simpli-
�es the acquired data set and enables fast render-
ing and fast 3{D CAD modeling.

2. The points which lie on the intersection of the 3{
D surfaces are 3{D curves which can be utilized in
registering the 3{D data set with 3{D or 2{D (im-
ages) data sets acquired from di�erent locations
in space.

We are interested in estimating planar surface
patches and 3{D lines at the locations where these
patches intersect. This work can be extended towards
the extraction of non-planar surface patches (polyno-
mials of low degrees) and the localization of general
3{D curves instead of lines.

We utilize the density of the range data and the
organized way in which the data is measured by the
range sensor. Our range measurements are very ac-
curate and the segmentation can be very accurate as
well. In �gure 2 you can see the data 
ow of the pla-
nar segmentation and 3{D edge detection. We will
describe each individual module in the following sec-
tions.

We have built a mobile robot system which contains
both range and image sensors which can be navigated
to acquisition sites to create these site models (de-
scribed in detail in [10]). The range data is registered
wrt the image when a number of correspondences be-
tween the automatically extracted range and image
edges is known. Thus we are calculating the relative
position of the camera wrt the range sensor (transla-
tion and orientation). We believe that a hybrid ap-
proach which uses both range and image sensing can
lead to very accurate results both photometrically and
geometrically.

Section 2 presents an overview of the related work.
The extraction of planar surfaces and 3{D lines from
range data and of 2{D lines from image data is the
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Figure 1: System for photorealistic 3{D modeling.

topic of section 3. In section 4 we present the registra-
tion between range and image data. Section 5 presents
the results of the algorithms on real data measured us-
ing the Cyra Scanner [6] in the Columbia University
area (planar segmentation, 3{D edge detection, 2{D
line detection, registration and texture mapping). Fi-
nally section 6 presents thoughts for future work.

2 Related work

In the area of range segmentation Besl and Jain
in [4] describe an algorithm which �ts bivariate{
polynomial surfaces of various degrees on the 3{D
data. The algorithm is more general than our ap-
proach (we try to �t planes only). However it is more
computationally intensive and we believe that it is
not suited for our large high{quality data. In [11] a
comparison of many range segmentation algorithms is
presented. Work in 3{D edge detection includes the
algorithms presented in [13, 17]. In this case an edge{
following procedure is essential for the computation
of 3{D lines. In our approach 3{D lines are produced
directly at the intersection of the extracted planar sur-
faces.

The extraction of photorealistic models of outdoor
environments has received much attention recently.
Including in this is the work of Shum [18], Becker
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[1, 2], and Debevec [7]. Those methods use only 2{D
images but the user guides the model creation phase.
This leads to lack of scalability wrt the number of pro-
cessed images of the scene and to the computation of
simpli�ed geometric descriptions of the scene. Teller
[5, 16, 21] on the other hand acquires and processes a
large amount of pose{annotated spherical imagery of
the scene. However, this method su�ers from the large
amount of information to be processed. Finally Zis-
serman's group in Oxford [9] works towards the fully
automatic construction of graphical models of scenes
when the input is a sequence of closely spaced 2{D im-
ages (video sequence). The problem in this case is the
sparse depth estimates which depend on the texture
and geometric structure of the scene. In our approach
the use of range sensing provides dense geometric de-
tail which lacks photometric information. We believe
that we can create photorealistic models of high ge-
ometric and photometric detail by fusing 3{D range
and 2{D image data.

The VIT group [23, 3, 8] has built a mobile plat-
form which carries a range and several camera sensors
and acquire geometric and photometric information of
indoor and outdoor scenes. This method is the clos-
est to ours since it combines range with image sensing.
The basic problem is the excessive use of sensors (nine
cameras and a range sensor on the platform) in an ad{



hoc manner. The bundle adjustment procedure used
for the registration between views is not guaranteed
to work in all cases and the presented experimental
results do not address this issue.

3 3{D & 2{D feature extraction
3.1 Planar surface extraction

We want to group the measured 3{D points into
clusters of neighboring points which correspond to the
same surface. Two points are considered neighbors if
they are adjacent (8{connected) in the grid of mea-
sured 3{D points. The outline of our approach is the
following:

Point Classi�cation A local plane is being �t in the
k�k neighborhood of every 3{D point. If the �t is
acceptable the point is classi�ed as locally pla-

nar otherwise is classi�ed as non{planar. Fi-
nally if the number of sensed points in the k � k

neighborhood is not enough to produce a reliable
�t the point is classi�ed as isolated.

Cluster Initialization Create one cluster for every
locally planar point.

Cluster Merging Start with the upper left corner
in the grid and sequentially visit all locally planar
clusters (see �gure 3).

Final Planar Fit Perform a �nal planar �t on the
points of each cluster.

In the Point Classi�cation phase a plane is �t to
the points vi which lie on the k � k neighborhood of
every point P . The normal np of the computed plane
corresponds to the smallest eigenvector of the 3 by
3 matrix A = �N

i=1((vi �m)T � (vi �m)) where m

is the centroid of the set of vertices vi. The small-
est eigenvalue of the matrix A expresses the deviation
of the points vi from the �tted plane, that is it is a
measure of the quality of the �t. If the deviation is
below a user speci�ed threshold Pthresh the center of
the neighborhood is classi�ed as locally planar point.

A list of clusters is initialized, one cluster per locally
planar point. The next step is to merge the initial list
of clusters and to create a minimumnumber of clusters
of maximum size. Each cluster is de�ned as a set of
3{D points which are connected and which lie on the
same algebraic surface (plane in our case). We visit all
the locally planar 3{D points sequentially (from left to
right and from top to bottom ). We do not consider
at all the non{locally planar and isolated points.

For each point P we are visiting its three neighbors
A1; A2 and A3 (�gure 3). We have to decide if the
two points P and Aj could lie on the same planar

surface. If this is the case the clusters where those
two points belong are merged into one new cluster.
Two adjacent locally planar points are considered to
lie on the same planar surface if their corresponding
local planar patches have similar orientation and are
close in 3D space.
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Figure 4: Coplanarity measure. Two planar patches
�tted around points P1 and P2 at a distance jr12j.

We introduce a metric of co{normality and co{
planarity of two planar patches. Figure 4 displays two
local planar patches which have been �t around the
points P1 and P2 (Point Classi�cation). The normal
of the patches are n1 and n2 respectively. The points
P 0

i are the projections of the points Pi on the patches.
The two planar patches are considered to be part of
the same planar surface if both conditions are met:

1. The patches have identical orientation (within a
tolerance region), that is the angle � = cos�1(n1 �
n2) is smaller than a threshold �thresh [co{
normality measure].

2. The patches lie on the same in�nite plane [co{
planaritymeasure]. The distance between the two
patches is de�ned as d = max(jr12 �n1j; jr12�n2j):
This distance should be smaller than a threshold
dthresh.

Finally we �t a plane on all points of the �nal
clusters. We also extract the outer boundary of this
plane, the convex hull of this boundary and the axis-
aligned three-dimensional bounding box which encloses
this boundary (used for fast distance computation be-
tween the extracted bounded planar regions; see next
section).

3.2 3{D Line Detection

The intersection of the planar regions provides
three dimensional lines. This is done in two stages:

1. We compute the in�nite 3{D lines at the inter-
section of the extracted planar regions. We do
not consider every possible pair of planar regions



but only those whose three-dimensional bounding
boxes are close wrt each other (distance thresh-
old dbound). The computation of the distance be-
tween two bounding boxes is very fast. However
this measure maybe inaccurate. Thus we may
end up with lines which are the intersection of
non-neighboring planes.

2. In order to �lter out �ctitious lines which are
produced by the intersection of non-neighboring
planes we disregard all lines whose distance from
both producing polygons is larger than a thresh-
old dpoly . The distance of the 3{D line from a
convex polygon (both the line and the polygon
lie on the same plane) is the minimum distance
of this line from every edge of the polygon. In
order to compute the distance between two line
segments we use a fast algorithmdescribed in [15].

We can verify the existence of the lines by checking
if they pass through space which is occupied by mea-
sured 3{D points, but this test has not been imple-
mented yet.

3.3 2{D line detection

The computation of 2{D linear image segments is
done in the following manner:

1. Application of Canny edge detection with hys-
teresis thresholding. That provides chains of 2{D
edges where each edge is one pixel in size (edge
tracking). We used the program xcv of the Tar-
getJr distribution [20] in order to compute the
Canny edges.

2. Segmentation of each chain of 2{D edges into lin-
ear parts. Each linear part has a minimumlength
of lmin edges and the maximum least square de-
viation from the underlying edges is nthresh. The
�tting is incremental, that is we try to �t the
maximum number of edges to a linear segment
while we traverse the edge chain (orthogonal re-
gression).

4 Registering range & image data
The problem we are attacking next is the fusion of

the information provided by the range and image sen-
sors. Those two sensors provide information of a qual-
itatively di�erent nature and have distinct projection
models. While the range sensor provides the distance
between the sensed points and its center of projection,
the image sensor captures the light emitted from scene
points. The fusion of information between those two
sensors requires the knowledge of the internal cam-
era parameters (e�ective focal length, principal point

and distortion parameters) and the relative position
and orientation between the centers of projection of
the camera and the range sensor. The knowledge of
those parameters allows us to invert the image forma-
tion process and to project back the color information
captured by the camera on the 3{D points provided by
the range sensor. Thus we can create a photorealistic
representation of the environment.

The estimation of the unknown position and orien-
tation of an internally calibrated camera wrt the range
sensor is possible if a corresponding set of 3{D and 2{D
features is known. This corresponding set is provided
by the user but the goal is its automatic computation
(see section 6). Also the camera can self{calibrate
(internal parameters) by utilizing the parallelism be-
tween straight lines in man{made scenes (see section
6). The types of features we are using for matching are
3{D range and 2{D image lines (sections 3.2 and 3.3).
Corresponding lines are those which are produced by
the same physical scene structure. The automated
matching between 3{D and 2{D lines is complicated
by the fact that 2{D edges are produced by depth,
surface normal, lighting or re
ectance discontinuities
(geometric, material and lighting properties) whereas
3-D edges are the result of depth and surface discon-
tinuities only (geometric properties).

We adapted the algorithm proposed by Kumar &
Hanson [14] for the registration between range and 2{
D images. The input is a set of corresponding 3{D and
2{D line pairs. The internal calibration parameters of
the camera are assumed to be known.

LetNi be the normal of the plane formed by the ith
image line and the center of projection of the camera
(�gure 5). This vector is expressed in the coordinate
system of the camera. The sum of the squared per-
pendicular distance of the endpoints e1i and e2i of the
corresponding ith 3{D line from that plane is

di = (Ni � (R(e
1
i ) + T))2 + (Ni � (R(e

2
i ) +T))2; (1)

where the endpoints e1i and e2i are expressed in the
coordinate system of the range sensor. The error func-
tion we wish to minimize is

E1(R;T) = �N
i=1di: (2)

This function is minimized with respect to the rotation
matrix R and the translation vector T. This error
function expresses the perpendicular distance of the
endpoints of a 3{D line from the plane formed by the
perspective projection of the corresponding 2{D line
into 3{D space (�gure 5). The exact location of the
endpoints of the 2{D image segment do not contribute
to the error metric and they can move freely along the
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Figure 5: Error metric used for the registration of 3{D
and 2{D line sets.

image line without a�ecting the error metric. In this
case we have a matching between in�nite image lines
and �nite 3{D segments.

The minimization of that metric is similar to the
iterative technique proposed by Horn [12]. Let ei

0 =
Rei, where ei is a 3{D point expressed in the coordi-
nate system of the range sensor. Then an incremental
in�nitesimal rotation d! will transform ei

0 to

ei
00 = ei

0 + d! � ei
0: (3)

Using this fact the application of an in�nitesimal in-
cremental rotation d! and an incremental translation
dT would change the error metric to

E1(RR(d!);T+ dT): (4)

By taking the derivatives of this error with respect
to d! and dT and setting the results equal to 0 we
reach a linear system of 6 equations with 6 unknowns
(the elements of d! and dT). The solution of this
system (d!, dT) provides updates for the rotation
matrix R and the translation vector T. The rota-
tion is represented as a unit quartenion in order to
convert non-in�nitesimal rotational estimates d! to
valid rotational representations. That procedure is
run iteratively until the error metric becomes smaller
than a threshold or a maximum number of iterations
is reached. The extraction of reliable and accurate 3{
D and 2{D features is very important for the accuracy
of the �nal registration.

5 Results
In this section results of the 3{D model acquisition,

planar segmentation, 3{D line detection, 2{D line de-
tection and registration between range and image data
are presented.

The range data was captured by a CYRA range
scanner [6]. The building shown in those results was
captured at a resolution of 992 by 989 3D points. In
�gure 6a you can see the 2{D image of the acquired
scene (building on Columbia University campus). The
992 x 998 3{D points are organized into a triangular
mesh of points which is stored as an ACIS CAD model
[19]. That 3{D model is shown in �gure 6b.

The planar segmentation of the 3{D data set fol-
lows. The result is displayed in �gure 7a. The parame-
ters used where Pthresh = 0:08, �thresh = 0:04 degrees
and dthresh = 0:01 meters (parameters de�ned in sec-
tion 3.1). The size of the neighborhood used to �t
the initial planes was 7 by 7. Di�erent planes are dis-
played with di�erent colors. The points which didn't
pass the �rst stage of the planar segmentation algo-
rithm and have been classi�ed as non{locally planar
(section 3.1) are displayed as red. The automatically
extracted 3{D lines shown in �gure 7b lie on the in-
tersection of the planes of �gure 7a (thresholds used:
dbound = 0:4 meters and dpoly = 0:2 meters, section
3.2). Figure 8a contains the extracted 2{D lines. The
matching set of 2{D and 3{D lines, which is used for
the registration between the 2{D and 3{D data sets,
is shown in �gures 8b and 8c . This set is selected by
the user.

The registration between the range and image data
(estimation of translation and orientation between the
range and image sensors) follows. We used Tsai's cali-
bration algorithm [22] and computed the e�ective focal
length (5.46mm) and principal point (196:8, 205:5) of
the camera (image resolution was 400 by 400). Using
the translation and orientation estimation of the cam-
era we project the selected 3{D lines (shown in �gure
8c) and all 3{D lines (shown in �gure 7b) on the 2{D
image (�gure 6a). The result is shown in �gure 9. You
can see that the 3{D lines are accurately projected on
the 2{D image (note the windows and the back build-
ing that appears on the top of the scene). This result
shows that the extracted 3{D and 2{D lines and the
registration between the camera and range sensor are
very accurate. Figure 6c shows the �nal photorealistic
model of the scene. This photorealistic model is pro-
vided by the mapping of the 2{D texture information
6a on the 3{D model 6b.

6 Discussion
We have implemented a system which combines

dense depth measurements from a range sensor and
image information from a camera in order to create a
photorealistic model of the scene. We addressed the
issues of 3{D and 2{D feature extraction and of the
fusion of the gathered information. We would like to



Figure 6: a) Image of the scene, b) 3D model of the scene and c) Image texture-mapped on 3D model after the
registration.

Figure 10: Extracted sets of 2{D lines which corre-
spond to parallel 3{D lines. Each set of 2{D lines con-
verges to a distinct vanishing point. The three large
axes in the middle of the image point to the corre-
sponding vanishing points.

extend the system towards the direction of minimal
human interaction. At this point the human is in-
volved in two stages: a) the internal calibration of the
camera sensor and b) the selection of the matching
set of 3{D and 2{D features. We have implemented
a camera self{calibration algorithm when three direc-
tions of parallel 3{D lines are detected on the 2{D
image [2]. The automated extraction of lines of this
kind is possible in environments of man{made objects
(e.g. buildings) and a result can be seen in �gure 10.
More challenging is the automated matching between

sets of 3{D and 2{D features. Again the extraction of
three directions of parallel 3{D lines (using the auto-
mated extracted 3{D line set) and the corresponding
directions of 2{D lines (using the automated extracted
2{D line set) can be the �rst step in that procedure.
The knowledge of those directions can be directly used
for the solution of the relative orientation between the
two sensors. On the other hand extraction of pattern
of lines that form windows (which are prominent in
the 3{D line set) can lead to the computation of the
translation between the two sensors.
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