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Abstract— Accurately estimating the 6D pose of objects
is crucial for many applications, such as robotic grasping,
autonomous driving, and augmented reality. However, this
task becomes more challenging in poor lighting conditions or
when dealing with textureless objects. To address this issue,
depth images are becoming an increasingly popular choice
due to their invariance to a scene’s appearance and the
implicit incorporation of essential geometric characteristics.
However, fully leveraging depth information to improve the
performance of pose estimation remains a difficult and under-
investigated problem. To tackle this challenge, we propose a
novel framework called SwinDePose, that uses only geometric
information from depth images to achieve accurate 6D pose
estimation. SwinDePose first calculates the angles between each
normal vector defined in a depth image and the three coordinate
axes in the camera coordinate system. The resulting angles
are then formed into an image, which is encoded using Swin
Transformer. Additionally, we apply RandLA-Net to learn the
representations from point clouds. The resulting image and
point clouds embeddings are concatenated and fed into a
semantic segmentation module and a 3D keypoints localization
module. Finally, we estimate 6D poses using a least-square
fitting approach based on the target object’s predicted semantic
mask and 3D keypoints. In experiments on the LineMod and
Occlusion LineMod, SwinDePose outperforms existing state-
of-the-art methods for 6D object pose estimation using depth
images. We also provide competitive results on the YCB-Video
dataset even without post-processing. This demonstrates the
effectiveness of our approach and highlights its potential for
improving performance in real-world scenarios. Our code is at
https://github.com/zhujunli1993/SwinDePose.

I. INTRODUCTION

6D pose estimation involves determining the rigid trans-
formation between camera coordinate and object coordinate
systems, including the 3D rotation matrix and the 3D transla-
tion vector. This is a critical step in many applications, such
as robotic manipulation [1], autonomous driving [2], and
augmented reality [3]. For example, in robotic manipulation,
robots need the 6D poses of target objects for recognition and
grasping [1]. In autonomous driving, vehicles must estimate
the 6D poses of roads and obstacles for navigation [2]. In
augmented reality, accurately estimating the 6D poses of
real-world objects is essential for correctly placing virtual
objects [3].

6D pose estimation techniques are generally classified into
three groups based on the type of input data: RGB input
[4], [5], RGB-D input [6], [7], and depth image input [8],
[9], [10]. RGB-based and RGB-D-based methods rely on the
appearance information provided by RGB images, limiting
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Fig. 1: We propose a novel framework called SwinDePose
for 6D object pose estimation from depth images, which
are lifted into point clouds and normal vector angle images.
Their embeddings are learned for 3D keypoints localization
and semantic segmentation, then 6D poses (R and T ) of the
target object are recovered. In this figure, we project the 3D
keypoints onto 2D pixels in the RGB image for visualization.

their pose estimation performance in challenging scenarios,
such as poor lighting or textureless objects. In contrast,
depth images provide 3D geometric information that is less
sensitive to lighting conditions or texture. Additionally, depth
sensors have become more affordable, leading to a growing
number of works that focus solely on using depth images for
6D pose estimation.

Traditional depth-based 6D pose estimation methods, like
Point Pair Features (PPF) [11], rely on hand-crafted features
based on objects’ geometry information. However, these fea-
tures are sensitive to changes in viewpoints, objects’ shapes
and appearances, and require significant human efforts for
feature extraction and model fitting. Recent advancements in
deep learning have paved the way for the development of
deep neural networks that can learn geometric representa-
tions for accurate estimation of 6D poses from depth images
[8], [9], [10]. These methods lift depth images to point clouds
and design neural networks for 3D geometry representation
learning to estimate 6D poses. While these methods have
shown promising results, they rely solely on point cloud
embeddings and do not fully leverage the features from depth
images. Therefore, incorporating 2D representations of depth
images could provide additional information to improve pose
estimation performance.

To introduce depth image embeddings into 6D pose es-
timation, treating a depth image as a gray-level intensity
image and then applying existing vision algorithms are
natural choices. However, traditional vision algorithms may
not be well-suited for processing depth images due to noise,
missing data, and differences in representation compared to
RGB images. [12] opened up new opportunities to overcome
these challenges by using normal vectors at each surface
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point. In our work, we utilize normal vector angles to
represent depth information. Specifically, we calculate the
angles between each surface normal vector and the three
coordinate axes. Then we normalize them to the RGB color
range to form an RGB-like image, where each pixel has
three normalized angle values. Such images are fed into
our image representation learning network. In addition to the
normal vector angles images, we lift depth images to point
clouds using the given camera parameters and extract point
clouds features via the point clouds representation learning
network. Combining these two embeddings, our SwinDePose
architecture can leverage depth images and point clouds
information for more accurate 6D pose estimation.

Our proposed framework is shown in Fig. 1. We use Swin
Transformer [13] for image feature extraction, while using
RandLA-Net [14] for point cloud features extraction. The
learned image and point cloud embeddings are then fused
for 3D keypoints localization and semantic segmentation.
Especially for image feature extraction, [6], [7], [15] have
used the convolutional neural network (CNN). However,
these methods have limitations such as small local receptive
fields, sensitivity to object occlusions, and lack of global
context. To overcome these limitations, we employ Swin
Transformer, which leverages a self-attention mechanism
to capture global context by attending to all positions in
the input. Additionally, Swin Transformer exhibits robust-
ness to deformations and occlusions, making it suitable for
processing complex scenes. Works such as [16], [17] have
applied Swin Transformer for computer vision tasks, such as
object detection, instance semantic segmentation, and image
classification. To the best of our knowledge, this is the first
work using Swin Transformer for 6D object pose estimation
based on depth information.

To evaluate our method, we conduct experiments on three
popular datasets, the LineMod (LM), the Occlusion LineMod
(O-LM), and the YCB-Video (YCBV) datasets. Experimental
results show that the proposed approach outperforms the
state-of-the-art depth-based methods on LM and O-LM.

To summarize, the main contributions of our work are:
• Generating normal vector angle images to fully leverage

the geometry information from depth images, that can
be combined with point clouds, for feature extraction.

• Introducing a novel framework including Swin Trans-
former and point cloud networks for 6D pose estimation.

• Achieving SOTA performance based on depth informa-
tion on LM, and O-LM datasets and competitive results
on the YCBV dataset even without post-processing.

II. RELATED WORKS

6D Pose Estimation from Depth Images. Most existing
research on 6D pose estimation from depth images using
deep learning has primarily focused on converting depth
images into point clouds and utilizing existing semantic
segmentation models to extract object masks from depth
images. These masks are then used to crop objects from point
clouds and feed them into their proposed 6D pose estimation
framework. For instance, [8] proposed a framework based on

the augmented autoencoder and trained it on a large synthetic
point cloud dataset. [18] proposed the OVE6D method that
was trained on a large synthetic image dataset containing
ShapeNet objects. Other systems, such as those introduced
by [9] and [10], utilized instance semantic segmentation
masks from depth images and point clouds to regress 6D
poses. In contrast, our proposed method includes a semantic
segmentation module and integrates point clouds embeddings
with normal vector angles images embeddings obtained from
depth images to estimate 6D poses.

Vision Transformer. The Transformer, originally devel-
oped for natural language processing tasks, has been adapted
for computer vision tasks and has demonstrated significant
improvements in performance. Researchers have designed
various transformer networks for object detection, segmen-
tation, and pose estimation tasks. [13] proposed Swin Trans-
former, which constructs hierarchical feature maps from
input images using shifted windows and has been applied
as a backbone network for various tasks. For example, [16]
designed SimCrossTrans using Swin Transformer for 2D
object detection task. [17] introduced a novel image fusion
network for multi-modal image fusion and digital photogra-
phy image fusion. Moreover, [19] utilized Swin Transformer
to learn image representations for human pose estimation.
Our framework uses Swin Transformer as an encoder to
extract image features for 6D object pose estimation.

Depth Images Feature. Exploring depth information from
depth images has been a well-studied area in computer vi-
sion. For example, surface curvature [20], and kernel features
[21] have been used. Another [22] has computed normal
vectors from depth images and used spherical angles to rep-
resent the normal vectors for object recognition. Inspired by
these studies, we extract normal vectors from depth images
and compute the angles between each normal vector and the
XY Z coordinate axes in the camera coordinate system. These
angles are then normalized and grouped as an image, which
is fed into the image features extraction module.

III. METHOD

Given the input images, 6D pose estimation predicts the
rigid transformation of objects from the object coordinate
system to the camera coordinate system. The 6D includes
rotation matrix R ∈ SO(3) and translation vector T ∈ R3.

A. Overview.

Our proposed framework follows a pipeline that consists
of several steps, as shown in Fig. 2. First, we feed the
depth image D into the normal vector angles generation
module, which produces the normal vector angles image Inrm.
At the same time, we lift D to point clouds P using the
given camera parameters K. We then utilize two encoder-
decoder networks to learn the representations of Inrm and P,
respectively. Specifically, the image embeddings F′

Inrm
and

point clouds embeddings Fp are extracted and concatenated
to form the fused features F f use. We then feed F f use into
the semantic segmentation and 3D keypoints localization
modules to predict the mask and 3D keypoints of the target



Fig. 2: The pipeline of our proposed framework. The normal vector angles generation module outputs the normal vector
angles image. Two encoder-decoder networks extract features of normal vector angles images and point clouds, respectively.
The extracted image and point clouds embeddings are concatenated and then fed into the semantic segmentation and 3D
keypoints localization modules to predict the mask and 3D keypoints for the target object. Finally, a least-squares fitting
manner is adopted to estimate 6D poses from the predicted 3D keypoints.

object. Finally, we adopt a least-squares fitting method to
estimate the 6D poses based on the predicted 3D keypoints.

B. Normal Vector Angles Image Generation.

Previous depth-based 6D pose estimation studies [18], [10]
directly fed depth information into image encoders, but these
approaches may not fully utilize the geometry information
in depth images. Depth images capture depth information
and 2D grid structures and contain implicit local geometric
features and directional information.

Fig. 3: Examples of the normal vector angles image gen-
eration module. A pixel value of Phw in D is the distance
d between an object’s surface point and the camera. We
compute the normal vector N(nx,ny,nz) for each surface
point based on its depth information, and then obtain the
angles (ax,ay,az) between N and XY Z axes.

To capture both the local geometric features and direc-
tional information from depth images, we generate a normal
vector angles image for each scene, as shown in Fig. 3.
To achieve this, we calculate the surface normal vector
N(nx,ny,nz) for each pixel (u,v) in the depth image D, and
then determine the angles between N(nx,ny,nz) and the XY Z
axes in the camera coordinate system. The X-axis, Y -axis,

and Z-axis are represented as vectors x(1,0,0), y(0,1,0), and
z(0,0,1), respectively. The angles between N(nx,ny,nz) and
these three axes vectors can be expressed as:

ax = arccos(N ·x),ay = arccos(N ·y),az = arccos(N · z). (1)

Finally, the angles (ax,ay,az) are normalized into the range
0 ∼ 255 and used to create the normal vector angles image
Inrm, where each pixel has the normalized (ax,ay,az) as its
value. Inrm consists of three channels, each representing one
of the normalized angles.

C. Image Feature Extraction.

We propose an encoder-decoder network to extract pixel-
wise embeddings from normal vector angles image Inrm, as
shown in the top panel of Fig. 2. The network employs a
Tiny Swin Transformer (Swin-T) [13] as the encoder to learn
multi-scale representations from Inrm. The Swin-T includes
4 stages of Swin Transformer blocks with modified self-
attention layers, linear embedding layers, and patch merging
layers. Inrm is fed into the encoder as tokens. In stage 1, the
linear embedding layer and a Swin Transformer block with
modified self-attention layers extract the features. Within
stages 2, 3, and 4, patch merging layers reduce feature map
resolutions and Swin Transformer blocks are applied for
feature transformation to enlarge feature dimensions. The
embeddings from all stages are combined as hierarchical
representations and then fed into the decoder network. Com-
pared to the other Swin Transformer models with larger sizes,
such as Small, Based, and Large Swin Transformer models,
Swin-T has fewer parameters, making it more efficient.

After encoding the normal vector angles image with Swin-
T, the network employs UPerNet [23] and bilinear inter-
polation to generate dense pixel-wise image features. The
multi-scale feature maps from Swin-T’s are passed through
a Pyramid Pooling Module in UPerNet to generate feature
maps with the same dimension. These feature maps are



resized by a bilinear interpolation process and then concate-
nated. The dimension of the concatenated features is reduced
through a series of CNNs and an additional interpolation
stage, resulting in the pixel-wise image embeddings FInrm ,
whose size matches the input image size.

D. Point Clouds Feature Extraction.

We begin by converting depth images to point clouds P by
the given camera parameters. Next, we adopt RandLA-Net
[14] to extract representations from P, as shown in the bottom
panel of Fig. 2. Initially, P goes through a series of CNNs
to generate initial features FPini . These initial features are
then input to RandLA-Net encoder and decoder. The encoder
consists of five stages that extract multi-scale embeddings,
while the decoder recovers the resolution of the features in
each stage. Finally, we apply additional CNNs to produce
the final point-wise point clouds embeddings FP.

E. 3D Keypoint-based Pose Estimation.

Recently, several works on 6D pose estimation [6], [7]
estimate 6D poses by establishing keypoint correspondences
between 3D models and input RGB-D images, and then
applying a least-squares fitting algorithm to recover 6D poses
based on these correspondences. Similar to [6], [7], we
follow this way to estimate 6D poses. As shown in Fig.
2, after obtaining pixel-wise image embeddings FInrm and
point-wise point clouds embeddings FP, we take advantage
of the alignment between the image and the point clouds, and
then select the point-wise image features F′

Inrm
from FInrm .

Afterward, we concatenate FP and F′
Inrm

to obtain the fused
features F f use, which is fed into the semantic segmentation
module and 3D keypoints localization module to predict the
mask and detect 3D keypoints of the target object. Finally, we
adopt a least-squares fitting manner to estimate the object’s
pose. The approaches are described in detail as follows:

1) 3D Keypoints Localization: We utilize 3D keypoints of
the target object obtained through a keypoint voting module,
as in [7]. Specifically, the module takes the concatenated
features Ff use as input and predicts offsets o f j

i from each
3D point pi to the selected 3D keypoint kp j of the target
object. The module is supervised using L1 loss function [7]:

Lkeypoints =
1
N ∑

N
i=1 ∑

M
j=1

∥∥∥o f j
i −o f j∗

i

∥∥∥I(pi ∈ I) , (2)

where N is the total number of points on the object’s surface,
M is the total number of selected target keypoints, o f j∗

i is the
ground truth offset, and I is an indication function indicating
whether point pi belongs the object. Moreover, to supervise
the offset prediction between point pi and the object’s 3D
centroid, we use another L1 loss function:

Lcentroid =
1
N ∑

N
i=1 ∥∆xi −∆x∗i ∥I(pi ∈ I) , (3)

where ∆xi is the predicted offset and ∆x∗i is the ground truth
offset. Once the offsets are predicted, can be further refined
using the MeanShift clustering method [24].

2) Semantic Segmentation: We integrate an instance seg-
mentation module into our pipeline to predict pixel labels and
segment the target object from the scene. Unlike previous
works [18], [10] that rely on an external segmentation
network, such as Mask R-CNN [25], to preprocess the input
image, our approach has several benefits. Firstly, it makes the
framework more comprehensive and streamlined. Secondly,
by forcing the segmentation module to distinguish objects,
it facilitates the extraction of both global and local features,
benefiting the 3D keypoints localization module. As in [7],
we employ the Focal Loss [26] to supervise this module:

Lsegment =−α (1−qi)
γ log(qi) , (4)

where qi = ci · li, α represents the α-balance parameter, γ is
the focusing parameter, ci denotes the predicted confidence
for the point pi belonging to each class, and li is the one-hot
representation of the ground truth class label.

3) Loss Function: Similar to the method of [7], we trained
the network in a supervised manner using the following
composite loss function:

Lloss = λ1Lkeypoints +λ2Lsegment +λ3Lcentroid , (5)

where λ1, λ2, and λ3 represent the respective weights as-
signed to each module.

4) Least Squares Fitting: To compute the rotation matrix
R and the translation vector T , given the 3D keypoints in the
object coordinates system {pi}N

i=1 and the corresponding 3D
keypoints in camera coordinates system {ci}N

i=1, the lease-
squares fitting algorithm [27] minimizes the squared loss:

L = ∑
N
i=1 ∥ci − (Rpi +T )∥2 . (6)

IV. EXPERIMENTS

We conduct experiments on three public benchmark
datasets including the LM [28], the O-LM [29], and the
YCBV [30]. Compared with SOTA baselines, our proposed
SwinDePose outperforms them on LM and O-LM datasets.
We are also presenting ablation studies to demonstrate the
effectiveness of the components in SwinDePose.

A. Experimental Setup.

Datasets. The LM is wildly used in 6D pose estimation.
It contains RGB-D images and 13 indoor texture-less objects
in cluttered scenes. Following [6], we split the training and
testing sets and generated 20K synthetic depth images for
each category in the LM.

The O-LM is a subset of the LM and contains 8 objects
in the LM. Each scene in the O-LM has heavy occlusions,
making the task more challenging. We follow [6] to split the
training and testing sets in the O-LM.

The YCBV contains 21 YCB objects and 92 RGB-D
videos. We followed [30] to split the training and testing
set. The training set contains real and synthetic images.

Evaluation Metrics. We use ADD and ADDS metrics
to evaluate the models’ performance for asymmetric and
symmetric objects, following [30]. For asymmetric objects,
ADD computes the mean distance between two transformed



3D CAD model points using the estimated pose and the
ground truth pose, defined as follows:

ADD =
1
m ∑x∈M ∥(Rx+T )− (R̃x+ T̃ )∥, (3)

where M denotes the set of 3D CAD model points and m is
the number of points. R and T are the predicted rotation and
translation, respectively. R̃ and T̃ are ground truth rotation
and translation. ||.|| denotes the Euclidean norm.

For rotational symmetric objects, we compute the ADDS,
which is the mean distance based on the closest point
distance between two transformed 3D CAD model points:

ADDS =
1
m ∑x1∈M minx2∈M

∥∥(Rx1 +T )−
(
R̃x2 + T̃

)∥∥ . (4)

In experiments, we report the accuracy in terms of ADD
or ADDS less than 10% of object diameter as in [6], [28].

B. Implementation Details.

Network Architecture. SwinDePose utilizes encoder-
decoder modules to extract features from normal vector
angle images and point clouds. To learn image embeddings,
Swin-T [13] serves as an encoder, generating feature maps
Fswin at 4 various dimensions and resolutions. UPerNet then
decodes and interpolates the multi-scale feature map Fswin to
obtain the feature map Fintep. After concatenating all features
from Fintep, CNNs are used to reduce its dimensionality.
An additional interpolation process expands Fconcat , resulting
in the dense pixel-wise image embeddings FInrm. For point
cloud feature extraction, depth images are converted to
point clouds, and 12288 points are sampled following [6].
RandLANet is employed to extract point-wise features with
a dimension of 64. With these settings, the model consists of
approximately 37M parameters. The average inference time
per frame is approximately 2.099 s, and the average time for
generating a normal angle image is 0.0027 s when using a
single NVIDIA GPU Tesla V100.

Keypoint Detection. We conduct the SIFT-FPS keypoints
selection algorithm from [6] by detecting 2D keypoints in
images using SIFT, then projecting 2D keypoints to 3D in
the object coordinates system, and finally applying the FPS
algorithm to choose N points from them.

C. Comparison with State-of-the-Art Methods.

Evaluation on the LM Dataset. Our proposed SwinDe-
Pose has been evaluated against state-of-the-art 6D pose
estimation methods on the LM dataset. We categorize the
selected methods into three groups based on their input types:
RGB, RGB-D, and Depth-Only. Table I presents the accu-
racy comparison between SwinDePose and others without
any post-processing refinement. The results demonstrate that
without the ground-truth (GT) mask, our SwinDePose out-
performs the previous best-performed depth-based baseline,
CATRE [10] by 5.94% on the accuracy of ADD(S) metric.
With the GT masks, our SwinDePose still outperforms the
previous best baseline, OVE6D (with GT masks) by 1.14%.

Moreover, our proposed method outperforms some RGB-
based or RGB-D based methods on certain categories, even

(a) The visualization results of the LM dataset.

(b) The visualization results of the O-LM dataset.

Fig. 4: Qualitative evaluation of SwinDePose on the LM and
the O-LM datasets. 3D surface points of the object meshes
are transformed by the predicted poses and projected onto
2D images by intrinsic parameters. For better visualizations,
we display projected points in green.

without GT masks and only with geometry information as
input. This highlights the effectiveness of our method in
leveraging the geometry information from depth images for
6D object pose estimation. Qualitative results showing the
performance of SwinDePose are displayed in Fig. 4a, which
demonstrate that our proposed model can accurately predict
6D object poses.

Evaluation on the O-LM Dataset. For the O-LM dataset,
the results in Table II indicate that SwinDePose outper-
forms the best-performing depth-based baseline, which is
CloudAAE, by 2.38% without GT masks. With GT masks,
SwinDePose achieves an 8.74% higher accuracy on ADD(S)
compared to OVE6D. This improvement is observed without
any post-processing refinement, highlighting the robustness
of our model. Furthermore, SwinDePose exceeds some RGB-
based or RGB-D based methods on certain categories even
without GT masks. Due to heavy occlusions, GT masks
significantly improve our performance since our semantic
segmentation module faces difficulty in segmenting objects.
Qualitative results are displayed in Fig. 4b, showing accu-
rate 6D pose estimation results even in scenes with heavy
occlusion, as demonstrated in the images.

Evaluation on the YCBV Dataset. In the YCBV dataset,
the findings in Table III demonstrate that our method per-
forms slightly worse than CloudAAE, which utilizes ICP as
post-processing. This observation highlights the robustness
of our model, as it achieves competitive results without any
post-processing techniques. Moreover, our method outper-
forms certain RGB-based approaches with GT masks.

D. Ablation Study.

We performed extensive ablation studies on our model
design using the LM dataset. The results shown in Table
IV are the average ADD(S) on the LM dataset.

Effect of the Images Feature Extraction. To validate
the effectiveness of using Swin-T for learning image em-
beddings, we conducted an ablation study in top of Table
IV. Initially, the scenario was tested without employing any
module for image feature extraction (w/o Any Encoder).
Then, 4-layer CNNs were added to extract image features
(w Conv Encoder). Finally, the CNNs were replaced with



TABLE I: The accuracy in terms of ADD(S) results for the LM dataset. Symmetric objects are noted with *. We highlight
the best performance in bold for each group.

INPUTS RGB RGB-D Depth-Only

METHODS PVNet [4] Pix2Pose [5] RNNPose [31] PVN3D [7] DenseFusion [15] KPD [32] CloudAAE [8] CATRE [10] OVE6D [18]
(w Mask R-CNN)

OVE6D [18]
(w GT Masks)

OURS
(w/o GT Mask)

OURS
(w GT Masks)

ape 43.6 58.1 88.2 97.3 92 94.2 74.5 63.7 - - 91.7 95.4
benchvise 99.9 91.0 79.7 99.7 93 98.2 86.6 98.6 - - 97.9 98.2

camera 86.9 60.9 98.0 99.6 94 98.5 65.6 89.7 - - 94.8 96.9
can 95.5 84.4 99.3 99.5 93 94.0 90.2 96.1 - - 97.6 98.2
cat 79.3 65.0 96.4 99.8 97 92.0 90.7 84.3 - - 98.3 98.6

driller 96.4 76.3 99.7 99.3 87 97.2 97.3 98.6 - - 98.6 98.5
duck 52.6 43.8 89.3 98.2 92 91.5 50.0 63.9 - - 88.5 92.7

eggbox* 99.2 96.8 99.5 99.8 100 99.6 99.7 99.8 - - 100.0 100.0
glue* 95.7 79.4 99.7 100.0 100 92.5 93.5 99.4 - - 98.6 100.0

holepuncher 82.0 74.8 97.4 99.9 92 92.1 57.9 93.2 - - 92.4 93.6
iron 98.8 83.1 100.0 99.7 97 98.7 85.0 98.4 - - 96.9 96.9
lamp 99.3 82.0 99.8 99.8 95 96.5 82.1 98.7 - - 98.8 99.1
phone 92.4 45.0 98.4 99.5 93 97.2 94.4 97.5 - - 98.3 98.8

MEAN 86.3 72.4 97.4 99.4 94 95.6 82.1 90.9 86.1 96.4 96.3 97.5

TABLE II: The accuracy in terms of ADD(S) results for the O-LM dataset. Symmetric objects are noted with *. We highlight
the best performance in bold for each group.

INPUTS RGB RGB-D Depth-Only

METHODS PVNet [4] Pix2Pose [5] Keypoint [33] Point-to-Keypoint [34] FFB6D [6] KPD [32] CloudAAE [8] OVE6D [18]
(w Mask R-CNN)

OVE6D [18]
(w GT Masks)

OURS
(w/o GT Mask)

OURS
(w GT Masks)

ape 15.8 22.0 - 51.6 47.2 19.5 - - - 50.3 59.8
can 63.3 44.7 - 75.6 85.2 78.4 - - - 84.1 88.8
cat 16.7 22.7 - 28.7 45.7 28.2 - - - 39.0 46.7

driller 25.2 44.7 - 66.9 81.4 75.1 - - - 88.9 95.1
duck 65.7 15.0 - 36.7 53.9 38.6 - - - 53.0 59.4

eggbox* 50.2 25.2 - 47.1 70.2 51.2 - - - 28.5 90.3
glue* 49.6 32.4 - 71.9 60.1 52.1 - - - 58.4 88.0

holepuncher 39.7 49.5 - 45.7 85.9 59.0 - - - 79.8 88.8

MEAN 40.8 32.0 33.7 52.6 66.2 50.3 58.9 56.1 70.9 60.3 77.1

TABLE III: The average accuracy in terms of ADD(S) results
for the YCBV dataset. We highlight the best performance in
bold for each group.

INPUTS RGB RGB-D Depth-Only

METHODS PoseCNN [30] PVNet [4] EPOS [35] PVN3D [7] DenseFusion [15] CloudAAE [8]
(w ICP)

OURS
(w/o GT Mask)

OURS
(w GT Masks)

METRICS ADD ADDS ADDS ADD ADD ADDS ADD ADDS ADD ADD ADDS ADD ADDS

MEAN 75.2 61.3 73.4 78.3 95.4 92.6 90.9 83.9 93.5 71.8 89.4 73.1 91.4

TABLE IV: Results of ablation study. We validate the
efficacy of different aspects of SwinDePose.

Aspect Description Average ADD(S)
w/o GT Masks

Average ADD(S)
w GT Masks

w/o Any Encoder 42.8 51.6
Images Feature Extraction w Conv Encoder 94.3 95.7

w/o Any Encoder 51.4 59.3
Point Clouds

Feature Extraction w PointNet 80.4 90.1

w Depth Images 94.1 95.7
Normal Vector Angles
Images Replacement w Normal Vectors 81.2 86.2

Full Model SwinDePose 96.3 97.5

a Swin-T module for image feature extraction. The results
show the difficulty in accurately estimating 6D poses solely
based on point cloud embeddings. The use of CNNs signif-
icantly improved the performance of pose estimation, while
the Swin-T model produced slightly more accurate results
on the LM dataset. However, when we evaluated the perfor-
mance of CNNs on the O-LM dataset, the average ADD(S)
score obtained was only 53.03, which is significantly worse
than the performance of Swin-T (60.3). This highlights the
superior robustness to occlusion achieved by incorporating
the Swin-T module.

Effect of the Point Clouds Feature Extraction. To
validate the effectiveness of RandLA-Net for learning point
cloud embedding, firstly, we employed no module for point

cloud feature extraction (w/o Any Encoder). Then, we added
PointNet [36] (w PointNet) to extract features. Lastly, we
replaced PointNet with RandLA-Net. The results in Table IV
show that removing the point cloud embeddings significantly
harms the performance. Additionally, PointNet demonstrates
its capability in enhancing pose estimation performance.
Moreover, the substitution of PointNet with RandLA-Net
yields superior accuracy in pose estimation. We hypothesize
that the randomized aggregation method in RandLA-Net
allows for more robust feature learning and is less sensitive
to individual point errors than PointNet.

Effect of the Normal Vector Angles Image. To val-
idate the effectiveness of normal vector angles images,
initially, depth images were fed into SwinDePose, which
were subsequently replaced by normal vectors. Finally, we
changed them into normal vector angles images. The results
reveal that neither using depth images nor normal vectors
surpasses using normal vector angles images. This finding
demonstrates the usage of normal vector angle images is
beneficial in improving pose estimation accuracy.

V. CONCLUSIONS

We introduce SwinDePose, a novel fusion network for
learning representations from a single depth image that
maximizes the information present in the scene for 6D pose
estimation. We developed an effective module that converts
depth images into normal vector angles images, explicitly
incorporating more geometric information into the fusion
network. Our approach achieves superior results on the LM,
and O-LM datasets, while being competitive on YCBV.
Furthermore, our proposed fusion network can be applied
to 6D pose estimation based on RGB-D images, and we
anticipate further research in this area.
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